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In this work, a new time series prediction network is proposed in the framework

of CasualLSTM with physical constraints and an adjusted Fourier neural

operator (FNO) for the solution of the time-dependent partial differential

equation. The framework of CasualLSTM is employed to learn the time

evolution of spatial features which strengthens the extrapolation capability.

With the help of adjusted Fourier layers (AFLs), residual connection, and the

adaptive time-marching strategy, the network can quickly converge and

extrapolate without labeled data by encoding PDE constraints into loss

functions. Two examples, namely, Burger’s equation and two-dimensional

Navier–Stokes (N-S) equation are used to evaluate the proposed method.

Numerical results show that the proposed method has a good performance

in solution accuracy and extrapolability.
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1 Introduction

In most complex spatiotemporal systems, a partial differential equation is

indispensable as a means of simulating systems and explaining corresponding

phenomena. Many physical phenomena and engineering technologies (such as

convection and diffusion, fluid motion, and communication technology) are modeled

and analyzed using a partial differential equation, but the analytical solutions of these

governing equations are mostly unavailable. The numerical solution of the partial

differential equation is the core foundation of scientific computing. In recent decades,

the explosive development of computing power has provided the basis for traditional

numerical methods (such as finite difference method, finite element method, and finite
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volume method [1,2]) to solve the partial differential equation.

Although the traditional numerical methods have achieved very

high accuracy in forward analysis, it is still a challenge to balance

computational cost and solution accuracy in most real

application scenarios and the requirements of arbitrary

resolution. Therefore, it is a direction to achieve an ideal

balance between computational efficiency and prediction

accuracy. Also, in many cases, there are modeling errors when

using the partial differential equation to model the system, so

there will be irreconcilable errors between the numerical solution

of the partial differential equation and the real phenomenon.

Furthermore, researchers attempt to model nonlinear

systems by other approaches, which are divided into forward

and inverse problems. Hornik et al. [3] proposed the universal

approximation theorem and theoretically proved that deep

neural networks can simulate arbitrarily complex functions.

At the same time, due to the rapid development of

backpropagation algorithms and GPU-based computing

systems, deep learning can avoid repeated modeling in

forward analysis and provide a new research direction for

data assimilation and inverse problem-solving. As a

mathematical method for modeling nonlinear systems, the

partial differential equation has always been a concern of

researchers in deep learning. In fact, in the last century,

Lagaris [4,5] used artificial neural networks to solve the initial

and boundary condition problems of the partial differential

equation. The pioneering work of using a neural network as

an approximator to solve the equation is proposed. The network

consists of two parts, one for satisfying the initial and boundary

conditions and the other for meeting the equation with a feed-

forward neural network with tunable parameters. In the past

decade, with the breakthrough development of machine learning

and deep learning, the application of deep learning models in

many fields has achieved widespread success, such as image

recognition [6], natural language processing [7], and fault

detection [8]. Therefore, many researchers once again

introduced deep learning into the solution of partial

differential equations and achieved a series of developments

[9–16]. Similar to the modeling of nonlinear systems, the

latest research is divided into two directions: forward-solving

partial differential equation and data-driven discovery of the

partial differential equation. The most representative work is the

physical information neural network (PINN), a fully connected

neural network proposed by Raissi et al. [13], which takes into

account the solution of the aforementioned problems. The

innovative work of the network is to integrate the PDE

residual into the loss function, which only requires the labeled

data about the initial value and boundary conditions [17,18] or

no labeled data [19–21] during the training process. PINN

achieves good results in PDE and has a wide range of

applications in other disciplines, including temperature

modeling [22,23], traffic flow evaluation [24], and partial

differential equation mining [25,26]. Despite the great success

and wide application, there are still some problems in the

application of the deep leaning method in the solution of

PDE. 1) PDE residual as a physical soft constraint is limited

by the application environment [27,28]. 2) Compared with

traditional numerical solvers, it is difficult to extrapolate

information to future times only from initial values or

boundary conditions [29,30]. Therefore, in many cases, PINN

is still not comparable to traditional numerical solvers.

For the time-dependent partial differential equation, some

studies treat it as a problem of time series prediction [31–35]. As

with the traditional solution method, discrete integration is

performed in the time domain to solve the extrapolation

problems. These methods can achieve a good extrapolation

effect and high solution accuracy. However, there are still

some challenges: as the resolution increases, the required

computational time increases dramatically. Limited by mesh

and different filters, the network is not as flexible as the

pseudo-spectral method for solving PDE using the inverse

Laplace transform.

Recently, neural operators are not negligible for solving PDE,

that is, the neural network is used to find the mapping

relationship between input and output in a finite dimension.

The method improves the computational efficiency and suits the

PDE models by replacing the traditional neural network [36–42].

The biggest advantage of this network is its high computational

efficiency and great success in highly nonlinear problems [43].

The Fourier operator proposed by Li et al. [38] trains the network

parameters in the Fourier space, which makes the solution of

partial differential equations more efficient. The spatial

resolution is not affected by the size of the grid spacing, and

the calculation speed becomes fast. However, there are still

challenges in two aspects: 1) label data are still needed during

training, which are obtained through traditional solvers or

empirical data; 2) information cannot be extrapolated

accurately to future time periods.

In order to address the challenges of the aforementioned

networks, we propose a new time series prediction network with

physical constraints and an adjusted Fourier neural operator

(PA_CasualLSTM) which quickly solves time-dependent PDE

using only the initial and boundary conditions. In this work, the

network combines the soft constraints of PDE residuals, the

adjusted Fourier layers, and the adaptive time-marching strategy

to optimize the extrapolation solution accuracy. We do not

intend to replace the traditional numerical solver with

PA_CasualLSTM, but it provides new ideas for the solution of

PDE and possibly a new research method for subsequent data

assimilation and inverse problems. Our contributions can be

summarized as follows:

1) We propose a new time series prediction network with

physical constraints and an adjusted Fourier neural

operator (PA_CasualLSTM), which combines physical

information as a soft constraint, the adjusted neural
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operator as a spatial derivative optimizer, and the global

residual connection.

2) By using the CasualLSTM module to learn the time evolution

of spatial features, PA_CasualLSTM alleviates the issue of low

extrapolation accuracy in PINN and neural operators.

3) Compared with other neural operator networks,

PA_CasualLSTM with the PDE constraints does not

require any label data in the training process. Starting

from the initial conditions, the proposed method trains the

network with physical information as a loss function.

The remainder of the article is structured as follows: Section 2

states the PDE system and introduces the idea of a deep learning

solution, while Section 3 provides the construction and

implementation of the PA_CasualLSTM. In Section 4, the

performance of PA_CasualLSTM, especially the extrapolation

ability for solving PDE is verified by Burger’s equation and the

two-dimensional incompressible Navier–Stokes equation.

Section 5 discusses the network and the prospect of future

works. Finally, a conclusion is presented.

2 Problem setting

Here, we consider the general form of a multidimensional,

nonlinear, time-dependent parametric PDE:

ut + R[u,∇u,Δu, u∇u, . . . ; λ] � 0, inD × [0, T],
u � ub, in zD × [0,T], (1)

u � u0, inD × {0},

where u(x, t) denotes the solution in the space intervalD and the

time area t ∈ [0,T]. R stands for a nonlinear spatial operator

with parameter λ. u0 and ub are the initial and boundary

conditions, respectively, where zD represents the boundary of

the spatial region.

In this article, we set up a neural network for Eq. 1 to solve

time-dependent PDE. More accurately, a neural network is used

to fit the nonlinear spatial operator R. The entire training only

needs the initial conditions, and Eq. 1 is used as a constraint to

design the loss function without label data.

First, after discretizing the PDE in space and time, the

network pre-trains the initial state to achieve the solution at

the first K moments. Then, the pre-trained results are fed into the

next PA_CasualLSTM cell to fit the spatial derivatives with the

adjusted Fourier layer and learn the spatiotemporal evolution

with residual connections and CasualLSTM. In this article, we

focus on the regular physical space region and the periodic

boundary. In the network implementation, these constraints

are encoded into the loss function like PINN. Finally,

u(x, t; θ) is obtained by minimizing the loss function for

satisfying the PDE constraints. The specific network

construction and training skills are described in Section 3.

3 Methodology

This section introduces an operator-based time series

prediction network to solve time-dependent PDE. The

network focuses on learning nonlinear spatial operators and

propagating information. Regarding the application of neural

networks for information propagation, Geneva and Zabaras [32]

elaborated on recurrent neural networks and proved that they

have powerful capabilities for time series prediction. We first

introduce a time series prediction network CasualLSTM.

3.1 CasualLSTM

CasualLSTM proposed by Wang et al. [44] is a

spatiotemporal recurrent neural network framework and

one of the variants of the long short-term memory neural

(LSTM [45]) network, which has certain advantages in

modeling PDE systems evolving over time [31]. As a

spatiotemporal memory unit, it is the greatest innovation

that nonlinear operations have been added in CasualLSTM,

which enlarges the spatial features. It is more conducive to

capturing short-term dynamic changes and updating them in

time during temporal evolution. At the same time, as a

spatiotemporal sequence-to-sequence learning framework,

CasualLSTM alleviates the vanishing gradient problem in

RNN with the help of the characteristics of LSTM. In

addition, inheriting the basic framework of LSTM,

CasualLSTM adds the nonlinear layer to realize the

cascade, which strengthens the network depth and

improves the mutation prediction ability in the short term

compared with LSTM. For more detailed work on

CasualLSTM, refer to the work [44].

3.2 The adjusted Fourier layers

The neural operator is proposed by Li et al. [37] to find

the mapping relationship between input and output after

neural network training. In other words, the neural operator

is used as an iterative format to calculate z00z10z2 . . .

0zT, and its specific expression is defined as Eq 2.1, where zi
(i = 0, 1, . . . , T) is a series of functions obtained through a

fully connected network (FCN) and takes the following form

Eq. 2.2:

zt+1(x) ≔ σ(Wzt(x) + (Kθzt)(x)),∀x ∈ D, (2.1)
zt(x) � P(ut;x1,x2,x3, . . . , xn)∀x1~n ∈ D, (2.2)

where σ(·) represents the nonlinear activation function,W(·) is a
linear transformation, x1~n is the location point in the spatial

regionD, and n represents the number of spatial dimensions. Kθ

is a linear operator represented by a neural network with the
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parameter θ. P(·) is a fully connected network, and ut is the

solution at time t. From Eq. 2.2, zt(x) is related to the position x.

While applying (Kθzt)(x) and the convolution theorem to

the Fourier space, the Fourier neural operator (FNO) [38] is

formed, which is used for the solution of PDE and other fields,

such as weather forecast [46] and numerical simulation [47]. Li

et al. defined it as the Fourier integral operator Eq. 3.1, and the

Fourier layer is expressed as Eq. 3.2:

(Kθzt)(x) � F −1(Rθ · (Fzt)(x)),∀x ∈ D, (3.1)
zt+1(x) ≔ σ(Wzt(x) + F −1(Rθ · (Fzt)(x))),∀x ∈ D, (3.2)

where F(·) is the discrete Fourier transform (DFT) and F−1 is
the inverse Fourier transform (IDFT). Rθ represents the Fourier

transform of a periodic function. After passing through a

P(·)-like fully connected network (FCN), Q(·) is converted to

the desired ut. The FNO model is shown in Figure 1A.

Comparing Eq. 1 and Eq. 2.1, R(·) can be similarly

constructed by a neural network of (Kθzt)(x). In this work,

we construct zt+1′(x) by applyingWzt(x) in Eq. 3.2 to connect with
CasualLSTM and residual connection. Eq. 4 gives the expression

of the adjusted Fourier layer, and the graphic illustration is

shown in Figure 1B:

z′t+1(x) ≔ σF −1(Rθ · (Fzt)(x)),∀x ∈ D. (4)

3.3 Network architecture: PA_CasualLSTM

This section introduces the construction of

PA_CasualLSTM, which is an adaptive time-marching

strategy, as shown in Figure 2A. The time series prediction is

formed by combining the operator with AFL and CasualLSTM as

shown in Figure 2B. The PA_CasualLSTM cell consists of an

operator module, an autoregressive (AR) process, and a Fourier

transform-based filter. The operator module first performs a full

connection operation (P(·)) on the input of the state value uk~2k,

where k represents the number of time steps. Then, the tensor

processed by AFL enters into the next fully connected layer, and

the results are fed into the autoregressive (AR) process for time

propagation processing and finally pass through a fully

connected layer.

We apply ReLU as the activation function of the fully

connected layer. Unlike the first two fully connected layers,

there is no activation function behind the last layer. The

CasualLSTM layer acts as a time propagator for propagating

information, so that Ck,Hk,Mk are used as the unit of

information propagator. Inspired by the traditional integral

method, the forward Euler scheme in the connection module

is adopted. To the last uk+i of the input value and the output

uk+i+1, we add a global connection, and the expression is

uk+i+1 � uk+i + δt · G[ui~k+i; θ], where G[·] represents the

combined network with AFL and CasualLSTM, δt is the time

interval, and input is rolling backward update. This way of

connecting the input and output is regarded as an

autoregressive (AR) process.

The discrete outputs are encoded into the loss function by

means of Fourier transform-based filters and finite difference

methods. The time derivative is calculated by convolving the

outputs with a finite difference filter, which is the fourth-order

central difference method like Eq. 5. For the spatial derivative,

because of only considering the periodic boundary conditions,

the solution can be solved by the discrete Fourier transform

method. So, the PDE constraints are achieved and the loss

function is constructed, which will be explained in detail in

Section 3.4.

Dt � [1,−8, 0, 8,−1] × 1
12δt

. (5)

Finally, it is about the skills of network training. Since the

network has only one initial condition, after getting the value of

the subsequent k moments through pre-training, the value of

1 ~ k is regarded as the input of the next PA_CasualLSTM cell.

After the training, the value of k + 1 ~ 2k is achieved. In this way,

the iterative training is repeated until the value of the entire

training period is derived.

3.4 Physical information loss function

With the initial conditions as the only input, we choose the

time-dependent PDE with periodic boundary conditions as the

solution. The boundary conditions are incorporated into the

constraints of the PDE.We define f(t;x; θ) on the left side of Eq.
1, which is represented by the following formula:

FIGURE 1
(A) Structure of FNO. (B) Neural network structure of the
adjusted Fourier layer (AFL).
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f(t;x; θ) : � uθ
t +R[uθ

t ,∇u
θ
t ,Δu

θ
t , . . . ; λ]. (6)

The shared network parameter θ is achieved by training the

network to minimize the loss function L(θ). In other words,

f(t;x; θ) and u(t;x) can be obtained by minimizing the loss

function L(θ), which is defined as the mean-squared error

obtained, namely,

L(θ) � ∑N

i�1∑T

k�1
∣∣∣∣f(tk; xi; θ)

∣∣∣∣2, (7)
Target: θ � argminL(θ), (8)

where N and T represent the number of points in space and the

total number of time steps, respectively.

Fourier transform, a section of the pseudo-spectral method,

is often used to solve PDE. In deep learning, the application of the

Fourier transform can accelerate convolutional neural networks

[48]. In this article, the Fourier transform is used for the PDE

constraint construction of loss function. The Fourier-

transformed function has an obvious advantage in which it

has a wider range of applications. When solving the spatial

derivatives, the related operations (such as the inverse Laplace

transforms) are a challenge for finite differences. The function is

very easy to calculate in the frequency domain using the discrete

Fourier transform (DFT) [49,50].

4 Numerical experiments

In this section, we evaluate the proposed method by two

nonlinear time-dependent PDE systems. By solving Burger’s

equation and the two-dimensional incompressible

Navier–Stokes (N-S) equation, we demonstrate the solution

accuracy and extrapolation ability of PA_CasualLSTM

compared with those of FNO. The following section

introduces the parameters and prediction evaluation indicators

of each part of the network construction and then conducts

experiments on the two PDEs. All numerical experiments and

constructed networks in this article are coded using PyTorch

[51], and PyCharm is used as the development environment for

the experiments, and an NVIDIA GeForce GTX 3090 (24G) is

used to train the network.

4.1 Network settings

We consider the same network architecture setting for the

two examples in this article. The PA_CasualLSTM cell consists of

three FCNs with 20, 64, and 64 neurons, respectively, the two

layers of AFL, and a CasualLSTM cell. All networks are trained by

the stochastic gradient descent Adam optimizer [52].

4.1.1 Baseline
As an important part of evaluating the architecture and

performance of the neural network, we choose the FNO as

the baseline to demonstrate the capability of the proposed

method. After hyperparameter optimization, we choose the

following model as the solution baseline:

FNO: the four-layer Fourier neural operator with three FCNs

with 20, 64, and 64 neurons, respectively, is chosen. The first FCN

lifts the dynamics from Din to D20, and the third FCN projects the

FIGURE 2
(A) The network structure of PA_CasualLSTM. It is an adaptive time marching strategy composed of the PA_CasualLSTM cell. After the current
group is trained, some training results are taken as the input of the next stage; (B) The network structure of PA_CasualLSTM cell. H, C, and M are the
hidden state, temporal memory, and spatial memory of CasualLSTM. θ needs to be acquired by training the network.
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dynamics from D64 to D1. Also, each Fourier layer is

parameterized with 13 truncated modes.

4.1.2 Evaluation metrics
To evaluate the pros and cons of the proposed network, our

error evaluation is divided into two parts: training and

extrapolation. The root-mean-square error (RMSE) is reported

which is defined as follows:

RMSEτ �
��������������������������������
1

Nτm
∑m

i�1∑Nτ

k
|u(xi, tk) − u(xi, tk; θ)|2,

√
(9)

whereNτ represents the whole number of time steps in [0, τ] and
τ represents the moment of this time step.m is the number of all

spatial points in the area. u(xi, tτ) and u(xi, tτ ; θ) are the

reference solution and the network solution, respectively.

4.2 Burger’s equation

Considering a hydrodynamic problem, the two-dimensional

viscous Burger’s equation has the following form:

ut + u(x, y, t)(ux(x, y, t) + uy(x, y, t))
� ](uxx(x, y, t) + uyy(x, y, t))
x, y ∈ Ω, t ∈ (0, T],

u0(x, y, 0) � sin (2πx) sin (2πy) x, y ∈ Ω, (10)

where u represents the velocity of the fluid; ν is the viscosity

coefficient; ux, uy, uxx, and uyy are the partial derivatives; and

u0(x, y, 0) is the initial condition.

As a nonlinear partial differential equation describing the

phenomenon of wave diffusion, Burger’s equation is widely

applied in many physical problems such as sound waves and

vibrations. Although its equation form is simple, it contains

nonlinear derivatives, partial derivatives, and other terms, so it is

widely used to verify the effectiveness of numerical methods.

Here, we take ] � 0.005, and the spatial region takes Ω ∈ [0, 1]2
with a grid resolution of [64× 64].

In addition, the reference solution is solved using a

pseudo-spectral method with a fourth-order Runge–Kutta

time integration scheme (δt � 1 × 10−4), while for the

baseline and PA_CasualLSTM, we use a larger time interval

(δt � 5 × 10−2). PA_CasualLSTM is trained from 5, 10, and

20 to 40 time steps, with each training epoch being 3,000, the

learning rate being 0.001, and the learning rate being reduced

by 2% every 100 epochs. In the training phase, the number of

time steps is 40, and the time range is [0,2]. Based on the

trained model, we predict its solution with a number of time

steps of 40 and a time range of [2, 4] to verify its extrapolation

ability.

Figure 3 depicts four snapshots of u taken from the

training phase (t = 0.75, 1.5s) and the extrapolation phase

(t = 2.5, 3.5s), respectively. Each snapshot from top to bottom

is reference solutions, predictions by FNO and

PA_CasualLSTM, and errors of FNO and PA_CasualLSTM,

respectively. First, both the trained and extrapolated results of

PA_CasualLSTM are excellently consistent with the overall

change of the reference solution, while the baseline prediction

fails to match the truth, especially it is obvious that the whole

error of PA_CasualLSTM is close to zero, whereas the solution

from FNO maintaining the same trend presents a much larger

error. Second, the numerical results of PA_CasualLSTM are

shown in Table 1, and two points (x = 16/64, y = 16/64; x = 16/

64, y = 48/64) at four time are selected to verify the proposed

method. It can be found that the error of FNO is larger than

that of PA_CasualLSTM, especially in the extrapolation

proceedings. Also, for the error propagation shown in

Figure 4, it is validated that PA_CasualLSTM possesses

superior solution accuracy to FNO. The RMSE of

PA_CasualLSTM surpasses that of FNO during the entire

time period. The reason for this phenomenon is that the

loss function designing of FNO only relies on the MSE

constructed with the truth, which is limited by the grid

sizes. In addition, due to CasualLSTM and the residual

connection on the input and output, PA_CasualLSTM

remains an outstanding performance effect on extrapolation.

4.3 Two-dimensional Navier–Stokes
equation

We consider the two-dimensional Navier–Stokes equation

for viscous incompressible fluids [38]:

ztζ(x, y, t) + u(x, y, t) · ∇ζ(x, y, t) � ]Δζ(x, y, t) + f(x, y)
x, y ∈ [0, 1], t ∈ (0, T],

∇ · u(x, y, t) � 0 x, y ∈ [0, 1], t ∈ (0, T],
ζ0(x, y, 0) � sin (2πy) x, y ∈ [0, 1], (11)

where u(x, y, t) is the velocity field containing (u, v), ζ � ∇× u

is the vorticity, and ζ0(x, y, 0) is the initial condition

with periodic boundary properties. The viscosity

coefficient ] � 1e − 3 and the forcing

f(x, y) � 0.1(sin (2π(x + y)) + cos (2π(x + y)). The

reference solution is generated using the pseudo-spectral

method. First, the velocity field is calculated in Fourier

space by the flow function. Second, the nonlinear term of

the geometric space and the Laplace operator of the vorticity

are computed, respectively. Finally, in the time domain, the

Crank–Nicolson formula is used for forward integration and

the time step is δt � 1 × 10−4. We train the model for 20-time

steps with a time duration of [0,2] and extrapolate the

inference for [2,4] with a time interval of 0.1, where the

resolution is 64 × 64. The learning rate is set at 5 × 10–4

and decays by 2% every 100 epochs.
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The solution snapshots of vorticity and velocity predicted by

PA_CasualLSTMand FNO are shown in Figures 5, 6, along with the

ground truth reference and error maps. In general, the vorticity and

velocity solution of both PA_CasualLSTM and FNO are in good

agreement with the reference truth. However, the error distribution

of PA_CasualLSTM is much smaller, especially in the extrapolation

FIGURE 3
Result of PA_CasualLSTM solving Burger’s equation. Four representative moments are selected for comparison, namely, training (t = 0.75, 1.5s)
and extrapolation (t = 2.5, 3.5s), and the entire interval error is compared. The subfigures from top to bottom are reference solutions, predictions by
FNO and PA_CasualLSTM, and errors of FNO and PA_CasualLSTM, respectively.

TABLE 1 Numerical result of the classical numerical method, FNO, and PA_CasualLSTM for Burger’s equation.

Time (x � 16/64, y � 16/64) (x � 16/64, y � 48/64)

Ref FNO PA_CasualLSTM Ref FNO PA_CasualLSTM

Training t = 0.75 0.05183 0.04966 0.05140 −0.05658 −0.05532 −0.05700

t = 1.50 0.03649 0.03274 0.03600 −0.04057 −0.03712 −0.04100

Extrapolation t = 2.50 0.02411 0.02474 0.02383 −0.02675 −0.03110 −0.02689

t = 3.50 0.01634 0.02277 0.01729 −0.01789 −0.03067 −0.01723
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FIGURE 4
RMSE of PA_CasualLSTM and FNO for Burger’s equation.

FIGURE 5
Vorticity results of PA_CasualLSTM-solved 2DNavier–Stokes equation, and four representativemoments are selected for comparison, namely,
training (t = 1, 1.7s) and extrapolation (t = 2.5, 3.5s), and the errors across the entire interval are compared. The subfigures from top to bottom are
reference solutions, predictions by FNO and PA_CasualLSTM, and errors of FNO and PA_CasualLSTM, respectively.
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phase. Tables 2–Tables 4 show the numerical results of vorticity and

velocity u and v by PA_CasualLSTM, respectively, and two points

(x = 16/64, y = 16/64; x = 16/64, y = 48/64) are selected for

comparison. According to Figures 5, 6, the overall trends of all

physical quantities are nearly the same, and the numerical solutions

of PA_CasualLSTM are closer to the reference solutions during

FIGURE 6
Velocity results of PA_CasualLSTM-solved 2D Navier–Stokes equation, four representative moments are selected as comparisons, namely,
training (t = 1, 1.7s) and extrapolation (t = 2.5, 3.5s), and one-by-one errors over the entire interval are compared. The subfigures from top to bottom
are reference solutions, predictions by FNO and PA_CasualLSTM, and errors of FNO and PA_CasualLSTM, respectively.

TABLE 2 Numerical results of vorticity for 2D Navier–Stokes equations solved by the classical numerical method, FNO, and PA_CasualLSTM.

Time (x � 16/64, y � 16/64) (x � 16/64, y � 48/64)

Ref FNO PA_CasualLSTM Ref FNO PA_CasualLSTM

Training t = 1.0 0.87836 0.87853 0.87893 −1.03487 −1.03460 −1.03533

t = 1.7 0.79786 0.79803 0.79870 −1.06273 −1.06299 −1.06349

Extrapolation t = 2.5 0.70706 0.71579 0.70750 −1.09413 −1.08911 −1.09563

t = 3.5 0.59483 0.65637 0.59260 −1.13221 −1.99090 −1.13701

TABLE 3 Numerical results of velocity (u) for 2D Navier–Stokes equations solved by the classical numerical method, FNO, and PA_CasualLSTM.

Time (x � 16/64, y � 16/64) (x � 16/64, y � 48/64)

Ref FNO PA_CasualLSTM Ref FNO PA_CasualLSTM

Training t = 1.0 −0.00690 −0.00690 −0.00690 0.00690 0.00688 0.00689

t = 1.7 −0.01061 −0.01063 −0.01063 0.01060 0.01057 0.01060

Extrapolation t = 2.5 −0.01396 −0.01404 −0.01404 0.01387 0.01343 0.01389

t = 3.5 −0.01719 −0.01676 −0.01815 0.01683 0.01482 0.01697
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TABLE 4 Numerical results of velocity (v) for 2D Navier–Stokes equations solved by the classical numerical method, FNO, and PA_CasualLSTM.

Time (x � 16/64, y � 16/64) (x � 16/64, y � 48/64)

Ref FNO PA_CasualLSTM Ref FNO PA_CasualLSTM

Training t = 1.0 0.00905 0.00905 0.00905 −0.00906 −0.00904 −0.00903

t = 1.7 0.01634 0.01634 0.01634 −0.01642 −0.01642 −0.01642

Extrapolation t = 2.5 0.02521 0.02424 0.02525 −0.02547 −0.02425 −0.10001

t = 3.5 0.03661 0.03005 0.03706 −0.03728 −0.02984 −0.03720

FIGURE 7
RMSE of PA_CasualLSTM- and FNO-solved 2D Navier–Stokes equations.

FIGURE 8
Convergence history of PA_CasualLSTM.
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extrapolation. The changes in error magnitude in Figures 5, 6 are

further verified by the results in Table 2–Table 3, especially the

extrapolation error. Moreover, the error propagation in Figure 7

further validates the superior solution accuracy. The vorticity or

velocity RMSE of PA_CasualLSTM increases along with time,

keeping at a low level (10−3 and 10−4, respectively), but the

proposed method prevails FNO in extrapolation by one order of

magnitude. The extrapolated error levels show the great potential of

PA_CasualLSTM for generalization.

In this section, the loss history of PA_CasualLSTM for the 2D

Navier–Stokes equation is shown in Figure 8. It is obvious that

the loss value decreases very quickly after a few iterations. As the

number of iteration steps increases, the change of the loss value

becomes flat. From the change of loss history, it can be found that

the network reaches convergence after training. Another example

has a similar conclusion.

4.4 Ablation experiment

To verify the effectiveness of the proposed network, we

implement an ablation study on PA_CasualLSTM by solving

the 2D Navier–Stokes equation. The AFL is added to the time

series prediction, and the residual connection method is

adopted between the input and output. Here, we study the

contributions of these two parts. The experimental setting

composes three architectures: full PA_CasualLSTM,

PA_CasualLSTM without AFL, and PA_CasualLSTM

without residual connections. Other works are consistent

with 4.3, and the results are used for performance

evaluation. The comparison result is described in Figure 9.

The structure of PA_CasualLSTMwithout residual connections

scheme works the worst. PA_CasualLSTM has the best

performance in both training and extrapolation. Therefore,

both ablation experiments fully verify that AFL and residual

connections play a vital role in the network architecture.

5 Discussion

The work [38] has demonstrated the great potential of FNO

for the solution of PDE. However, there is still a lack of research

on networks with unlabeled data and extrapolating information

into the future. Through two numerical experiments (Burger’s

equation and 2DN-S equation), we have verified the capability of

PA_CasualLSTM in the solution of time-dependent PDE. In this

section, we provide a comprehensive discussion about the

proposed network.

1) The training process without labeled data. As an operator

learning method, FNO needs label data from traditional

numerical solvers to construct the network, while our

PA_CasualLSTM frameworks only rely on the initial

conditions and PDE law incorporated into the loss

function as soft constraints. PA_CasualLSTM, which

belongs to a self-supervised method, enhances

interpretability by encoding physical law and does not

require label data obtained by traditional numerical

methods in the training process.

2) The more accurate results of extrapolation. The proposed

network architecture involves two related temporal processes.

Unlike the Fourier layer in FNO, because of the adjusted

Fourier layer learning the spatial derivative, the global

residual connection establishes a temporal relationship

between input and output in PA_CasualLSTM. The

addition of the CasualLSTM module strengthens the

temporal evolution. So, the network holds a more accurate

extrapolation solution due to the embedding of the

aforementioned modules.

3) The construction of loss function. The loss function of

traditional supervised deep learning is always based on

MSE between output and labeled data. Different from the

implementation of physical constraint in PINN, encoding

PDE laws is realized by the Fourier filter to calculate the

FIGURE 9
Ablation experiment.
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spatial derivative, which speeds up convergence and improves

solution accuracy. The network is currently limited by a

uniform grid, and we can extend the network into the

irregular grid to strengthen the generalization of the

network by using graph neural network learning [53,54].

4) The adaptive time-marching strategy. It adopts a timely

update approach to adapt time-marching strategies, thus

improving the solution accuracy. This adaptive process

continuously updates the input to optimize the network

parameters, but it also leads to a sharp increase in the

amount of computation over time. Therefore, it is of great

practical significance to strike a balance between accuracy and

efficiency.

6 Conclusion

In this article, we propose a new time series prediction network

with physical constraints and an adjusted Fourier neural operator

(PA_CasualLSTM) to solve time-dependent PDE. Compared with

previous deep learning methods, PA_CasualLSTM can avoid the

high-quality requirements of training data and the rapid

propagation of errors. By taking the advantage of the physical

constrained network, AFL and CasualLSTM, PA_CasualLSTM, a

self-supervised learning method, can quickly converge without

labeled data and extrapolate the information to the future by the

adaptive time-marching strategy. The excellent performance of

solution accuracy and extrapolability is verified by solving

Burger’s and N-S equations. In the future, we will extend the

network to irregular networks with other boundary conditions

and adopt a more accurate forward scheme to improve the

solution accuracy and prolong the time interval.
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