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Quantum information networks can transmit quantum states and perform quantum operations between different quantum network nodes, which are essential for various applications of quantum information technology in the future. In this paper, a potentially practical scheme for implementing nonlocal quantum controlled-not (CNOT) gate operations on quantum-dot-confined electron spins between two quantum network nodes is presented. The scheme can realize parallel teleportation of two nonlocal quantum CNOT gates simultaneously by employing hyperentangled photon pairs to establish quantum channel, which can effectively improve the channel capacity and operational speed. The core of the scheme are two kinds of photon-spin hybrid quantum CNOT gate working in a failure-heralded and fidelity-robust fashion. With the heralded mechanism, the nonlocal CNOT gates can be implementated with unity fidelities in principle, even if the particularly ideal conditions commonly used in other schemes are not satisfied strictly. Our analysis and calculations indicate that the scheme can be demonstrated efficiently (with efficiency exceeding 99%) with current or near-future technologies. Moreover, the utilized photon-spin hybrid quantum gates can be regarded as universal modules for many other quantum information processing (QIP) tasks. Therefore, the scheme is potential for constructing elementary quantum networks, and realizing nolocal QIP with high channel capacities, high fidelities, and high efficiencies.
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1 INTRODUCTION
Quantum information technology, which aims to develop new theories and methods for processing information based on the laws of quantum mechanics, has developed very rapidly during the past decades. The main branches of this field, i.e., quantum communication [1], quantum computation [2–4], and quantum metrology [5, 6], have been established and become the focus of research. One of the ultimate directions for the development and integration of quantum information technology in the future is to construct quantum information networks [7–9], which are considered as spatially separated quantum network nodes connected by quantum communication channels. The fundamental characteristic of quantum networks lies in the capability to nonlocally transmit not only quantum states but also quantum operations between different quantum nodes, which makes it essential for various applications such as quantum secure direct communication [10–15] and secure multi-party quantum computation [16–21]. The quantum network can therefore significantly improve the power of quantum information processing (QIP) compared with individual QIP systems.
For the physical implementation of quantum networks, photon is the best carrier for fast and reliable communication over long distance, which plays the central role in the realization of nonlocal interactions between spatially distant quantum network nodes [22–24]. In particular, some interesting schemes for implementing nonlocal quantum operations between two different nodes have been proposed based on the sharing of entangled photon pairs, which act as the quantum channel for the teleportation of quantum gates [25–29]. In contrast to other schemes which rely on the transmission of a single photon through an optical channel to transmit interaction between two separate nodes, an attractive advantage of teleportation-based architectures is that the environmental noise and photon loss could be well overcome via entanglement purification together with quantum repeaters [30–36]. Moreover, photon possesses multiple degrees of freedom (DOFs) for encoding, such as polarization, spatial mode, frequency, time bin, and orbit angular momentum. Photon hyperentanglement [37–39], which refers to entanglements simultaneously existing in multiple DOFs of photons, has been demonstrated and proven useful in high-performance quantum communications [40–45], and hence represents a valuable quantum resource for quantum networks.
Solid-state spin systems such as electron or hole spins confined in semiconductor quantum dots (QDs) are ideal candidates for stationary qubits due to their good properties such as spin coherence and potential scalability [46–50]. Fast initialization, manipulation, and measurement of electron spins in charged QDs have been well-investigated [51–54]. Spin echo and dynamical decoupling techniques can be used to preserve the electron-spin coherence [55, 56]. With the help of optical microcavities or nanocavities, effective coupling between photons and singly charged QDs can be realized in coupled QD-cavity systems, which is crucial for realizing various quantum interfaces between single photons and spins [57–60]. With the photon-spin quantum interfaces, many QIP schemes such as universal quantum logic gates [61–67], quantum entanglement generation and analysis [68–73], and quantum entanglement purification and concentration [74–77] have been proposed. The QD-cavity systems supply ideal platforms for implementing quantum networks by constituting the quantum nodes and providing photon-spin interfaces [78, 79]. Significant progress has been achieved towards the practical demonstration of the photon-spin interfaces. For example, photon sorter [80], photon switch [81], Faraday rotation induced by a single electron or hole spin [82, 83] have been explored in experiments. These experiments were performed in the weakly-coupled cavity quantum electrodynamics (QED) regime.
In this work, we present a potentially practical scheme for implementing nonlocal quantum controlled-not (CNOT) gate operations on QD-confined electron spins between two quantum network nodes, by exploiting optical microcavities, hyperentangled photon pairs, and linear-optical elements. The scheme can realize parallel teleportation of two nonlocal quantum CNOT gates simultaneously by employing hyperentangled photon pairs to establish quantum channel, which can effectively improve the channel capacity and operational speed of the quantum network. The core units of the scheme are two kinds of photon-spin hybrid quantum CNOT gate constructed based on the interaction between an input photon and a singly charged QD mediated by a single-sided optical microcavity, which work in a failure-heralded and fidelity-robust fashion. With the help of the heralded mechanism, the nonlocal CNOT gates can be implemented with unity fidelities in principle, even if the particularly ideal conditions commonly used in other schemes are not satisfied strictly. Our analysis and calculations indicate that the scheme can be demonstrated efficiently with current or near-future technologies. Moreover, the photon-spin hybrid quantum gates used in this scheme can be regarded as universal modules, and can be used in many other QIP tasks. Therefore, the scheme has potential application prospects in constructing elementary quantum networks and realizing nonlocal QIP tasks with high channel capacities, high fidelities, and high efficiencies.
2 INTERACTION BETWEEN AN INPUT PHOTON AND A SINGLY CHARGED QD MEDIATED BY A SINGLE-SIDED OPTICAL MICROCAVITY
As shown in Figure 1A, we consider a singly charged semiconductor QD [e.g., a self-assembled In(Ga)As QD or a GaAs interface QD] with an excess electron embedded in a single-sided optical micropillar cavity constructed by two GaAs/Al(Ga)As distributed Bragg reflectors (DBRs) and with a circular cross-section. The bottom DBR is 100% reflective and the top DBR is partially reflective so that the single-sided cavity hypothesis is valid. When we consider an input single photon interacting with the singly charged QD mediated by the single-sided optical microcavity, it has been proven that the optical property of the singly charged QD is dominated by the spin-dependent optical transitions of a negatively charged exciton (X−). The X− is composed of two electrons bound to one hole, and the optical transition rule is based on the Pauli exclusion principle and the conservation of total spin angular momentum. The related energy levels and the optical transition rule of X− transitions is shown in Figure 1B. The left-circularly polarized photon |L⟩ and the right-circularly polarized photon |R⟩ drive the transitions |↑⟩ → |↑↓⇑⟩ and |↓⟩ → |↓↑⇓⟩, respectively. Here, we use ∣ ↑⟩ and ∣ ↓⟩ to represent the excess-electron spin states with spins [image: image] and [image: image], respectively. ∣ ⇑⟩ and ∣ ⇓⟩ represent the heavy-hole spin states with spins [image: image] and [image: image], respectively. The spin-quantization axis (z-axis) is along the normal direction of the cavity.
[image: Figure 1]FIGURE 1 | (A) Schematic diagram of a singly charged QD inside a single-sided optical micropillar cavity with two DBRs and circular cross section. g is the QD-microcavity coupling strength. γ is the exciton decay rate. κ and κs are the cavity-mode decay rates into the input-output mode and the leaky mode (side leakage), respectively. (B) The energy levels and the optical transition rule of exciton transitions. |L⟩ and |R⟩ represent the photonic left-circularly and right-circularly polarized states, respectively. The left-circularly polarized photon |L⟩ and the right-circularly polarized photon |R⟩ drive the transitions |↑⟩ → |↑↓⇑⟩ and |↓⟩ → |↓↑⇓⟩, respectively. z axis is the spin-quantization axis.
By solving the Heisenberg-Langevin equations of the cavity mode operator [image: image] and the X− dipole operator [image: image] in the interaction picture, we can calculate the optical reflection coefficient of the QD-cavity system [57]. Including losses in both the cavity and QD, as well as cavity excitation, we can attain the Heisenberg–Langevin equations as
[image: image]
Here, ωc, ω, and [image: image] represent frequencies of the cavity mode, the incident photon, and the X− transition, respectively. κ and κs are the input-output decay rate and the leakage rate of the cavity field mode. g is the coupling strength between X− and the cavity mode. γ is the X− dipole decay rate. [image: image] is the population operator. [image: image] is the input field operator, which connects to the output field operator [image: image] through the standard cavity input-output relation [image: image]. [image: image] and [image: image] are the noise operators related to reservoirs. In the approximation of weak excitation, we take [image: image] and the reflection coefficient of the QD-cavity system can be described by
[image: image]
Here we set [image: image], and [image: image] is the frequency detuning between the input photon and the cavity mode. When the photon does not couple to the QD (g = 0), the reflection coefficient is
[image: image]
When the excess electron is in the spin state ∣ ↑⟩(∣ ↓⟩), only the |L⟩(|R⟩) state photon can couple to the transition |↑⟩↔|↑↓⇑⟩(|↓⟩↔|↓↑⇓⟩) and obtain the reflection coefficient r (Δ, g), while the |R⟩(|L⟩) photon would feel an empty cavity and obtain the reflection coefficient r (Δ, 0). This is due to the optical transition rule and the cavity-QED effect. The reflection coefficients of coupled case r (Δ, g) and uncoupled case r (Δ, 0) can be significantly different, which is the so called giant circular birefringence effect [57]. As the single-photon input-output process is coherent, this description holds for superposition states as well. Therefore, when a horizontal polarized photon [image: image] or a vertical polarized photon [image: image] interacts with a QD-cavity system with the excess electron spin being prepared in the state [image: image] initially, the photon-spin hybrid system evolves according to the following rules
[image: image]
Here, r±(Δ) = [r (Δ, 0)±r (Δ, g)]/2, p1 = [|r (Δ, 0)|2 + |r (Δ, g)|2]/2 is the probability of the photon being reflected by the QD-cavity system. That is, after the photon interacts with the QD-cavity system, the photon-spin system evolves into an orthogonally entangled state with two components: 1) due to the imperfect photon scattering process in reality, both the photon and electron spin remain unchanged with the probability of |r+(Δ)|2/p1; 2) both the photon and electron spin are flipped with the probability of |r−(Δ)|2/p1, which is the valid interaction we use to construct the quantum gates between a single photon and an electron spin. We note that the evolution rule is general and does not depend on the particularly ideal conditions [κs → 0, g > (κ, γ), |Δ|≪ g] usually used in other schemes.
3 HERALDED PHOTON-SPIN HYBRID QUANTUM CNOT GATES WITH THEORETICALLY UNITY FIDELITIES
Now we present two hybrid quantum CNOT gates, which are represented by [image: image] and [image: image] operation units, respectively. In the [image: image] gate, the spatial-mode state of an incident photon encodes the control qubit, while the electron spin confined in QD encodes the target qubit. In the [image: image] gate, the polarization state of an incident photon encodes the control qubit, while the QD spin encodes the target qubit. The quantum circuits for [image: image] and [image: image] are shown in Figure 2. Hereinafter, VBS represents an adjustable beam splitter with transmission coefficient r−(Δ) and reflection coefficient [image: image]. Di (i = 1, 2, 3, 4) represents a single-photon detector. DL is the delay line, which makes the photon components in spatial modes s1 and s2 arrive the output port simultaneously without affecting the quantum state. PBSj (j = 1, 2, … , 6) is a polarization beam splitter, which transmits the photonic horizontal polarization component |H⟩ and reflects the vertical polarization component |V⟩. [image: image] is a quantum phase gate on the polarization of the photon. Xt (t = 1, 2, 3) is a half-wave plate which performs a polarization bit-flip operation [image: image]. Rf (f = 1, 2) completes the polarization rotation [image: image] u and d are to distinguish two different spatial modes in the quantum circuits. The red dots denote the optical switches.
[image: Figure 2]FIGURE 2 | Schematics of the heralded photon-spin hybrid CNOT gates. (A) The spatial mode of the photon is the control qubit, and the QD-confined electron spin is the target qubit. (B) The polarization of the photon is the control qubit, and the QD-confined electron spin is the target qubit. All the functions of the optical elements are presented in the text.
As shown in Figure 2A, suppose the initial states of the input photon and the electron spin confined in QD are |ψp⟩ = (k|H⟩ + l|V⟩) (m|s1⟩ + n|s2⟩) and |ψe⟩ = μ| + ⟩ + ν| − ⟩, respectively. Before the photon enters the [image: image] unit, the state of the photon-spin hybrid system is
[image: image]
Here, s1 and s2 are two spatial modes of the photon, respectively. When the photon enters the unit from the input port, the photon component in spatial mode s1 passes through the delay line DL with state unchanged. The photon component in spatial mode s2 passes PBS1, and the |H⟩(|V⟩) photon component interacts with the QD-cavity system via spatial mode u(d) as described by Eq. 4. Then the photon component in spatial mode u passes Pθ and X1, the photon component in spatial mode d passes X1. After which, the state of the photon-spin system becomes
[image: image]
where the subscripts u and d are used to distinguish the spatial modes. Then, the photon components pass through VBS and PBS2, respectively. When neither of the photon detectors D1 and D2 click, we call this a valid state evolution, and we get the state
[image: image]
Then the heralded photon-spin hybrid CNOT gate is completed, where the spatial mode of the incident photon is the control qubit and the electron spin confined in the QD is the target qubit. The polarization state of the photon does not change after this process.
On the contrary, if the photon detector D1 or D2 clicks, these two cases mean that errors occur in the state evolution. Any detector response means photon loss, and we get an invalid quantum state evolution result. This failure-herald mechanism guarantees the fidelity of the [image: image] unit by filtering out the errors. The QD-spin state does not change when an error occurs, and we can let a new photon enter the circuit to repeat the operation until success.
The [image: image] operation unit is shown in Figure 2B. Suppose the initial state of the photon-spin hybrid system is still |ψ0⟩. Similar to the [image: image] gate, if no photon detector responds, the photon leaves the output port and the state of the photon-spin system changes from |ψ0⟩ to
[image: image]
The hybrid CNOT gate [image: image] is completed, in which the polarization of the incident single photon controls the electron spin confined in the QD. The spatial-mode state of the photon does not change. If the photon detector D1 or D2 clicks, the operation failed, and the spin state does not change. We can repeat the operation until success.
These two hybrid CNOT gates [image: image] and [image: image] have some characteristics for building quantum circuits. First, the CNOT gates can work when the particularly ideal conditions usually used in other schemes cannot be satisfied. Second, the failure of the operations can be announced by the single-photon detectors, so we can know whether the operation succeeded or not. Third, the fidelities of the CNOT gates can reach unity in principle. As modular functional units, the [image: image] and [image: image] operation units can not only be used in the proposed scheme but also in many other QIP tasks.
4 NONLOCAL HIGH-FIDELITY QUANTUM CONTROLLED-NOT GATES ON QD-CONFINED ELECTRON SPINS BETWEEN QUANTUM NETWORK NODES
In this section, we propose the scheme for nonlocal high-fidelity quantum CNOT gates between two remote quantum network nodes Alice and Bob, resorting to single-sided QD-cavity systems, hyperentangled photon pairs, and linear optical elements. As shown in Figure 3, the quantum network node consists of two electron spins confined in QD-cavity systems. We assume the QD-cavity systems in the scheme are identical. Network node Alice holds the electron spins AA′ and the initial state is |ΨAA′⟩ = (α| +⟩ +β|−⟩)A (α′| +⟩ +β′|−⟩)A′. Network node Bob holds the electron spins BB′ and the initial state is |ΨBB′⟩ = (γ| +⟩ +ξ|−⟩)B (γ′| +⟩ +ξ′|−⟩)B′. The subscripts A, A′, B, and B′ are used to distinguish the four electron spins. The coefficients satisfy the relation |α|2 + |β|2 = 1, |α′|2 + |β′|2 = 1, |γ|2 + |ξ|2 = 1, and |γ′|2 + |ξ′|2 = 1. The electron spin A (A′) of Alice is the control qubit, while the electron spin B(B′) of Bob is the target qubit. The hyperentangled photon pair a and b are used to build the quantum channel and encoded in two DOFs, i.e., the polarization and the spatial mode. Photons a and b are initially prepared in the state [image: image], where the subscripts a and b are used to distinguish two photons. |a1⟩(|b1⟩) and |a2⟩(|b2⟩) are the two spatial modes of photon a(b), respectively. The scheme is detailed as follows.
[image: Figure 3]FIGURE 3 | Schematic of nonlocal high-fidelity quantum CNOT gates between remote quantum network nodes. The electron spin A (A′) of Alice is the control qubit, while the electron spin B(B′) of Bob is the target qubit. a and b are hyperentangled photon pair. BSi (i = 1, 2, 3) is a 50:50 beam splitter used to perform a Hadamard operation on the spatial mode DOF of a photon, which completes the following transformation: [image: image] and [image: image]. Hj (j = 1, 2, … , 6) represents a half-wave plate to perform a Hadamard operation on the polarization of a photon, which completes the following transformation: [image: image] and [image: image]. Alice and Bob holds four local single-photon detectors, respectively. i.e., D1-D4 and D5-D8. The other elements have the same function as that in Figure 2.
Before the photons enter the circuits, the state of the system composed of photon a, photon b, electron spin AA′ and BB′ is
[image: image]
After the hyperentangled photon pair a and b are prepared, photon a is sent to Alice, while photon b is sent to Bob simultaneously. Photon a enters the node Alice and sequentially passes through H1, H2, [image: image], H3, H4, BS1, [image: image], BS2 in both spatial modes a1 and a2. If none of the photon detectors in the [image: image] and [image: image] units clicks, the state of the photon-spin system is changed from |Ψ⟩0 to |Ψ⟩1 in unnormalized form
[image: image]
At the same time, photon b enters the node Bob and sequentially passes through [image: image], [image: image] in both spatial modes b1 and b2. If no detector in the [image: image] and [image: image] units clicks, the state of the system evolves into
[image: image]
Then, Hadamard operations are performed on photon b in both the polarization and the spatial mode via H5, H6, and BS3. Before photon b gets the photon detectors D5-D8, the state of the system is
[image: image]
Finally, the photons a and b pass the PBSs and get the local photon detectors D1-D4 and D5-D8, respectively. Alice and Bob communicate their measurement results through a classical communication channel. According to the results, Alice and Bob choose the corresponding single-qubit rotation operations on electron spins according to Table 1. For example, if the photon pair ab are finally detected in the state |a1b1HaHb⟩, the state of the four-spin system AA′BB′ is
[image: image]
TABLE 1 | The measurement results of the photons and the corresponding single-qubit gate rotation operations required on the electron spins.
[image: Table 1]which means two CNOT gates between the spins AA′ of Alice and the spins BB′ of Bob have been implemented. If the photons are detected in the state |a1b2VaVb⟩, Alice should perform a σz operation on the electron spin A and a − σz operation on the spin A′, and Bob should perform a σx operation on the spin B′. After the operations above, the state |ΨAA′BB′⟩ can be obtained. Other situations can be seen in Table 1. Moreover, if any photon detector in the [image: image] or [image: image] unit clicks, it declares a failed operation, and we can restart the process just via launching a new pair of hyperentangled photons.
So far, we have described the teleportation of two nonlocal CNOT gates operations on spin qubits between two quantum network nodes in parallel assisted by single-sided QD-cavity systems. Electron spin A (A′) of Alice is the control qubit, while the electron spin B(B′) of Bob is the target qubit. Two CNOT gates are achieved simultaneously. The modular functional units make the circuit more flexible and extensible. For instance, if we let the electron spin A (A′) of Alice control B′(B) of Bob, we only need to let photon b pass through a linear optical [image: image] unit shown in Figure 4 before the [image: image], which swaps the spatial mode and polarization states of the incident photon.
[image: Figure 4]FIGURE 4 | Schematic of the [image: image] unit, which swaps the polarization and spatial mode states of the incident photon. The elements have the same function as that in Figure 2.
5 DISCUSSION AND SUMMARY
In this section, we discuss the performance of the scheme, which can be characterized by fidelity and efficiency. We define the fidelity as F = |⟨Ψr|Ψi⟩|2, where |Ψr⟩ is the final state of the system composed of four electron spins hold by two network nodes Alice and Bob in reality, and |Ψi⟩ is the final state of the system in ideal conditions, which should be
[image: image]
Consider the cavity QED parameters (g, κ, κs, γ), the final state of the system in unnormalized form is
[image: image]
The average fidelity of the scheme is
[image: image]
where cos θA = α, sin θA = β, cos θA′ = α′, sin θA′ = β′, cos ϕB = γ, sin ϕB = ξ, cos ϕB′ = γ′, and sin ϕB′ = ξ′. The fidelity of the scheme is unity in principle. The herald mechanism of the [image: image] and [image: image] operation units filters out the errors and announces them via single-photon detectors, which guarantees high fidelity. We can conclude that the fidelity is robust to the cavity QED parameters (g, κ, κs, γ) and photon loss.
The efficiency of the scheme is defined as the probability that the hyperentangled photon pair are detected by the local single-photon detectors of Alice and Bob. In other words, the efficiency is the probability that none of the single-photon detectors of [image: image] or [image: image] operation units clicks, and the network nodes Alice and Bob each have a local single-photon detector click. The efficiency can be described as
[image: image]
which depends on cavity-QED parameters. The relation between the absolute amplitude of r−(Δ), the cavity-QED parameters (g, κ, κs, γ), and the frequency detuning Δ is depicted in Figure 5, where we take γ = 0.01κ. As shown in Figure 5, we take the slices g/κ = 0.5, g/κ = 1, g/κ = 2.4, κs/κ = 0, κs/κ = 0.05, and κs/κ = 0.1 for examples. We can conclude that |r−(Δ)| can get relevant high values not only around the resonant frequency Δ = 0 but also at some other frequency detuning such as Δ = ±g. The cavity side leakage and loss rate κs/κ decrease |r−(Δ)| slightly.
[image: Figure 5]FIGURE 5 | The absolute amplitude |r−(Δ)| of r−(Δ) vs. the cavity QED parameters (g, κ, κs, γ) and the frequency detuning Δ. The slices shown are g/κ = 0.5, g/κ = 1, g/κ = 2.4, κs/κ = 0, κs/κ = 0.05, and κs/κ = 0.1. γ = 0.01κ.
When the system works under the resonance frequency (Δ = 0), the efficiency η is the function of the coupling strength g/κ and the cavity decay rate κs/κ under given γ. The relation between η and the cavity QED parameters (g, κ, κs, γ) under the resonant frequency Δ = 0 is shown in Figure 6. When the side leakage is negligible, the efficiency is 92.35% at g = 0.5κ, 98.021% at g = κ, and 99.65% at g = 2.4κ. The scheme has high efficiency without the strict requirement of the strong-coupling condition. When κs = 0.05κ, the efficiency is 62.26% at g = 0.5κ, 66.28% at g = κ, and 67.44% at g = 2.4κ. The scheme still works when the side leakage is taken into account. To obtain high efficiency, the side leakage and the cavity loss rate κs/κ should be controlled as small as possible. The side leakage κs can be reduced by engineering the fabrication and adjusting the material, structure and size of the cavity.
[image: Figure 6]FIGURE 6 | The efficiency η vs. g/κ and κs/κ at the resonant frequency Δ = 0. γ = 0.01κ.
The hyperentangled photon pairs can be generated by combinations of the techniques used for creating entanglement in a single DOF [37, 38], such as with the assistance of an optical cavity [84, 85] or spontaneous four-wave mixing [86]. The bandwidth of the hyperentangled pules should be narrow than the linewidth of the cavity mode. The superposition state of an electron spin can be prepared assisted by nanosecond ESR pulses or picosecond optical pulses [53]. The fast single-qubit rotation operations on the electron spin can be achieved by ultrafast optical pulses or optically controlled geometric phases [54]. The dark counts of photon detectors may lead to false-positive responses that affect the efficiency slightly. Other factors such as the imperfect hyperentangled sources and the linear elements would affect the performance of the scheme, and can be improved by the manufacturing process.
In summary, assisted by single-sided QD-cavity systems, we presented two robust photon-spin hybrid CNOT gates with a herald mechanism, i.e., the [image: image] and [image: image] operation units. The units can work without the strict requirement of strong coupling. Single-photon detectors can herald the failure of the operation. The fidelities of the units can get unity in principle. Utilizing the units, we propose a parallel teleportation scheme of two nonlocal quantum CNOT gates between two remote quantum network nodes, Alice and Bob. Electron spins A and A′ of Alice simultaneously control electron spins B and B′ of Bob, respectively. The scheme has some characteristics. First, we use hyperentangled photon pairs to build the quantum channel for nonlocal operations, which can effectively improve the channel capacity. Second, with the herald mechanism, the fidelities of the nonlocal CNOT gates can be raised to unity in principle. Third, teleporting two CNOT gates in parallel can save quantum resources and accelerate computing speed. Fourth, the scheme with the modular design has good flexibility. The advantages above make the scheme feasible with current technology, which may open promising possibilities for nonlocal quantum computation and quantum information networks. To construct a practical multi-node quantum network, a series of cascade cavities with coupled quantum memories or registers are required. Although our scheme could weaken the requirements for coupling strength and cavity leakage to some extent, it is still a technical challenge to connect multiple different cavities while keeping all cavities in the required coupling conditions. Therefore, we have great expectations for the optimization of microcavity parameters design and the improvement of the microfabrication process.
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