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The hesitant fuzzy graph (HFG) is one of the most powerful tools to find the

strongest influential person in a network. Many problems of practical interest

can bemodeled and solved by usingHFG algorithms. HFGs, belonging to the FG

family, have good capabilities when faced with problems that cannot be

expressed by FGs. The vague-valued hesitant fuzzy graph (VVHFG) is the

generalization of the HFG. A VVHFG is a powerful and useful tool to find the

influential person in various parts, such as meetings, conferences, and every

group discussion. In this study, we introduce a new concept of the VVHFG. Our

purpose is to develop a notion of the VVHFG and also to present some basic

definitions, notations, remarks, and proofs related to VVHFGs. We propose a

numerical method to find the most dominating person using our proposed

work. Finally, an application of the VVHFG in decision-making has been

introduced.

KEYWORDS

fuzzy graph, vague graph, vague-valued hesitant fuzzy graph, cartesian product,
strong product, isomorphism

1 Introduction

Graphs, from ancient times to the present day, have played a very important role in various

fields, including computer science and social networks, so that with the help of the vertices and

edges of a graph, the relationships between objects and elements in a social group can be easily

introduced. But, there are some phenomena in our lives that have a wide range of complexities

that make it impossible for us to express certainty. These complexities and ambiguities were

reducedwith the introduction of FSs by Zadeh [1]. After introduction of fuzzy sets, FS-theory is

included as part of large research fields. Since then, the theory of FSs has become a vigorous

area of research in different disciplines, including life sciences, management, statistics, graph

theory, and automata theory. The subject of FGs was proposed by Rosenfeld [2]. Analysis of

uncertain problems by the fuzzy graph (FG) is important because it gives more integrity and

flexibility to the system. An FG has good capabilities in dealing with problems that cannot be

explained by weight graphs. They have been able to have wide applications even in fields such

as psychology and identifying people based on cancerous behaviors. One of the advantages of

the FG is its flexibility in reducing time and costs on economic issues, which has been

welcomed by all managers of institutions and companies. Rashmanlou et al. [3] studied cubic

fuzzy graphs. Pramanik et al. [4] presented an extension of the fuzzy competition graph and its
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uses in manufacturing industries. Pal [5] introduced antipodal

interval-valued fuzzy graphs. Bera et al. [6] proposed certain

types of m-polar, interval-valued fuzzy graphs.

Gau and Buehrer [7] proposed the concept of the vague set

(VS) in 1993 by replacing the value of an element in a set with a

subinterval of [0,1].

One type of the FG is the vague graph (VG). VGs have a variety

of applications in other sciences, including biology, psychology, and

medicine. Also, a VG could concentrate on determining the

uncertainty coupled with the inconsistent and indeterminate

information of any real-world problems, where FGs may not lead

to adequate results. Ramakrishna [8] introduced the concept of VGs

and studied some of their properties. After that, Akram et al. [9]

introduced vague hypergraphs.

Cayley-VG and regularity were introduced by Akram et al.

[10–12]. The concept of domination in VGs was introduced by

Borzooei [13]. Rao et al. [14–16] studied certain properties of VGs

and domination in vague incidence graphs. Borzooei et al. [17, 18]

investigated isomorphic properties of neighborly irregular vague

graphs. They also expressed new concepts of regular and highly

irregular vague graphs with applications. New concepts of coloring

in vague graphs with applications are presented by Krishna [19].

Kosari et al. [20, 21] expressed the notion of VG structure with

application in medical diagnosis and also studied a novel description

of the VG with application in transportation systems.

Torra [22, 23] developed the concept of a FS to a hesitant

fuzzy set (HFS). The HFS is a powerful and effective tool to

express uncertain information in multi-attribute decision-

making processes as it permits the membership degree of an

element to a set represented by several possible values in [0,1].

Many problems of practical interest can be modeled and solved

by usingHFG-algorithms. TheHFG is a useful tool inmodeling some

problems, especially in the field of communication networks. HFGs

was introduced by Pathinathan et al. [24] and extended in [25, 26].

Javaid et al. [27] studied new results of HFGs and their products.

Karaaslan [28] investigated the HFGs and their applications in

decision-making. Kalyan [29] defined k-regular domination in

hesitancy as a fuzzy graph. Shakthivel [30] expressed domination

in the hesitancy fuzzy graph. Inverse domination in HFGs and its

properties was introduced by Shakthivel et al. [31]. Bai [32]

investigated dual HFGs with applications to multi-attribute

decision-making. The concept of isomorphic properties of m-polar

fuzzy graphs is studied by Ghorai and Pal [33]. Pandey et al. [34]

developed a notion of the FG in the setup of bipolar-valued hesitant

fuzzy sets and so presented a new definition of a bipolar-valued

hesitant fuzzy graph. Shi et al. [35] introduced the notion of

homomorphism (HM) of VGs and discussed HM, isomorphism

(IM), weak isomorphism (WI), and co-weak isomorphism (CWH)

of VGs.

Although HFGs are better at expressing uncertain variables than

FGs, they do not performwell in many real-world situations, such as

ITmanagement. Therefore, when the data come from several factors,

it is necessary to use the VVHFG. VVHFGs, belonging to the FG

family, have good capabilities when faced with problems that cannot

be expressed by HFGs and VFGs. They are highly practical tools for

the study of different computational intelligence and

computer science domains. VVHFGs have several

applications in real-life systems and applications where

the level of the information inherited in the system varies

with time and has different levels of accuracy.

Homomorphisms (HMs) provide a way of simplifying the

structure of objects one wishes to study, while preserving

much of it that is of significance. It is not surprising that

homomorphisms also appeared in graph theory and that they

have proven useful in many areas. Therefore, in this study,

we present a novel notion of the VVHFG and investigate

HM, IM, WI, and CWI between VVHFGs and express some

fundamental operations as a Cartesian product (CP), strong

product (SP), and union on VVHFG. Finally, directed-

VVHFGs and their application in decision-making have

been given.

2 Preliminaries

In this section, we review some notions of vague graphs and

their operations.

Definition 2.1.A graph is an ordered pair G* = (X, E) where X is

the set of vertices of G* and E ⊆ X × X is the set of edges of G*.

Suppose E is the set of all 2-element subsets of X that we denoted

by ~X
2
.(I) Let G1 = (X1, E1) and G2 = (X2, E2) be two graphs, then

the CP of two graphs G1 and G2 denoted by G1 × G2 = (X1 × X2,

E1 × E2) is defined as:

X1 × X2 � s1, s2( )|s1 ∈ X1, s2 ∈ X2{ },
E1 × E2 � t, t2( ) t, k2( )|t ∈ X1 , t2k2 ∈ E2{ } ∪ t1 , p( ) k1 , p( )|t1k1 ∈ E1 , p ∈ X2{ }.
(II) Let G1 = (X1, E1) and G2 = (X2, E2) be two graphs. Then,

the SP of two graphs G1 and G2 denoted by G1 ⊗G2 = {X1 ⊗X2, E1
⊗ E2} is defined as:

X1 × X2 � s1, s2( )|s1 ∈ X1, s2 ∈ X2{ },
E1 × E2 � t, t2( ) t, k2( )|t ∈ X1 , t2k2 ∈ E2{ } ∪ t1 , p( ) k1 , p( )|t1k1 ∈ E1 , p ∈ X2{ }

∪ t1 , t2( ) k1 , k2( )|t1k1 ∈ E1 , t2k2 ∈ E2{ }.

Definition 2.2.An FG on a graph G* = (X, E) is a pair G = (ψ, θ),
where ψ: X→ [0, 1] is an FS on X and θ: X × X→ [0, 1] is a fuzzy

relation on E, such that,

θ mn( )≤min ψ m( ),ψ n( ){ },
for all m, n ∈ X.

Definition 2.3. [7]"A vague set (VS)W is a pair (tW, fW) on set X

where tW and fW are taken as real-valued functions which can be

defined on X → [0, 1] so that tW(m) + fW(m) ≤ 1, ∀m ∈ X.
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Definition 2.4. [8] Suppose G* = (X, E) is a crisp graph, a pair

G = (W, Z) is named a VG on graph G* = (X, E) where W = (tW,

fW) is a VS on X and Z = (tZ, fZ) is a VS on E ⊆ X × X such that,

tZ mn( )≤min tW m( ), tW n( ){ },
fZ mn( )≥max fW m( ), fW n( ){ },

for all mn ∈ E.A VG G is named strong if

tZ mn( ) � min tW m( ), tW n( ){ },
fZ mn( ) � max fW m( ), fW n( ){ },

for all m, n ∈ X.

Definition 2.5. [11] Suppose G = (W, Z) is a VFG on G*, the

degree of vertex m is defined as deg(m) = (dt(m), df(m))

where

dt m( ) � ∑
m≠n,n∈X

tZ mn( ), df m( ) � ∑
m≠n,n∈X

fZ mn( ).

The order of G is defined as

O G( ) � ∑
m∈X

tW m( ), ∑
m∈X

fW m( )⎛⎝ ⎞⎠.

Example 2.6. Consider a graph G* = (X, E), where X = {w1, w2,

w3, w4, w5} and E = {w1w2, w2w3, w3w4, w1w5}. Suppose G = (W,

Z) is a VFG of a graph G*, as shown in Figure 1.Graph G in

Figure 1 is a VFG. Also, the degree of each vertex in the VFGG is

d(w1) = (0.9, 2.1), d(w2) = (0.8, 1.3), d(w3) = (0.6, 1.5), d(w4) =

(0.4, 1.5), and d(w5) = (0.3, 0.8).

Definition 2.7. A graph G = (X, E) is called a directed graph

(digraph) if it has oriented edges and the arrows on the edges

show the direction of each edge. Digraph G is displayed by �Gd �
(X, �E).

2.1. Vague-valued hesitant fuzzy set

Definition 2.8. Suppose X is a set, a vague-valued hesitant fuzzy

set (VVHFS) W on X is defined as:

W � a,W a( )( )|a ∈ X{ },
where W(a) is a subset of values in [0, 1] × [0, 1]. We nameW(a)

a vague-valued hesitant fuzzy element (VVHFE) defined as

W a( ) � ma|ma ∈ 0, 1[ ] × 0, 1[ ]{ }.

Here, ma � (mt
a, m

f
a ) is a vague-valued fuzzy number

(VVFN) such that mt
a ∈ [0, 1] and mf

a ∈ [0, 1].

Definition 2.9. Suppose X is a non-empty universe, and for a ∈
X, suppose W(a), W1(a), and W2(a) are the VVHFEs, then,

pW1 a( ) ∪ W2 a( ) � max mt
1a, m

t
2a( ), max mf

1a, m
f
2a( )( )|m1a ∈ W1 a( ), m2a ∈ W2 a( ){ },

pW1 a( ) ∩ W2 a( ) � min mt
1a, m

t
2a( ), min mf

1a, m
f
2a( )( )|m1a ∈ W1 a( ), m2a ∈ W2 a( ){ },

pW(a)c � {(1 −mt
a, 1 −mf

a )|ma ∈ W(a)}

Definition 2.10. Suppose ma � (mt
a, m

f
a ) ∈ W(a) is a VVFN,

then the value of score S(ma) is defined as

S ma( ) � 1
2

mt
a −mf

a( ).
This means the degree of satisfaction corresponding to some

characteristic features and the degree of satisfaction to some

implicit contradictory features are related to a principle.

Definition 2.11. Suppose W(a) is a VVHFE, then the score

function S(W(a)) is defined as

S W a( )( ) � 1
n W a( )( ) ∑

ma∈W a( )
S ma( ).

FIGURE 1
VFG.
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Here, the number of vague -values in W(a) is denoted by

n(W(a)), and ma is the element in W(a), shown as the form of

the VVFN.

Definition 2.12. SupposeW and Z are two VVHFSs on X. Then,

score-based (SB) intersection and union of two VVHFEs W(a)

and Z(a) are denoted by W(a)~∧Z(a) and W(a)~∨Z(a)
respectively, which is characterized by

W a( )~∧Z a( ) �
W(a) if S(W(a))< S(Z(a))
Z(a) if S(W(a))> S(Z(a))
W(a) or Z(a) if S(W(a)) � S(W(a))

⎧⎪⎨⎪⎩
and

W a( )~∨Z a( ) �
W(a) if S(W(a))> S(Z(a))
Z(a) if S(W(a))< S(Z(a))
W(a) or Z(a) if S(W(a)) � S(W(a))

⎧⎪⎨⎪⎩

Definition 2.13. Suppose W and Z are two VVHFSs on set X,

then S(W(a)~∧Z(a)) � S(W(a)) ∧ S(Z(a)) and

S(W(a)~∨Z(a)) � S(W(a)) ∨ S(Z(a)).

2.2 Vague-valued hesitant fuzzy relation

Definition 2.14. Suppose W and Z are two VVHFSs on set X,

then the SB CP of two VVHFSs W and Z is displayed by W~×Z

and specified by

W~×Z � < a, b( ), W~×Z( ) a, b( )> | a, b( ) ∈ X × X{ },
� < a, b( ),W a( )~×Z b( )> | a, b( ) ∈ X × X{ }.

Definition 2.15. Suppose X is a non-empty set and suppose W

and Z are two VVHFSs on X, for a, b ∈ X, consider W(a, b): X × X

→ ([0, 1] × [0, 1]) is a VVHF relation on X, and then, we nameW

is SB VVHF relation on Z if,

S W a, b( )( )≤ S Z a( )( ) ∧ S Z b( )( ),

for all a, b ∈ X.

All the essential notations are shown in Table 1.

3 Vague-valued hesitant fuzzy graph

In this part, we introduce the definition of the VVHFG with

some examples.

Definition 3.1. Suppose G* = (X, E) is a graph, a VVHFG on set

X is an order pair G = (W, Z) where W and Z are VVHFSs in X

and ~X
2
, respectively. If W: X → [0, 1] × [0, 1] and

Z: ~X
2 → [0, 1] × [0, 1] then, we have the following conditions

S Z ab( )( )≤ S W a( )( ) ∧ S W b( )( ), ∀ab ∈ ~X
2
,

S Z ab( )( ) � 0, ∀ab ∈ ~X
2 − E( ).

Here, Z(ab) and W(a) are VVHFEs defined as

Z ab( ) � ntab, n
f
ab( )| ntab, nfab( ) ∈ 0, 1[ ] × 0, 1[ ]{ },

and

W a( ) � mt
a, m

f
a( )| mt

a, m
f
a( ) ∈ 0, 1[ ] × 0, 1[ ]{ }.

Example 3.2. Let there be five companies in the debate

competition and Congress members choose one company

as the best company according to three important properties,

that is, profit-making, revenue, and influence power.

Congress members evaluate the communication of three

properties between five companies. Suppose X is a set of

five companies {m1, m2, m3, m4, m5} and E = {m1m2, m2m3,

m3m4, m4m5, m5m1, m2m5, m1m4} is the communication of

three properties among companies, we show the scores of

vertices and edges in Table 2 and Table 3, respectively. A

VVHFG is given in Figure 2.

Definition 3.3. Suppose G = (W, Z) is a VVHFG on G* = (X, E),

the SB degree of a vertex s1 ∈ X in the VVHFG is denoted by

De(s1) and defined as De(s1) � ∑s≠s1∈XS(Z(s1s)).
For Example 3.2, we obtain the SB degree of every vertex in

the VVHFG; therefore, we have De(m1) � −0.7,De(m2) �
−0.55,De(m3) � −0.358,De(m4) � −0.625,De(m5) � 0.567.

TABLE 1 Some essential notations.

Notation Meaning

FS Fuzzy set

FG Fuzzy graph

VS Vague set

VG Vague graph

HFS Hesitant fuzzy set

HFG Hesitant fuzzy graph

IM Isomorphism

HM Homomorphism

WI Weak isomorphism

CWI Co-weak isomorphism

AM Automorphism

CP Cartesian product

SP Strong product

SB Score based

VVHFE Vague-valued hesitant fuzzy element

VVHFN Vague-valued hesitant fuzzy number

VVHFG Vague-valued hesitant fuzzy graph
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Definition 3.4. Suppose G1 = (W1, Z1) and G2 = (W2, Z2) are

two VVHFGs on G* = (X, E), then we say that G1 is the SB

VVHF-subgraph of G2, if it holds the conditions

S W1 a( )( )≤ S W2 a( )( ), S Z1 ab( )( )≤ S Z2 ab( )( ), ∀a ∈ X,∀ab ∈ ~X
2
.

3.1 Basic operations on VVHFGs

In this section, we express some basic operations like CP, SP,

and union between VVHFGs, and also some properties in

VVHFGs are established.

Definition 3.5. Suppose G1 = (W1, Z1) and G2 = (W2, Z2) are

two VVHFGs on the graph G* = (X, E), we give some operations

and related results for VVHFGs.CP: The CP of two VVHFGs

denoted by G1 ~×G2 � (W1 ~×W2, Z1 ~×Z2) is defined as

1) (W1 ~×W2)(a1, a2) � W1(a1)~∧W2(a2), ∀(a1, a2) ∈
X1 × X2.

2) (Z1 ~×Z2)((a, a2)(a, b2)) � W1(a)~∧Z2(a2b2),∀a ∈ X1, a2,

b2 ∈ E2.

3) (Z1 ~×Z2)((a1, e)(b1, e)) �Z1(a1b1)~∧W2(e), ∀a1b1 ∈E1,

e ∈X2 .

Proposition 3.6. Suppose G1 and G2 are two VVHFGs, then

G1 ~×G2 is a VVHFG.

Proof. For every a ∈ X1 and a2, b2 ∈ E2, we have

S Z1 ~×Z2( ) a, a2( ) a, b2( )( )( ) � S W1 a( )~∧Z2 a2b2( )( ) � S W1 a( )( ) ∧ S Z2 a2b2( )( )
≤ S W1 a( )( ) ∧ S W2 a2( )( ) ∧ S W2 b2( )( )( )
� S W1 a( )( ) ∧ S W2 a2( )( )( ) ∧

S W1 a( )( ) ∧ S W2 b2( )( )( ) � S W1 a( )( )~∧S W2 a2( )( ) ∧ S W1 a( )( )~∧S W2 b2( )( )
� S W1 ~×W2( ) a, a2( )( ) ∧ S W1 ~×W2( ) a, b2( )( ).

For every e ∈ X2 and a1, b1 ∈ E1, we have

S Z1 ~⊗Z2( ) a1 , e( ) b1 , e( )( )( ) � S Z1 a1b1( )~∧W2 e( )( ) � S Z1 a1b1( )( ) ∧ S W2 e( )( )
≤ S W1 a1( )( ) ∧ S W1 b1( )( )( ) ∧ S W2 e( )( )
� S W1 a1( )( ) ∧ S W2 e( )( )( ) ∧

S W1 b1( ) ∧ S W2 e( )( )( )( � S W1 a1( )( )~∧S W2 e( )( )( ) ∧ S W1 b1( )( )~∧S W2 e( )( )( )
� S W1 ~⊗W2( ) a1 , e( )( ) ∧ S W1 ~⊗W2( ) b1 , e( )( ).

SP: The SP of two VVHFGs denoted by G1 ~⊗G2 �
(W1 ~⊗W2andZ1 ~⊗Z2) is defined as

1) (W1 ~⊗W2)(a1, a2) � W1(a1)~∧W2(a2), ∀(a1, a2) ∈
X1 × X2.

2) (Z1 ~⊗Z2)((a, a2)(a, b2)) � W1(a)~∧Z2(a2b2), ∀a ∈
X1, a2, b2 ∈ E2.

3) (Z1 ~⊗Z2)((a1, e)(b1, e)) � Z1(a1b1)~∧W2(e), ∀a1b1 ∈
E1, e ∈ X2.

4) (Z1 ~⊗Z2)((a1, a2)(b1, b2)) � Z1(a1b1)~∧Z2(a2b2),
∀a1b1 ∈ E1, a2b2 ∈ E2.

Proposition 3.7. Suppose G1 and G2 are two VVHFGs, then

G1 ~⊗G2 is a VVHFG.

Proof. For every a ∈ X1 and a2, b2 ∈ E2, we have

S Z1 ~⊗Z2( ) a, a2( ) a, b2( )( )( ) � S W1 a( )~∧Z2 a2b2( )( ) � S W1 a( )( ) ∧ S Z2 a2b2( )( )
≤ S W1 a( )( ) ∧ S W2 a2( )( ) ∧ S W2 b2( )( )( )
� S W1 a( )( ) ∧ S W2 a2( )( )( ) ∧

S W1 a( )( ) ∧ S W2 b2( )( )( ) � S W1 a( )( )~∧S W2 a2( )( )( ) ∧ S W1 a( )( )~∧S W2 b2( )( )( )
� S W1 ~⊗W2( ) a, a2( )( ) ∧ S W1 ~⊗W2( ) a, b2( )( ).

For every e ∈ X2 and a1, b1 ∈ E1, we have

S Z1 ~⊗Z2( ) a1 , e( ) b1 , e( )( )( ) � S Z1 a1b1( )~∧W2 e( )( ) � S Z1 a1b1( )( ) ∧ S W2 e( )( )
≤ S W1 a1( )( ) ∧ S W1 b1( )( )( ) ∧ S W2 e( )( ))
� S W1 a1( )( ) ∧ S W2 e( )( )( ) ∧

S W1 b1( )( ) ∧ S W2 e( )( )( ) � S W1 a1( )( )~∧S W2 e( )( ) ∧ S W1 b1( )( )~∧S W2 e( )( )
� S W1 ~⊗W2( ) a1 , e( )( ) ∧ S W1 ~⊗W2( ) b1 , e( )( ).

For every a1b1 ∈ E1 and a2b2 ∈ E2, we have

S Z1 ~×Z2( ) a1 , a2( ) b1 , b2( )( )( ) � S Z1 a1b1( )~∧Z2 a2b2( )( ) � S Z1 a1b1( )( ) ∧ S Z2 a2b2( )( )
≤ S W1 a1( )( ) ∧ S W1 b1( )( ) ∧ S W2 a2( )( ) ∧ S W2 b2( )( )((
� S W1 a1( )( ) ∧ S W2 a2( )( )( ) ∧ S W2 b1( )( ) ∧ S W2 b2( )( )( )(
� S W1 a1( )( )~∧S W2 a2( )( ) ∧ S W1 b1( )( )~∧S W2 b1( )( )( )(
� S W1 ~⊗W2( ) a1 , a2( )( ) ∧ S W1 ~⊗W2( ) b1 , b2( )( ).

Shown by G1 ∪ G2 = (W1 ∪W2, Z1 ∪ Z2) s. t. S(W1(a)) = 0 if

a∉X1 and S(W2(a)) = 0 if a∉X2 is defined as

1) (W1 ∪ W2)(a) � W1(a)~∨W2(a), ∀a ∈ X1 ∪ X2.

2) (Z1 ∪ Z2)(ab) � Z1(ab)~∨Z2(ab), ∀ab ∈ E1 ∪ E2.

Proposition 3.8. Suppose G1 and G2 are two VVHFGs, then G1

∪ G2 is a VVHFG.

Proof. For every ab ∈ E1 ∪ E2, we have

TABLE 2 VVHF table.

X Score

m1 =< (0.1, 0.8), (0.7, 0.8), (0.2, 0.5) > −0.183

m2 =< (0.3, 0.5), (0.4, 0.8) > −0.15

m3 =< (0.2, 0.4), (0.1, 0.6) > −0.175

m4 =< (0.4, 0.7), (0.6, 0.7), (0.2, 0.7) > −0.15

m5 =< (0.2, 0.3), (0.4, 0.7) > −0.1

TABLE 3 VVHF table.

E Score

m1m2 =< (0.2, 0.9), (0.4, 0.5) > −0.2

m2m3 =< (0.1, 0.5), (0.3, 0.6) > −0.175

m3m4 =< (0.1, 0.8), (0.6, 0.9), (0.3, 0.4) > −0.183

m4m5 =< (0.4, 0.9), (0.1, 0.3), (0.5, 0.8) > −0.167

m5m1 =< (0.3, 0.9), (0.5, 0.8) > −0.225

m2m5 =< (0.4, 0.7), (0.1, 0.5) > −0.175

m1m4 =< (0.2, 0.7), (0.3, 0.9) > −0.275
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S Z1 ∪ Z2( ) ab( )( ) � S Z1 ab( )~∨Z2 ab( )( ) � S Z1 ab( )( ) ∨ S Z2 ab( )( )
≤ S W1 a( )( ) ∧ S W1 b( )( )( ) ∨ S W2 a( )( ) ∧ S W2 b( )( )( )
� S W1 a( )( ) ∨ S W2 a( )( )( ) ∧ S W1 b( )( ) ∨ S W2 b( )( )( )
� S W1 a( )( )~∨S W2 a( )( ) ∧ S W1 b( )( )~∨S W2 b( )( )
� S W1 ∪ W2( ) a( )( ) ∧ S W1 ∪ W2( ) b( )( ).

3.2 Isomorphism between vague-valued
hesitant fuzzy graphs

In this part, we define the novel concepts of IM, HM,WI, and

CWI on VVHFGs and discuss IM between VVHFGs.

Definition 3.9. Suppose G1 and G2 are two VVHFGs,

a HM h: G1 → G2 is a mapping h: X1 → X2 satisfying the

following conditions:

1) S(W1(a1))≤ S(W2(h(a1))), ∀a1 ∈ X1.

2) S(Z1(a1b1))≤ S(Z2(h(a1)h(b1))), ∀a1b1 ∈ ~X
2
1.

An IM h: G1 → G2 is a bijective mapping (BM) h: X1 → X2

satisfying the following conditions:

1) S(W1(a1)) � S(W2(h(a1))), ∀a1 ∈ X1.

2) S(Z1(a1b1)) � S(Z2(h(a1)h(b1))), ∀a1b1 ∈ ~X
2
1.A WI

h: G1 → G2 is a BM h: X1 → X2 satisfying the following

conditions:

1) S(W1(a1)) � S(W2(h(a1))), ∀a1 ∈ X1.

2) S(Z1(a1b1))≤ S(Z2(h(a1)h(b1))), ∀a1b1 ∈ ~X
2
1.

A CWI h: G1 → G2 is a BM h: X1 → X2 satisfying the

following conditions:

1) S(W1(a1))≤ S(W2(h(a1))), ∀a1 ∈ X1.

2) S(Z1(a1b1)) � S(Z2(h(a1)h(b1))), ∀a1b1 ∈ ~X
2
1.

Remark 3.10. Suppose G = G1 = G2, so a HM of h onto itself is

called endomorphism. An IM h on G* is named an

automorphism (AM). Suppose h: X1 → X2 is a BM, then

h−1: X2 → X1 is a BM.

Remark 3.11. Suppose G = (W, Z) is a VVHFG of G* and

suppose AM(G) is the set of all vague-valued hesitant AM of G

g: G → G is considered a map and g(a) � a,∀a ∈ X. It is clear

g ∈ Aut(G*).

Remark 3.12. Suppose G = G1 = G2, then the WI and CWI,

indeed, become isomorphic.

Proposition 3.13. If G1, G2 and G3 are VVHFGs, then the IM

between these graphs is an equivalence relation.

Proof. For reflexivity, we use identity mapping between

VVHFGs, and it is obvious. We consider a function

h: X1 → X2 is an IM on G1 onto G2 such that h(v1) �
v2, ∀v1 ∈ X1 with conditions

S W1 v1( )( ) � S W2 h v1( )( )( ),
S Z1 v1u1( )( ) � S Z2 h v1( )h u1( )( )( ),∀v1 ∈ X1,∀v1u1 ∈ ~X

2

1. 1( )

Since h is IM, we have h−1(v2) � v1,∀v2 ∈ X2 satisfies

condition (1), we have

S W1 h−1 v2( )( )( ) � S W2 v2( )( ),
S Z1 h−1 v2( )h−1 u2( )( )( ) � S Z2 v2u2( )( ),∀v2 ∈ X2,∀v2u2 ∈ ~X

2

2.

So, a mapping h−1: X2 → X1 is an IM from G2 onto G1. For

transitivity, we consider h1: X1 → X2 such that h1(v1) �
v2,∀v1 ∈ X1 and h2: X2 → X3 such that h2(v2) � v3,∀v2 ∈ X2

are IMs between G1 onto G2 and G2 onto G3, respectively. Thus,

h2oh1: X1 → X3 is a composition of h1 and h2 such that

(h2oh1)(v1) � h2(h1(v1)),∀v1 ∈ X1. Since the map

h1: X1 → X2 is an IM, we have

S W1 v1( )( ) � S W2 h1 v1( )( )( ) � S W2 v2( )( ),∀v1 ∈ X1, 2( )
S Z1 v1u1( )( ) � S Z2 h1 v1( )h1 u1( )( )( )

� S Z2 v2u2( )( ),∀v1u1 ∈ ~X
2

1. 3( )

Again, since the map h2: X2 → X3 is an IM, we have

S W2 v2( )( ) � S W3 h2 v2( )( )( ) � S W3 v3( )( ),∀v2 ∈ X2, 4( )
S Z2 v2u2( )( ) � S Z3 h2 v2( )h2 u2( )( )( )

� S Z3 v3u3( )( ),∀v2u2 ∈ ~X
2

2. 5( )

From expressions (2) and (4), we have.

S(W1(v1)) � S(W2(h1(v1))) � S(W2(v2)) �
S(W3(h2(v2))) � S(W3(h2(h1(v1)))) �
S(W3(h2oh1(v1))),∀v1 ∈ X1.

From expressions (3) and (5), we have.

S(Z1(v1u1) ) � S(Z2(h1(v1)h1(u1))) � S(Z2(v2u2)) �
S(Z3(h2(v2)h2(u2))) � S(Z3(h2(h1((v1)))(h2(h1((u1)))) �
S(W3(h2oh1)(v1)(h2oh1)(u1))),∀v1u1 ∈ ~X

2
1.

Hence, h2oh1 is an IM between G1 and G3. □

Proposition 3.14. If G1, G2 and G3 are VVHFGs, then the WI

between specified graphs is an equivalence relation.

FIGURE 2
VVHFG.
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Proof. Reflexivityis trivial. For anti-symmetry, we consider a function

h: X1 → X2 is a WI on G1 onto G2 such that h1(v1) �
v2, ∀v1 ∈ X1 with conditions

S W1 v1( )( ) � S W2 h1 v1( )( )( ),
S Z1 v1u1( )( )≤ S Z2 h1 v1( )h1 u1( )( )( )
� S Z2 v2u2( )( ),∀v1 ∈ X1,∀v1u1 ∈ ~X

2

1. 6( )

Let h2: X2 → X1 is a WI between G1 and G2 such that

h2(v2) � v1,∀v2 ∈ X2 with condition

S W2 v2( )( ) � S W1 h2 v2( )( )( ),
S Z2 v2u2( )( )≤ S Z2 h2 v2( )h2 u2( )( )( ),∀v2 ∈ X2,∀v2u2 ∈ ~X

2

1. 7( )

We conclude from phrases (6) and (7) that these inequalities

satisfy if and only if the VVHFGs are the same. Here, we indicate

that G1 and G2 are similar because the number of edges and the

corresponding edges have the same weights. Furthermore, the

transitivity among graphs G1, G2 and G3 is the same as in the

previous statement. □

Proposition 3.15. Suppose G = (W, Z) is a VVHFG, AM(G) is

the set of all AM on G. Then, (AM(G), o) forms a group.

Proof. For every θ, η ∈ AM(G) and a, b ∈ X, we have

S Z θoη( ) a( ) θoη( ) b( )( )( ) � S Z θ η a( )( ) θ η b( )( )( )((
� S Z η a( )η b( )( )( )
� S Z ab( )( ),

S W θoη( ) a( )( )( ) � S W θ η a( )( )( )( )
� S W η a( )( )( )
� S W a( )( ),

it is clear, θoη ∈ AM(G). Also, AM(G) is associative under the

mapping composition. Suppose I: G → G is an identity mapping

such that θoI � Ioθ � θ,∀θ ∈ AM(G), for every θ ∈ Aut(G), we

have θ−1 ∈ G such that

S(W(θ−1(x))) � S(W(θ(θ−1(x)))) � A(W((x))),
S(Z(θ−1(x)θ−1(y))) � S(Z(θ(θ−1(x))
(θ(θ−1(y)))) � S(Z(XY)). This proof is complete. □

4 Directed-VVHFGs and their
application in decision-making

Definition 4.1. A directed-VVHFG �Gd � (W, �Z) of the graph

G* = (X, E) with W: X → ([0, 1] × [0, 1]) and

W: ~X
2 → ([0, 1] × [0, 1]) satisfies the below conditions

S �Z ab( )( )≤ S W a( )( ) ∧ S W b( )( ), ∀ab ∈ ~X
2
,

S �Z ab( )( ) � 0,∀ab ∈ ~X
2 − E( ).

Definition 4.2. Suppose X is a set and {Wl(a)|a ∈ X, l = 1, 2, . . ...,

p} is a collection of VVHFEs and ω � (ω1,ω2, . . . ..,ωp)T is the

weight vector of Wl(a) � (mt
la, m

f
la)(l � 1, 2, . . . .., p) with ωl ∈

[0, 1] and ∑p
l�1ωl � 1, then the vague-valued hesitant fuzzy

weighted averaging (VVHFWA) operator is a mapping

VVHFWA:Wp → W, where

VVHFWA(W1(a),W2

(a), . . . . . . ,Wp(a)) � ⊗p
l�1(ωlW̃l(a)) �

1 −∏p
l�1 (1 −mt

la)ωl , 1 −∏p

l�1 (1 −mf
la)ωl( )|m1a ∈ W1(a),{

m2a ∈ W2(a), . . . . . . , mpa ∈ Wp(a)}, (8)

the VVHFWA operator is the vague -valued hesitant fuzzy

averaging (VVHFA) operator, if we have ω � (1p, 1p, . . . . . . , 1p)T.
We can write Equation 8 as follows.

VVHFA(W1(a),W2(a), . . . . . . ,Wp(a)) � ⊗p
l�1(1pWl(a)) �

1 −∏p
l�1 (1 −mt

la)
1
p, 1 −∏p

l�1 (1 −mf
la)

1
p( )|m1a ∈ W1(a),{

m2a ∈ W2(a), . . . . . . , mna ∈ Wp(a)}. (9)

Definition 4.3. Suppose �Gd � (W, �Z) is a directed-VVHFG on

G* = (X, E) and σr, r = 1, 2, . . .., p is adjacent VVHF-vertices of σk
∈ X, by using expression (9), we define out-degree (OD) and in-

degree (ID) of a vertex σk represented by Od(σk) and Id(σk),
respectively:

TABLE 4 VVHF membership of persons mental power.

W Score

x1 =< (0.4, 0.8), (0.35, 0.5), (0.2, 0.9) > −0.208

x2 =< (0.25, 0.5), (0.6, 0.9) > −0.137

x3 =< (0.15, 0.6), (0.2, 0.4), (0.5, 0.7) > −0.141

x4 =< (0.5, 0.9), (0.25, 0.6) > −0.189

x5 =< (0.2, 0.7), (0.55, 0.8), (0.4, 0.8) > −0.191

x6 =< (0.3, 0.45), (0.2, 0.75), (0.3, 0.7) > −0.183

TABLE 5 Value of the influence of one person on another person.

Z Score

x1x4 =< (0.15, 0.9), (0.4, 0.8) > −0.287

x1x6 =< (0.4, 0.6), (0.1, 0.9), (0.15, 0.55) > −0.233

x2x1 =< (0.45, 0.7), (0.2, 0.85) > −0.225

x2x5 =< (0.1, 0.5), (0.4, 0.8) > −0.2

x2x6 =< (0.2, 0.75), (0.15, 0.5), (0.35, 0.8) > −0.19

x3x2 =< (0.3, 0.5), (0.1, 0.5) > −0.15

x4x2 =< (0.75, 0.88), (0.25, 0.9) > −0.195

x4x3 =< (0.45, 0.7), (0.2, 0.6), (0.25, 0.9) > −0.216

x5x6 =< (0.22, 0.8), (0.5, 0.85) > −0.232

x6x3 =< (0.3, 0.75), (0.2, 0.8), (0.45, 0.9) > −0.25
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Od σk( ) � 1 −∏p

l�1 1 − ntσkσl( ), 1 −∏p

l�1 1 − nfσkσl( )( )|σkσ l ∈ Z{ }, 10( )

Id σk( ) � 1 −∏p

l�1 1 − ntσlσk( ), 1 −∏p

l�1 1 − nfσlσk( )( )|σ lσk ∈ Z{ }. 11( )

After finding the ID and OD of each vertex, we denote its

score value by S(Od(σ)) and S(Id(σ)), respectively, and determine

it from definition 9. To find the D-degree of every vertex σk, we

use Od(σk) − Id(σk), where Od(σk) and Id(σk) denote the score

value of OD and ID of vertex σk, respectively, and shown

by Ω(σk).

TABLE 6 Out-degree and in-degree of every person.

OD and ID

Od(x1) =< (0.49, 0.98), (0.541, 0.982) >
Id(x1) =< (0.56, 0.955) >
Od(x2) =< (0.56, 0.955), (0.558, 0.975), (0.46, 0.9) >
Id(x2) =< (0.37, 0.75), (0.812, 0.988) >
Od(x3) =< (0.37, 0.75) >
Id(x3) =< (0.692, 0.995), (0.67, 0.988) >
Od(x4) =< (0.67, 0.988), (0.812, 0.988) >
Id(x4) =< (0.49, 0.98) >
Od(x5) =< (0.61, 0.97) >
Id(x5) =< (0.46, 0.9) >
Od(x6) =< (0.692, 0.995) >
Id(x6) =< (0.541, 0.982), (0.558, 0.975), (0.61, 0.97) >

TABLE 7 Score value of out-degree and in-degree.

OD ID

S(Od(x1)) = −0.232 S(Id(x1)) = −0.197

S(Od(x2)) = −0.208 S(Id(x2)) = −0.139

S(Od(x3)) = −0.19 S(Id(x3)) = −0.155

S(Od(x4)) = −0.123 S(Id(x4)) = −0.245

S(Od(x5)) = −0.18 S(Id(x5)) = −0.22

S(Od(x6)) = −0.151 S(Id(x6)) = −0.203

TABLE 8 Domination degree of every person.

Persons Od − Id D-degree

Ω(x1) − 0.232 − (−0.197) − 0.035

Ω(x2) − 0.208 − (−0.139) − 0.069

Ω(x3) − 0.19 − (−0.155) − 0.035

Ω(x4) − 0.123 − (−0.245) 0.122

Ω(x5) − 0.18 − (−0.22) 0.04

Ω(x6) − 0.151 − (−0.203) 0.052

TABLE 9 HF membership of persons mental power.

W Score

x1 =< 0.8, 0.5, 0.9 > 0.74

x2 =< 0.5, 0.9 > 0.7

x3 =< 0.6, 0.4, 0.7 > 0.57

x4 =< 0.9, 0.6 > 0.75

x5 =< 0.7, 0.8, 0.8 > 0.77

x6 � < 0.45, 0.75, 0.7)> 0.64

TABLE 10 Value of influence of one person on another person.

Z Score

x1x4 =< 0.9, 0.8 > 0.85

x1x6 =< 0.6, 0.9, 0.55 > 0.68

x2x1 =< 0.7, 0.85 > 0.775

x2x5 =< 0.5, 0.8 > 0.65

x2x6 =< 0.75, 0.5, 0.8 > 0.68

x3x2 =< 0.5, 0.5 > 0.5

x4x2 =< 0.88, 0.9 > 0.89

x4x3 =< 0.7, 0.6, 0.9 > 0.74

x5x6 =< 0.8, 0.85 > 0.825

x6x3 =< 0.75, 0.8, 0.9 > 0.816

TABLE 11 Out-degree and in-degree of every person.

OD and ID

Od(x1) =< 0.98, 0.982 >
Id(x1) =< 0.955 >
Od(x2) =< 0.9, 0.975 >
Id(x2) =< 0.75, 0.988 >
Od(x3) =< 0.75 >
Id(x3) =< 0.995, 0.988 >
Od(x4) =< 0.988, 0.988 >
Id(x4) =< 0.98 >
Od(x5) =< 0.97 >
Id(x5) =< 0.9 >
Od(x6) =< 0.995 >
Id(x6) =< 0.982, 0.975, 0.97 >
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4.1. Application of a directed-vague-
valued hesitant fuzzy graph

We cannot measure the value of influence of a person’s

property, so we are always hesitant to evaluate the value of the

influence of a person. On the other hand, if we do not have

enough information about a person’s property, it will have a

negative effect on him. In this section, we present a directed-

VVHFG for such a subject. We consider the directed-VVHFG of

the mental power of six people W = {x1, x2, x3, x4, x5, x6} in a

scientific meeting (see Figure 3). Here, membership degrees are

really valued and determine the mental power of people. Suppose

W is the VVHFS on the set X as in Table 4, it indicates the mental

power of people who are present in a scientific meeting. Suppose

Z = {x1x4, x1x6, x2x1, x2x5, x2x6, x3x2, x4x2, x4x3, x5x6, x6x3} is the

set of vague-valued directed hesitant edges as in Table 5, it

determines the value of the influence of one person onto

another person in a scientific meeting.

Here, we determine the OD and ID of every person as In

Table 6.

Afterward, we obtained the score value of OD and ID of every

person in the scientific meeting as in Table 7.

Finally, we determined the D-degree of every person in the

scientific meeting as in Table 8.

It is clear that the most dominating person in a scientific

meeting is x4.

In HFG, all information is expressed with only one

membership degree, which represents the satisfaction

degree of an element corresponding to the set, and it

ignores the degree of satisfaction of the element for some

implicit counter property of the set. However, since the

VVHFG simultaneously considers the membership and

non-membership satisfaction degrees, we will use the

following tables for comparative study between the

VVHFG and HFG. In the HFG, the hesitant fuzzy table is

composed only of the people’s satisfaction degrees

corresponding to the set (in Tables 9, 10).

Here, we determine theODand IDof every person as inTable 11.

Afterward, we obtained the score value of OD and ID of every

person in the scientific meeting as in Table 12.

Finally, we determined the D-degree of every person in the

scientific meeting as in Table 13.

It is clear that the most dominating person in a scientific

meeting is x5.

Through the HFG, the domination degree of each person in this

scientific meeting is ranked as follows: clearly person x5 is the

most dominating person in the scientific meeting. When the

results of the HFG and VVHFG are examined, we realize that

the domination degree and ranking of dominating people

change significantly in two cases. In the VVHFG, x4 is the

most dominating person in the scientific meeting, while in

the HFG, person x5 is the most dominating person in the

scientific meeting. Furthermore, when we examine the

mental power of people in two cases a significant

difference between the two results is observed. The main

reason for this difference is the capability of the VVHFG, and

it is simultaneously considering the membership and non-

membership degrees with no restriction, while the HFG

considers only one membership value.

TABLE 12 Score value of out-degree and in-degree.

OD ID

S(Od(x1)) = 0.981 S(Id(x1)) = 0.955

S(Od(x2)) = 0.9375 S(Id(x2)) = 0.869

S(Od(x3)) = 0.75 S(Id(x3)) = 0.9915

S(Od(x4)) = 0.988 S(Id(x4)) = 0.98

S(Od(x5)) = 0.97 S(Id(x5)) = 0.9

S(Od(x6)) = 0.995 S(Id(x6)) = 0.9756

TABLE 13 Domination degree of every person.

Persons Od − Id D-degree

Ω(x1) 0.981–0.955 0.026

Ω(x2) 0.9375–0.869 0.0685

Ω(x3) 0.75–0.9915 − 0.2415

Ω(x4) 0.988–0.98 0.008

Ω(x5) 0.97–0.9 0.07

Ω(x6) 0.995–0.9756 0.0194

FIGURE 3
Directed-VVHFG.
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5 Conclusion

HFGs are useful tools to determine the membership

degree of an element from some possible values. This is

quite common in decision-making problems. A VVHFG

can accurately characterize the ambiguity of all types of

networks. So, in this work, the VVHFG structure and some

concepts related to VVHFGs such as HM, IM, WI, and CWI

are introduced, and operations of CP, SP, and union

between two VVHFGs are defined. Likewise, we defined a

new notion of the VVHFG called directed-VVHFG. This

concept is a useful tool to present the different decision-

making processes to find the D-degree of a person in a

scientific meeting through directed-VVHFG. Finally, an

application of the directed-VVHFG has been presented.

In our future work, we will introduce new concepts of

connectivity in VVHFGs and investigate some of their

properties. Also, we will study new results of global

dominating sets, perfect dominating sets, connected

perfect dominating sets, regular perfect dominating sets,

and independent perfect dominating sets on VVHFGs.
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