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Transformed Luneburg lens has been widely employed to provide aberration-

free imaging and high-gain antenna system, but whose focal plane and beam

scanning range decrease correspondingly. In this paper, a two-dimensional

compressed elliptical cylindrical Luneburg lens is presented based on

transformation optics (TO) to achieve miniaturization and wide-angle beam

steering. The Jacobian matrix and the permittivity tensor are calculated after

supposing formulas to compress the focal plane, while maintaining the lens’

inherent performance. The gradient permittivity is achieved by two ring-type

periodic unit cells on the basis of the Equivalent Medium Theory. The lens is

then attached between a pair of parallel metal plates to further improve its gain

and lower the side lobe level (SLL). To demonstrate this assumption, a prototype

of this Luneburg lens is manufactured by isotropic material and 3D printing

technique. The antenna operates at 3.3–5 GHzwith a peak gain of 16.1/15.9 dBi.

A 2D beam scanning range of ±50° and± 20° can be implemented bymerely five

feeds, the side lobe level keeping less than -16.3/-16 dB. Measured results

coincide well with theoretical predictions, offering a beneficial transformation

mapping to both microwaves and optics.
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1 Introduction

Lens antenna system, a classic example of aperture array antennas, has the ability to

regulate the propagation of electromagnetic waves from the perspective of the

electromagnetic field. A typical representative is the Luneburg lens system. The

Luneburg lens is originally an inhomogeneous dielectric spherical lens with a

continuous refractive index [1], which is capable of converting the spherical

wavefront into a planar wavefront and is widely applied in multi-beam and high gain

scenario [2]; [3]; [4]. Despite the advantage of beam coherence, the sphere with large scale

limits its wider application. With the advent of transformation optics (TO) [5]; [6] and

quasi-conformal transformation optics (QCTO) [7], a Luneburg lens can be transformed
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to a lower and more conformal profile for the sake of better

matching with feeds, while original performances of the lens are

practically reserved.

Recently, profile reduction and miniaturization of the

Luneburg lens have been widely investigated, the typical cases

of which are truncated lens [8]; [9]; [10]; [11], hemispherical lens

[12]; [13], ellipsoidal lens [14,15], discus lens [16,17]; [18],

diffuse lens [19] and flat lens [20]; [21]; [22,23]; [24]; [25];

[26]. The key of all the aforementioned miniaturization is to

assign new formulas to a particular coordinate or a group of

boundary conditions of the sphere in one specific plane, and then

apply it to lower the profile and propose a transformed lens.

However, the beam scanning range and aperture efficiency would

be lowered owing to the focal plane of the lens being minished. In

order to radiate a wider scanning coverage and accommodate

more feeds, [11] enlarged the focus surface to be extend-flattened

based on QCTO. [14] proposed an lens array composed of two

ellipsoidal Luneburg lenses, simultaneously enhancing its

aperture efficiency and reducing the amount of feeds by

introducing the local-beam shifting method. Alternatively,

[26] increased its scanning angle via a transmission line made

of two metallic surfaces, which can be regarded as a parallel-plate

waveguide. In addition, the fabrication process of transformed

Luneburg lens is fairly complicated due to the employment of

FIGURE 1
Transformation schematic of the Luneburg lens. (A) The proposed approach of transformation. (B) Compression of the y-coordinate. (C)
Compression of the z-coordinate. (D) Distribution of the εyy component. (E) Shells and feeds.

TABLE 1 Gradient permittivity and dimensions.

Shell 1 2 3 4 5 6

εr 2.85 2.6 2.3 2 1.6 1.45

lx 0.36R 0.44R 0.6R 0.84R 0.92R R

ly 0.252R 0.308R 0.42R 0.588R 0.644R 0.7R
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multiple dielectric materials [16,17]; [18]; [20]; [25] or

metamaterials [8]; [9]; [13]; [15]; [22,23]; [24].

This paper argues that the effective aperture of the lens can be

adjusted while maintaining a wide scanning angle and high

aperture efficiency. This is possible by simultaneously

changing two coordinates. In this paper, an elliptical

cylindrical Luneburg lens is proposed based on the

transformation mapping, which is a novel scheme for

miniaturization. The spherical Luneburg lens is transformed

from two orthogonal directions, and the continuously spatially

variable permittivity is then determined, approximated,

discretized, and optimized. Additionally, one single material

can be set with specified permittivity and implemented by 3D

printing based on the Equivalent Medium Theory. Two ring-type

periodic unit cells composed of photosensitive resin are created

in order to obtain the gradient permittivity. Experiments reveal

that the proposed lens for antenna applications can achieve an

impedance bandwidth of 41% (3.3–5 GHz), a peak gain of 16.1/

15.9 dBi, and a beam coverage of 100° in the H-plane and 40° in

the E-plane with five feed antennas, with beam steering

performance of ± 50° with only 1.2 dBi reduction in peak gain.

2 Theoretical analysis on
transformation and antenna design

2.1 Analysis of anisotropic tensors

Figure 1A illustrates the novel scheme of bi-dimensional

transformation. Set coordinates for a spherical lens are (x, y, z) in

FIGURE 2
Schematic of the proposed Luneburg lens. (A) The ellipse ring-type unit. (B) The rectangle ring-type unit. (C) The single layer lens composed of
periodic unit cells. (D) The supporting frame. (E) The elliptical Luneburg lens.

TABLE 2 Parameters of ring-type units.

Periodic unit cells The ellipse ring-type unit The rectangle Ring-
type unit

a/mm 0 1.6 3.6 5.6 4.6 5.2

εr 2.85 2.6 2.3 2 1.6 1.45
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the virtual space, while those for an elliptical cylindrical lens are

(x’, y’, z’) in the physical space. Suppose the spherical has a radius

of R, the compression factor for the y-coordinate is δ, and it for

the z-coordinate is η. Both δ and η take any real number between

0 and 1.

In the transformation, the y-coordinate transformation is

introduced to directly reduce the curvature of the lens profile and

change the circular arc into an elliptical arc. And the z-coordinate

transformation is proposed to change the original circular surface

which is not easily conformable into a rectangle with straight

upper and lower boundaries. The transformations of the y- and

z-coordinate are all compressed, while the transformation of the

x-coordinate are essentially expanded, so that the long axis of the

ellipse can be controlled to be R.

A spherical lens can be regarded as an infinite number of

planar circles, where the radius of each circle is a function of the

FIGURE 3
Simulated results of the feed antenna.

FIGURE 4
Gain performance of the proposed Luneburg lens antenna. (A)Gain for +45° pol with different d1. (B)Gain for -45° pol with different d1. (C) Two
type of plates. (D) Gain with two plates. (E) Gain with different d2.
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coordinates of a point on the circumference as the independent

variable. Take a point (x0,y0,z0) as an example. Let the radius of

its circle be R0, as shown in Figures 1B,C.

Through coordinate transformation, the circle can be

changed into an ellipse with long axis 2R and short axis

2ηR in the H- plane, as illustrated in Figure 1B. And

Figure 1C shows that this circle is changed to be a

rectangle with length 2R and width 2δR in its orthogonal

E- plane. The transformations are namely two-dimensional

compression.

The equation of the permittivity of the spherical lens is:

ε r( ) � 2 − x2 + y2 + z2

R2
, u r( ) � 1 (1)

The transformation formulas can be defined as:

x′ � R������
R2 − z2

√ x y′ � δy z′ � η · R������
R2 − y2

√ z (2)

For singularities in Formula 2, note x’ = x = 0 in the case of z =

±R, and z’ = z = 0 in the case of y = ±R. In the subsequent analysis,

the effect of the 4 singularities is neglected. The Jacobian

transformation matrix, the permittivity tensor and the

permeability tensor are calculated in the following equations:

Λ �
1 0 xB/η
0 δ 0
0 ηyzA3/R2 ηB

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (3)

ε′ � Λ�εΛT

detΛ

�
ε r( )

����������������
R2 − z2( ) R2 − y2( )√

δηR2

·
R2 R2 − z2( )−1 + x2B2 0 xAB

0 δ2 δyB
xAB δyB η2A2 + y2B2

⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦ (4)

FIGURE 5
Normalized electric field distribution.

FIGURE 6
Simulated radiation patterns for +45° pol at 3.3 GHz. (A) E-plane. (B) H-plane.
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μ′ � Λ�μΛT

detΛ �
R2 R2 − z2( )−1 + x2B2 0 xAB

0 δ2 δyB
xAB δyB η2A2 + y2B2

⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦ (5)
where A � R����

R2−y2
√ , and B � Rηz����

R2−Z23/2
√ .

According to Formulas 4, 5, the elliptical Luneburg lens’

constitutive parameters possess significant anisotropy on

FIGURE 7
The elliptical cylindrical Luneburg lens. (A) The feed antenna. (B) The 3-D printed lens. (C) The overall structure.

FIGURE 8
Measured results of the proposed Luneburg lens. (A) S-Parameters. (B) Gain performance.
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account of non-diagonal tensor components. As a result, the

permittivity tensor’s numerical value should be processed before

being applied to next step.

Most researchers are inclined to deal with the permittivity

tensor firstly, and then fabricate Luneburg lens with isotropic

materials. There are four representative methods. Method 1:

Change the non-diagonal tensor to be a diagonal one by

eigenvalues, and then set components of the tensor which are

less than one [20] or insensitive to the lens performance to be one

[13]. Method 2: For the diagonal tensor, calculate the plane wave

dispersion equation and determine a component with the

greatest value in the tensor as the permittivity value [14].

Method 3: Designate a component in the diagonal tensor that

most affects the lens performance and then directly assume and

approximate the numerical value of the permittivity [15]; [16,17];

[18]; [19]; [22,23]. Method 4: Directly rotate the transformed

coordinate system x’y’z’ by an angle ϕ, then adjust ϕ to make the

non-diagonal elements in the tensor become 0. The element with

the greatest influence on wave propagation is specified to be the

permittivity value [21]; [27].

Firstly, in order to fully utilize the lens’s focusing capabilities,

the xoz plane with the largest section area is chosen as the focal

plane. The electromagnetic waves radiated from the feed will be

nearly perpendicular to the xoz plane and relatively parallel to the

y-axis direction. As a result, the εyy component of ε′ has the

biggest impact on the lens performance. Secondly, the function of

FIGURE 9
The measured normalized electric field distribution. (A) +45° pol. (B) -45° pol.

FIGURE 10
Measured radiation patterns for +45° pol. (A) E-plane at 3.3 GHz. (B) H-plane at 3.3 GHz. (C) E-plane at 4.2 GHz. (D) H-plane at 4.2 GHz. (E)
E-plane at 5.0 GHz. (F) H-plane at 5.0 GHz.
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εyy is more stable and modest than others’, which is benign for the

following research. On the basis of the above analysis, the

amplitude of εyy is set to be the permittivity of this dielectric

lens. In addition, the permeability is directly appointed to be one

in order to avoid using magnetic materials [15]; [18].

Define R = 100 mm, δ = 0.7, and η = 0.5. This compression

reduces the size of the lens from 4πR3/3 to 2πηδR3, a volumetric

reduction of 47.5%. Meanwhile, the focal plane (the xoz plane) is

reduced from πR2 to 4ηR2, an areal reduction of 36.3%.

Obviously, the focal plane realizes a relative expansion in

comparison with the volume, promising a broader steering

angle. Furthermore, the curvature of the lens becomes smaller

(from 1/R to δ/R), which is favorable for matching withmore feed

sources. Figure 1D is the numerical distribution of εyy calculated

in MATLAB, varying from 1 to 2.86. The gradient permittivity

and the size of each layer are listed in Figure 1E; Table 1 in

accordance with the gain optimization approach of multishell

Luneburg lenses in [28]. The variables lx and ly respectively

denote the long and short axes of the elliptical cylinder.

2.2 Implementation of gradient index

Periodic unit cells are often employed to actualize the

gradient permittivity distribution of Luneburg lens, and the

common forms include the ring-type units [3], the cubical

lattices [4,8], and the hole-type units [29]. Compared with

other unit cells, the ring-type units are less sensitive to the

angle of incidence and more conducive to beam consistency,

hence being employed to realize gradient permittivity. The design

of ring-type units is on the basis of the A-BG formula of the

Equivalent Medium Theory [30], which actually involves mixing

dielectric materials within a cell to obtain equivalent

electromagnetic properties. It is widely used in the design of

the aforementioned periodic unit cells. The formula is as follows:

εi − εeff
εi − εh

� 1 − p( ) εeff
εh

( )1
3

(6)

The equivalent permittivity of the cell εeff can be calculated based

on the permittivity of the substrate material εh, the permittivity of

the insert material εi and the volume fraction of the insert

material to the whole p. From the perspective of easy

preparation, the substrate material is photosensitive resin (εr =

2.85, tanδ = 0.005), a common material for 3D printing

technology. Furthermore, the photosensitive resin material is

stable, which means its refractive index and permittivity slightly

vary with the frequency increasing. It hardly affects the

performance of the antenna. The insert material is air (εr = 1,

tanδ = 0). Relative permittivity of Shell 1 can be directly attained

by resin, and that of Shells 2–6 can be attained by resin with

periodic unit cells, which are shown in Figures 2A,B with b =

7 mm, w = 8 mm and h = 10 mm. White for air, blue for

photosensitive resin. The volume fraction p in the ring-unit

with different inclusions is in the following equation:

pi �

0, i � 1

lxi + lxi−1( ) · 2 + π − 2δ( ) · 4∫b

0

ai
2

������
1 − y2

b2

√
dy

πδh · lx2
i − lx2

i−1( ) , i � 2, 3, 4

π + 2 − 2δ( ) 2lxi − w + a( ) w − a( )h
πδh · lx2

i − lx2
i−1( ) , i � 5, 6

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(7)

Values of a and permittivity are calculated based on

Formulas 6, 7, as listed in Table 2. The combination

schematic of the two periodic unit cells is in Figure 2C. To

ensure the robustness of the lens, a support structure is

introduced. The support structure of the lens is also made of

photosensitive resin with two vertical cylinders of radius R1 =

6.5 mm and 10 horizontal cylinders of radius R2 = 2 mm, as

illustrated in Figure 2D. The assembled elliptical lens is in

Figure 2E.

2.3 Performance simulation and
optimization

The feed antenna is a dual-polarized dipole antenna,

consisting of two orthogonal modified bowtie dipoles,

parasitic elements and a cavity [31]. Parameters of the

antenna is modified to operate at 3.3–5 GHz. The simulations

are performed in Altair FEKO (2021.2), and the gain, S11, S22,

S21 of the feed are shown in Figure 3.

The gain of the proposed lens antenna is optimized below.

According to [24], transformation mapping would cause the

TABLE 3 Comparison between the proposed Luneburg lens and references.

Reference Geometry L*W*H (λ3) Fre. (GHz) BW Gain (dBi) Feed antennas Beam scanning range

13 Hemisphere 4*4*2.2 10 15.1% 15.7 3 Patch Antennas ±41°

15 Ellipsoid 3.2*1.6*1.6 10 NA 18.4 dB 8 Patch Antennas ±42°

18 Discus 2*3.5*3.5 84 37.8% 22 8 Open-Ended Waveguides ±30°

23 Slab 3.14*3.14*0.5 10 20% 13.2 7 Patch Antennas ±54°

This work Elliptical Cylinder 2.76*1.94*1.38 4.1 41% 16.1/15.9 5 Dual-DipoleAntennas ± 50 and ±20°
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focal point’s initial placement on the lens’ surface to move to the

exterior of the lens. As a result, the optimal distance between the

feed source and the lens needs to be investigated. The feed

antenna is positioned at four distinct points during

simulations, with d1 standing for the distance between the

feed and the lens surface. Results are summarized in Figures

4A,B. It is obvious that the gain is prime at d1 = 0.2λ for 14.5/

14.3 dBi. The antenna is fixed between two parallel metal plates in

order to further improve gain and decrease side lobe level [26];

[32]. Figure 4C depicts two plate shapes, both of which are

1.5 mm thick. Gain curves for the lens antenna are shown in

Figures 4D,E, where d2 denotes the separation between the plates

and the lens. With Plate 2 and d2 = 10mm, it is discovered that

the gain reaches its maximum of 16.9/16.8dBi.

Further investigation into multi-beam properties of the

proposed lens is operated. Only results of +45° polarization

are shown for simplicity. Figure 5 contrasts the normalized

electric field distribution, where the five subjacent plots are

under the circumstance of beams passing through the

proposed lens. As can be observed from Figure 5, the relative

phase of the propagating fields is rebuilt and then the necessary

wave-transformation functions to enhance gain and turn the

original spherical wavefront to be planar, conforming to the

inherent characteristics of Luneburg lens. Figure 6 depicts

radiation patterns in the E- and H-plane at 3.3 GHz. It can be

seen from the pattern that the cross-polarization level of multiple

beams is higher than 18.5dB, and the SLL is lower than -19 dB.

Since the beamwidth in H-plane is smaller than it in E-plane,

multiple feeds must be put in H-plane, so as to achieve a wide

beam coverage. The beamwidth is the sole factor that is affected

by the differing lens diameters in the E- and H-plane, while dual-

linear polarization remain unchanged.

3 Measured results and discussion

The feed antenna is depicted in Figure 7A. The proposed

elliptical cylindrical Luneburg lens in Figures 7B,C is fabricated

by Stereo Lithography Apparatus, a technique of 3D printing.

Figure 8A is the measured result, indicating S-parameters of the

feed. In 3.3–5 GHz, S11 is less than -10 dB and S21 is less than

-30 dB, hence the impedance bandwidth reaches up to 41%. The

measured result coincides well with its simulation. Both

processing accuracy and measurement error contribute to the

slight performance degradation. Contrast of gain curves are

shown in Figure 8B, with the maximum value of 16.1/15.9 Bi.

Electromagnetic beams radiated from the feed antennas are

focused by the transformed lens, thus greatly narrowing

beams and enhancing the gain. As can be seen in Figure 8B,

gain curves with lens are not consistent, which is common for

transformed lenses. Because the transformation mapping applied

in this letter is longitudinally parallel to the y- and z-direction,

instead of radial mapping, which changes the original radial

refractive index distribution and intrinsical rotational symmetry

of the spherical lens. Besides, the placement of feed antennas in

Figure 1A can also produce different convergences of beams,

inevitably resulting in slight diversities and degradation in the

final gain. Figure 9 is the measured normalized electric field

distribution, which coincides with the simulated results. The

different half power bandwidths (HPBW) in Figure 10 strongly

prove that the elliptic cylindrical lens can not only independently

control the beam in different planes, but also assure its multi-

beam performance. And the wider beamwidths in the E-plane

can reduce the number of feeds in the same plane. Dual-

polarization is achieved by the dipole feed antenna, with

cross-polarization level of 17/16.8 dB and the SLL of -16.3/-

16 dB.

A comparison between the proposed Luneburg lens and

other reported Luneburg lenses based on TO is summarized

in Table 3. After the compression in the y-dimension and

z-dimension, the antenna has a more miniaturized scale than

other lenses that are merely transformed in one dimension. In

addition, the flat structure of the elliptical cylinder makes it more

conformal and allows for a wider range of practical applications.

The proposed two-dimensional coordinate transformation

compresses the geometry of the Luneburg lens, making its

electrical size is smaller than that in [13, 18]. And the gain of

the proposed antenna is superior to antennas in [13, 23]. The

different beamwidths in the E- and H-plane enable the proposed

antenna to achieve two-dimensional beam coverage with five

feed antennas, and produce a wider beam coverage than that in

[15, 18].

4 Conclusion

Based on the analysis of transformed lenses in antenna

applications, this paper presents a novel bi-dimensional

transformation mapping to minimize the geometry of

Lunebueg lens. Through compression, the lens changes from a

sphere to an elliptical cylinder, reducing its volume by 47.5%.

Meanwhile, since the vertical section of the lens in the xoz plane

has the largest profile, it is identified as the focal plane. It

contributes to matching with more feeds and steering in a

wide angle. Both transformed permittivity tensor and

permeability tensor are anisotropic, and they are modified to

be isotropic following approximation and discretization. In order

to implement the inhomogeneous lens, two ting-type periodic

unit cells are designed to achieve the presumptive permittivity.

The gain can be further improved through the gain optimization

method and a pair of parallel metal elliptical plate, eventually

reaching up to 16.1/15.9 dBi. The elliptical cylindrical Luneburg

lens is fabricated with photosensitive resin. By reasonably

adjusting the position of feed antennas, merely five beams can

achieve a two-dimensional beam coverage of 100° in the H-plane

and 40° in the E-plane.
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