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Complex networks are the preferential framework to model spreading

dynamics in several real-world complex systems. Complex networks can

describe the contacts between infectious individuals, responsible for disease

spreading in real-world systems. Understanding how the network structure

affects an epidemic outbreak is therefore of great importance to evaluate the

vulnerability of a network and optimize disease control. Here we argue that the

best network structure indexes (NSIs) to predict the disease spreading extent in

real-world networks are based on the notion of network node distance rather

than on network connectivity as commonly believed. We numerically

simulated, via a type-SIR model, epidemic outbreaks spreading on 50 real-

world networks. We then tested which NSIs, among 40, could a priori better

predict the disease fate. We found that the “average normalized node

closeness” and the “average node distance” are the best predictors of the

initial spreading pace, whereas indexes of “topological complexity” of the

network, are the best predictors of both the value of the epidemic peak and

the final extent of the spreading. Furthermore, most of the commonly used NSIs

are not reliable predictors of the disease spreading extent in real-world

networks.

KEYWORDS

complex networks, network spreading, network epidemics, network structural
characteristics, SIR (susceptible infected recovered) model

OPEN ACCESS

EDITED BY

Ayse Peker-Dobie,
Istanbul Technical University, Turkey

REVIEWED BY

Divya Sindhu Lekha,
Indian Institute of Information
Technology, Kottayam, India
Önder Mehmet Pekcan,
Kadir Has University, Turkey

*CORRESPONDENCE

Michele Bellingeri,
michele.bellingeri@polimi.it

SPECIALTY SECTION

This article was submitted to Social
Physics,
a section of the journal
Frontiers in Physics

RECEIVED 11 August 2022
ACCEPTED 19 October 2022
PUBLISHED 02 November 2022

CITATION

Bellingeri M, Bevacqua D, Turchetto M,
Scotognella F, Alfieri R, Nguyen N-K-K,
Le TT, Nguyen Q and Cassi D (2022),
Network structure indexes to forecast
epidemic spreading in real-world
complex networks.
Front. Phys. 10:1017015.
doi: 10.3389/fphy.2022.1017015

COPYRIGHT

© 2022 Bellingeri, Bevacqua, Turchetto,
Scotognella, Alfieri, Nguyen, Le, Nguyen
and Cassi. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 02 November 2022
DOI 10.3389/fphy.2022.1017015

https://www.frontiersin.org/articles/10.3389/fphy.2022.1017015/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1017015/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1017015/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2022.1017015&domain=pdf&date_stamp=2022-11-02
mailto:michele.bellingeri@polimi.it
https://doi.org/10.3389/fphy.2022.1017015
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2022.1017015


Introduction

The fundamental role of networks in epidemiology has been

recognized in the last years [1–12]. The disease spreading can be

modeled as a network where nodes (vertices) represent the

individuals (i.e., the hosts) and links (edges) indicate the

social contacts among them [1–9]. Real-world complex

networks display many structural connectivity patterns, such

as the heavy-tailed degree distribution, small-world effect, high

clustering coefficient, self-similarity, assortativity, community

structures, etc. [1, 13–18]. These network structural

connectivity patterns may affect the evolution of the spreading

process [1, 5, 18–21]. Knowing the relationship between network

structure indexes (NSIs) and the spreading dynamics is crucial to

prevent and control diseases [17].

The field measures and analyses of real-world complex

networks can be extremely consuming, in terms of both

money and time. It is therefore necessary to know which

features of the network structure should be first measured to

assess the network vulnerability to disease and consequently

optimize the control [1, 18–21]. To address this issue, we

gathered a dataset of 50 real-world complex systems. They

represent archetypical examples of network structures in

different domains of reality, ranging from social, computers,

internet, transportation, biological, and ecological networks (see

Supplementary Materials S1.2 for details). We explicitly

simulated a disease spreading over them via a classical

compartmental susceptible–infected–recovered (SIR)

model [1–5].

We derived three indicators of the speed and magnitude of

the disease spread: 1) the time steps needed for the disease to

strike 15% of the network nodes, τ15; 2) the overall number of

nodes eventually affected by the disease, TI; and 3) the maximum

disease prevalence, i.e. the maximum number of nodes

concurrently infected, ζ . The first is a measure of the speed of

the spreading process. The second is a measure of the impact of

the disease over the population and it is likely to correlate with

the number of severe, and possibly fatal, cases. The third is a

measure of the peak and can be used, e.g., to predict the pressure

on the care structures.

We considered 40 different NSIs, and we tested them, using

4 different regression models, which were the best predictors of

the epidemic vulnerability simulated by the SIR model. We

considered both classic NSIs from network science literature,

graph theory, chemical graph theory, and original NSIs

conceived in the present work (See Table 2 in the Methods

and Supplemental Material S1.1). Regarding the type of

relationship between the 3 disease spread indicators yi,

representing the dependent variable, and the 40 candidate NSI

xj, representing the independent variable, we considered 1)

linear yi � axj + b, 2) quadratic yi � ax2
j + bxj + c, 3)

exponential yi � a exp(−bxj) , and 4) monomolecular yi �
a(1 − b exp(−cxj)) regressions.

To select the best, among 40, NSI predictor, and the best,

among 4, regression type, we ranked the 40*4 = 160 different

models via the Akaike information criterion (AIC). AIC aims to

select the model with the best goodness of fit to data while

discouraging overparameterization and model complexity [31].

Eventually, for any model, we computed the fraction of variance

unexplained (FVU). FVU is a measure of the goodness of fitting

of the model, with FVU tending to zero for “ideal” models

explaining the entire variability in the observations.

Results

The best results of the model selection procedures and the

best model performances are reported in Table 1. The forms and

fitting of the best regression models, for different spreading

indicators and values of transmissibility, are reported in

Figure 1. The spreading indicators vs. NSI scatterplots are in

Supplementary Figures S3–S7. All the results of the model

selection procedures and performances are in Supplementary

Tables S2–S5.

The pace of the disease τ15

When considering the initial pace of disease (τ15), the best

models use as explanatory variables the average normalized

node closeness nClo (in an exponential form, Figure 1A), for

low epidemic transmission (β = 0.03), and the average node

distance �d (linear relationship, Figure 1B) for high epidemic

transmission (β = 0.06). The ‘distance’ duv between two nodes

u and v is the minimum length of a path joining them [14]. In

other terms, the “distance” between two nodes u and v is the

shortest path length, i.e., the minimum number of links to

travel between them [14]. The average node distance �d, also

called characteristic path length, measures the mean number

of links to travel along the shortest path among node pairs in

the network [14]. Figure 1B shows, for the higher epidemic

transmission rate, the strong positive linear relationship

between �d and τ15, indicating that the higher the average

node distance �d, the higher the time to infect the 15% of the

network nodes.

The node closeness (or closeness centrality) is a measure of

centrality in a network, calculated as the reciprocal of the sum of

the distances (shortest paths length) between the node and all

other nodes in the network [32]. Usually, the node closeness

centrality may be normalized by dividing it by the term N − 1,

where N is the network nodes number. It follows that the

normalized node closeness of node i is the inverse average

distance from node i to all other nodes (See Supplementary

Material S1.1). Therefore, the new NSI “average normalized node

closeness” nClo, we propose in this study, can be viewed as a

measure of howmany close network nodes are to each other, and
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it is an alternative indicator of evaluating the node distance in the

network. For these reasons, even for a lower epidemic

transmission rate, it emerges a strong negative relationship

between the distance among network nodes (nClo) and the

pace of the spreading (lower τ15) (Figure 1B). Noteworthy,

both �d and nClo return very high goodness of fitting models,

by explaining almost the entire variability in the τ15 observations

(FVU~2%, see Table 1). Taking these results together, our

analyses show that the most important network structural

factor to predict initial spreading speed is the notion of node

distance.

The infected peak ζ

When considering the maximum number of concurrently

infected nodes (ζ), the best models use the predictor �k/�d in a

mono-molecular form for both low and high epidemic

transmission (Figures 1C,D). The accuracy of the �k/�d

regression model is high, by explaining more than the 90%

variability in the ζ observations for both low and high

epidemic transmission (FVU < 10%, see Table 1). The

network infected peak ζ quickly raises with �k/�d, and reaches a

plateau for higher �k/�d values. The �k/�d index (originally A/D

index), as the ratio of the average node degree �k (i.e., the average

number of links per node) and the average node distance �d, was

introduced in mathematical graph theory to encompass the

topological complexity of the network [15]. Thus, the peak of

infected individuals in the network ζ , that is the peak prevalence

of the epidemic, is positively related to network connectivity

(average node degree �k), and it decreases as a function of the node

distance (�d).

The total infected TI

When considering the overall number of nodes that have

been infected during an epidemic (TI), for low epidemic

transmission (β = 0.03) the best predictor is the BB index in a

mono-molecular form (Figure 1E). The BB index was introduced

by Bonchev and Buck [15] to improve the �k/�dmeasurement, and

it follows the same rationale, accounting for the ratio between the

node degree and a measure of the node distance (i.e., the farness)

in the network. Let’s define the “farness” of the node i as ]i �∑N−1
j�1 dij , where dij is the distance between node i and node j, the

BB index is BB � ∑N
i�1

ki
]i
where ki is the node degree of i and the ]i

is the “farness” of the node i. We find that TI follows a saturating

function of BB index, showing how the total number of infected

individuals may increase with network connectivity (node degree

k) and decrease as a function of the node distance (here measured

by the farness ]).
For high epidemic transmission (β = 0.06) the best predictor

is the average node coreness ks, in a mono-molecular form

(Figure 1F). Node coreness (or coreness centrality) is a node

TABLE 1 The best ten NSIs to predict epidemic spreading for each spreading index.

τ15 ζ TI

SIR parameters
(β = 0.03,γ = 0.04)

SIR parameters
(β = 0.06,γ = 0.04)

SIR parameters
(β = 0.03,γ = 0.04)

SIR parameters
(β = 0.06,γ = 0.04)

SIR parameters
(β = 0.03,γ = 0.04)

SIR parameters
(β = 0.06,γ = 0.04)

1 nClo- Exp (0; 0.026) �d-Linear (0; 0.02) �k/�d-Mono (0; 0.078) �k/�d-Mono (0; 0.091) BB- Mono (0; 0.091) ks- Mono (0; 0.181)

2 �d-Para (20.84; 0.037) nClo- Exp (34.28; 0.031) BB- Mono (5.57; 0.088) BB- Mono (2.31; 0.096) �k/�d- Mono (0.93; 0.093) �k/�d- Mono (1.12; 0.185)

3 Eff- Exp (33.64; 0.05) σd- Para (42.93; 0.037) LD-Mono (40.08; 0.175) σd -Exp (31.46; 0.177) σd- Exp (27.46; 0.165) BB -Mono (3.66; 0.194)

4 σd- Para (42.61; 0.058) n(π/D)- Exp (43.19;
0.061)

�k -Mono (40.08; 0.175) �d-Exp (34.22; 0.188) �d- Para (42.5; 0.214) �k- Mono (4.01; 0.196)

5 n(π/D)- Exp (43.19;
0.061)

μd- Para (49.82; 0.042) ks- Mono (45.89; 0.196) nClo- Mono (38.03;
0.195)

�k- Mono (43.44; 0.218) LD- Mono (4.01; 0.196)

6 μd- Para (45.33; 0.061) Eff- Exp (59.62; 0.053) σd- Exp (52.21; 0.230) n(π/D)- Mono (40.32;
0.204)

LD- Mono (43.44; 0.218) n(π/D)- Mono (23.95;
0.291)

7 BB- Exp (72.03; 0.108) Φ- Para (73.89; 0.069) �d-Exp (52.53; 0.233) �k- Mono (41.62; 0.210) nClo- Mono (44.77;
0.223)

σd- Mono (24.00; 0.29)

8 Φ- Linear (72.76; 0.105) π Linear (85.19; 0.093) nClo- Mono (55.40;
0.237)

LD- Mono (41.62; 0.210) n(π/D)- Mono (44.92;
0.224)

�d- Exp (26.84; 0.321)

9 π- Linear (75.36; 0.115) D- Para (95.73; 0.107) μd- Exp (59.48; 0.061) Φ- Exp (44.93; 0.233) ks- Mono (46.98; 0.234) Φ- Exp (28.63; 0.333)

10 �k/�d- Mono (86.12;
0.143)

BB- Exp (108.58; 0.141) n(π/D)- Mono (59.68;
0.259)

μd- Para (45.07; 0.232) Φ- Linear (52.11; 0.259) nClo- Mono (30.03;
0.329)

The values in the brackets indicate the delta AIC, i.e., the AIC difference from the minimum AIC (best model has AIC = 0), and the fraction of variance unexplained (FVU) for the non-

linear regression model for the SIR parameters simulating low epidemic spreading (β = 0.03, γ = 0.04) and high epidemic transmission (β = 0.06, γ = 0.04).
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centrality measure that shares the nodes in different sub-

networks called k-core. The k-core of a network is a maximal

sub-network in which each node has at least degree k [5]. In other

terms, the coreness of a node is k if it belongs to the k-core but not

to the (k + 1)-core. Kitsak et al. [5] showed that nodes of higher

coreness are “influential spreaders” in the network, i.e., the nodes

located in the network core determine a higher speed of network

spreading. On the other hand, the epidemic starting in the

network core may cover a large number of nodes, and the

coreness centrality may be an efficient measure to individuate

the nodes acting as efficient spreaders [5]. In this research, we

introduce the ks index as the average value of node coreness to

evaluate the global network spreading. We can interpret

networks with higher ks as compact structures, where nodes

of a higher degree are also located in the core of the network. We

find that TI is well fitted by a saturating function of ks, showing

FIGURE 1
The best regressionmodels of the Network Structural indexes (NSI) vs. Spreading Indicators (SI). Left column: the best regressionmodels for SIR
parameters β=0.03 and γ=0.04. Right column: the best regressionmodels for SIR parameters β=0.06 and γ=0.04. Best for τ15: (A) τ15 as a function
of the average normalized node closeness nClo; the relationship is described by an exponentialmodel τ15 � a · e−b·nCLO with a = 751.31 and b = −14.38
(FVU = 0.026); (B) τ15 as a function of the average node distance �d; the relationship is described by a linear model τ15 � a · �d + b with a = 9.66,
b = −21.86 (FVU = 0.02). Best for ζ : (C) Non-linear regression of ζ vs. �k/�d index; the relationship is described by a mono-molecular function model
ζ � a · (1 − b · e−c·(�k/�d))with a = 0.63, b = 1.05 and c = 0.46 (FVU = 0.078); (D)Non-linear regression of ζ vs. �k/�d index; the relationship is described by a
mono-molecular function model ζ � a · (1 − b · e−c·(�k/�d))with a = 0.7, b = 1.02 and c = 0.7 (FVU = 0.091). Best for TI: (E)Non-linear regression of TI vs.
BB index; the relationship is described by a mono-molecular function model TI � a · (1 − b · e−c·BB) with a = 0.91, 1.13 and c = 0.87 (FVU = 0.091); (F)
Non-linear regression of TI vs. ks index; the relationship is described by a mono-molecular function model TI � a · (1 − b · e−c·�ks ) with a = 0.95, b =
2.22 and c = 0.81 (FVU = 0.181). Structural indicators key: nClo average normalized node closeness; �d average node distance,�k/�d index; BB index, ks
average node coreness. Spreading indicators key: τ15 time to reach the 15% of infected nodes, TI total fraction of infected, ζ normalized infected peak.
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TABLE 2 Network structural indexes (NSI) list. For the NSIs from the literature is indicated the reference between square brackets; for the new NSIs is
indicated “new” and the NSI number from they are derived.

ID Key Full name Formula Definition References

1 LD Linkage density LD � L
N

L is the link number and N is the number of nodes. [22]

2 C Connectance C � 2L
N·(N−1) L is the number of links and N is the number of nodes. [22]

3 �k Average node degree �k � 1
N ·∑i�N

i�1 ki ki is the degree of the node i, and N is the nodes number [14]

4 μk Node degree harmonic mean μk � 1
N · ∑i�N

i�1 1
k i

ki is the degree of the node i, and N is the number of network nodes. New—from 3

5 σ2k Node degree variance
σ2k � ∑i�N

i�1 (ki−�k)2
N−1

ki is the degree of the node i, �k the average node degree, and N is the
nodes number.

New—from 3

6 σk Node degree standard
deviation σk �

���������∑i�N
i�1 (ki−�k)2
N−1

√
ki is the degree of the node i, �k the average node degree, and N is the
nodes number.

New—from 3

7 nσk Node degree normalized
standard deviation

nσk � σk
�k σk is the standard deviation of the node degree and �k the average node

degree.

New—from 3

8 K1 Degree 1 K1 � N(k�1)
N

N(k�1) is the number of nodes of degree k = 1, and N is the nodes
number.

New—from 3

9 K2 Degree 2 K2 � N(k≤ 2)
N

N(k≤ 2) is the number of nodes of degree k ≤ 2, and N is the nodes
number.

New—from 3

10 Hub Hub index Hub � K 1%
max
K

where K 1%
max is the sum of the degree of the 1% of the most connected

nodes, and K is sum of the degree of all nodes in the networks.
New—from 3

11 AH Albertson index AH � ∑
i,j∈L

|ki − kj| i,j is the link connecting nodes i and j, ki is the degree of the node i, kj
the degree of the node j, and L is the network links set.

[23]

12 nAH Normalized Albertson index nAH � AH
L

AH is the Albertson index and L the number of links. New—from 12

13 EH Estrada index EH � ∑
i,j∈L

(k−1/2i − k−1/2j )2 i,j is the link connecting nodes i and j, ki is the degree of the node i and
kj is the degree of the node j, and L is the network links set.

[24]

14 H Node degree Shannon index
H � −∑N

i�1ki ·log(ki)
log(N)

ki is the degree of the nodes i and N is the number of nodes. [25]

15 A Network assortativity r � 1
σ2q

∑
j,k∈N

jk(ejk − qjqk) σq is the standard deviation of the excess degree distribution, ejk is the
fraction of links connecting nodes of degree j and k, and qj , qk are the
excess degree of nodes of degree j and k.

[18]

16 �d Average node distance �d � 1
N·(N−1) ∑

i,j∈N,i≠j
dij dij is the distance between nodes i and j and N the nodes number. [14]

17 μd Node distance harmonic mean
μd � ∑i,j�N

i,j�1
1
dij

N

dij is the distance between i and j and N nodes number New—from 16

18 σd Node distance standard
deviation σd �

�����������∑i,j�N
i,j�1,i ≠ j

(dij−�d)2
N·(N−1)

√
dij is the distance between node i and node j, �d is the average node
distance and N is nodes number

New—from 16

19 nσd Node distance normalized
standard deviation

nσd � σd
�d σd is the node distance standard deviation, �d is the average node

distance and N is the nodes number.

New—from 18

20 W Wiener index W � ∑
i,j∈N,i≠j

dij dij is the distance between node i and node j, �d is the average node
distance and N is the nodes number.

[26]

21 Φ Network eccentricity Φ � 1
N ∑i�N

i�1 ε(i) ε(i) is the eccentricity of the node i and N is the nodes number. [14]

22 nΦ Normalized network
eccentricity

nΦ � Φ
�d Φ is the average network eccentricity and �d the average node distance New—from 21

23 D Network diameter D � max
i,j∈N,i≠j

(dij) dij is the distance between i and j and N the nodes number [14]

24 nD Normalized diameter nD � D
�d D is the network diameter and �d the average node distance. New—from 23

25 π Network radius π � min
i∈G

(ε(i)) ε(i) is the eccentricity of the node i. [14]

26 nπ Normalized network radius nπ � π
�d π is the network diameter and �d the average node distance. New—from 25

27 π/D Radius-diameter ratio π
D � min

i∈G
(ε(i))

max
i∈G

(ε(i))
ε(i) is the eccentricity of the node i. New—from

23 to 25

28 n(π/D) Radius-diameter normalized
ratio

n(π/D) � min
i∈G

(ε(i))
max
i∈G

(ε(i)) · 1�d
ε(i) is the eccentricity of the node i and �d the average node distance. New—from 27

29 Eff Network efficiency
Eff �

∑
i≠j∈G

1
dij

N·(N−1)
dij is the distance between node i and node j and N the nodes number [27]

30 Com Network communicability Com � 1
N·(N−1) · ∑

p,q∈N,p≠q
Gpq N is the number of network nodes, and Gpq is the communicability

between node p and q.
[28]

(Continued on following page)
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how the total number of infected individuals may increase in

networks of higher average node coreness. Nonetheless, we

outline that the performance of ks is only slightly better

than the �k/�d prediction, and the regression models return

almost equal goodness of fitting, with almost the same AIC

and FVU (Table 1).

Discussion

Our results show that to predict network spreading to

consider the distance among nodes is more important than

focusing on their connectivity level. The most usual NSI

evaluating the connectivity level of the network, i.e. the

average node degree �k [13], return a poor prediction of the

network spreading for all the three spreading indicators used in

this study (Table 2). In specific, �k is strongly ineffective to explain

the initial speed of the spreading τ15 (FVU~0.5, Supplementary

Tables S2, S4).

This seems counter-intuitive, since higher connectivity levels

correlate, on average, with lower node distance in the

network [1–13].

Focusing �k/�d and BB indexes and ideal-types of the network

structure we can figure out how the network connectivity level

alone (i.e., the density of network links) may induce misleading

predictions of the network epidemic spreading.

Both �k/�d and BB increase from the chain network (lower

complexity), through the star network (medium complexity), to

the complete network (maximum complexity) (Figure 2).

Following this simplified ideal scheme, it is possible to figure

out the classes of real-world networks and their epidemic

spreading entity: it would be the lowest in chain-like network

owing smallest average node degree �k and highest average

distance �d (or farness ]), average in the star network owing �k

similar to the chain network, but lower �d, and highest in the

complete network, that maximize �k and minimize �d (or

farness ]).
In particular, the higher spreading of the star network with

respect to the chain network, hence these ideal-types of network

show similar network connectivity, they present very different

node distance, allows to explain how the network connectivity

alone may not be a reliable predictor of the spreading entity, and

networks of similar connectivity level may present very different

spreading entity. On the other hand, our outcomes show that the

magnitude of the de-correlation between connectivity and node

distance of the real-world networks may be higher enough to

make the network connectivity alone a scarce predictor of the

epidemic spreading.

This outcome is particularly important in the context of the

epidemic spreading, such as the SARS-Cov2 research. Important

and recent research by Thurner and colleagues [11] focusing SIR

epidemic spreading on networks showed that classic

epidemiological models formulated as differential equations,

and based on the mean-field approximation (assuming that

every node/individual in principle can infect any other), can

produce a misleading prediction of the real epidemic spreading

extent. Consequently, Thurner et al. [11] questioned the

applicability of standard compartmental models, which neglect

the network structure, to describe the real epidemic spreading

and the SARS-Cov2 containment phase.

TABLE 2 (Continued) Network structural indexes (NSI) list. For the NSIs from the literature is indicated the reference between square brackets; for the
new NSIs is indicated “new” and the NSI number from they are derived.

ID Key Full name Formula Definition References

31 lnCom Network communicability
logarithm

lnCom � loge(Com) Com is the communicability of the network New—from 30

32 T Average node transitivity T � 1
N ·∑i�N

i�1 τi τi is the transitivity of the node i, and N is the nodes number [13]

33 B Average node betwenness B � 1
N ·∑i�N

i�1 g(i) N is the number of nodes and g(i) the betwenness of the node i. [29]

34 nB Average normalized node
betwenness

nB � 1
N · ∑i�N

i�1 ng(i) N is the number of nodes, ng(i) is the normalized betwenness of the
node i.

[29]

35 Clo Average node closeness Clos � 1
N∑N

i�1Ci Ci is the closeness of the node i and N is the nodes number. [29]

36 nClo Average normalized node
closeness

nClos � 1
N∑N

i�1nCi nCi is the normalized closeness of the node i and N is the nodes
number.

New—from 35

37 ks Average node coreness ks � 1
N∑N

i�1ksi ksi is the coreness of the node i and N is the number of nodes. [5]

38 Q Network modularity Q � 1
2L ∑

i,j
(aij − kikj

2L )δ(ci, cj) L is the number of links, aij is the element of the A adjacency matrix in
row i and column j, i, ki is the degree of i, kj is the degree of j, ci is the
module (or community) of node i, cj that of j, the sum goes over all i
and j pairs of nodes, and δ(x, y) is 1 if x = y and 0 otherwise.

[30]

39 �k/�d �k/�d index �k/�d � 1
N·∑i�N

i�1 ki
1

N·(N−1) ∑
i,j∈N,i≠j

dij

�k is the average node degree, �d is the average node distance. [15]

40 BB Centricity index BB � ∑N
i�1

ki
]i

ki is the degree of node i, vi is the farness of node i. [15]
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From one side, the outcomes of our research strongly support

the Thurner et al. [11] main statement showing how neglecting

the network structure may perform erroneous predictions of the

real epidemic spreading. On the other side, our results go further

and extend the Thurner et al. [11] research outcomes. Here, we

show that the network epidemic models investigating the SARS-

Cov2 epidemic spreading focus on the network connectivity

density as a main structural feature to parameterize network

epidemic spreading, as done by Thurner et al. [11] and many

recent network epidemic models [6, 8], may perform incomplete

or even unrealistic spreading predictions.

Further, most of the non-pharmaceutical interventions

(NPIs) implemented to curb the SARS-Cov2 epidemic follow

the rationale to reduce social interactions [33, 34], that is to

decrease the number of the network links. Our analyses suggest

that implementing NPIs with the aim to space out the nodes,

i.e., increasing the node distance in the network, would be a more

effective strategy to halt the epidemic. This would translate into a

reduced peak of infected individuals (ζ) and, consequently, a

lower number of infected individuals at the end of the

epidemics (TI).

Last, we outline that many of the NSIs conceived in complex

network science to encompass important network features that

may potentially be leading to differently spreading entities, are

not able to perform reliable predictions of the SIR epidemic

spreading in real-world networks. The modularity (Q), the

transitivity (T), the degree assortativity (A), and the different

degree heterogeneity indicators (σ2k, σk, AH, EH) of the network,

that are assumed to influence network spreading [1, 2, 18, 20],

return very low fitting model outcomes (Supplementary Tables

S2, S4). For example, the degree assortativity A returns FVU >
0.8 for all the spreading indicators, and the networkmodularityQ

shows FVU > 0.45 for all the spreading indicators. We argue that

the weak outcomes of these NSIs may be due to two main

FIGURE 2
Model network examples of increasing complexity following Bonchev and Buck [16] theory of network complexity. When evaluating the
complexity of the network with the rationale of the network structural indexes A/D and BB [16], the chain network is of lower complexity and low
spreading pace, the star network is of intermediate complexity andmedium spreading pace, and the complete network is the structure of maximum
complexity, with the fastest spreading pace. The node distance always decreases with increasing complexity, i.e., passing from the chain to the
star, and passing from the star to the complete network. Nonetheless, the node connectivity (links per node) holds constant passing from the chain to
the star network, whereas increasing from the star to the complete network.
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reasons. On the one hand, in real-world networks, the

aforementioned NSIs may present non-linear relationships

among them, with contrasting effects in determining the

network spreading entity. For example, Volz et al. [17]

showed that the average node transitivity (T) alone is not

always sufficient to determine the full epidemiological

dynamics, since the epidemic spreading depends not only on

the node transitivity, but also on the nature of the interactions

with other network structural features [17].

On the other hand, our results show that the node distance

is the most important factor affecting the network spreading.

The aforementioned NSIs may not correlate with node

distance, and, as explained above for the relationship

between average node degree and node distance (Figure 2),

real-world networks with the same value for these NSIs may

present different node distance �d. For example, the

relationship between degree assortativity (A) and node

distance in the network is not linear, with contrasting

effects on the epidemic spreading [18]. For this reason,

real-world networks with similar values of these NSIs may

present different spreading entities.

Materials and methods

Network structural indexes

In Table 2 we list the network structural indexes (NSIs) used

in this study, a short definition, and their reference. For the NSIs

coming from literature, we indicate the literature reference. For

the new ones formulated in the present study by modifying or

combining notions or indicators from literature, we list the

indicators from which the new ones are derived. In the

Supplementary Material S1.1, we furnish the extended

definition of each network structural indicator.

Real-world complex networks database

We analyzed a set of 50 high-quality real-world networks

from different fields of science (see Supplementary Material

S1.2). The number of real-world networks for different areas

of science is: road transportation 6, airports transportation 2,

cargo-ship transportation 1, biological 4, ecological 2, social 13,

citation 2, phone 2, internet 5, financial 1, computers 9, email 3.

The complete list of real-world networks with network type and

reference is in Supplementary Table S1.

The susceptible–infectious–recovered
dynamic epidemics model

We used a susceptible-infected-recovered (SIR) model to

numerically simulate the spreading entity over real-world

networks. Type SIR models can successfully predict the

dynamics of many infectious diseases. See Keeling and Rohani

[35] for an overview. When considering SIR models over a

network, at any time, a node can be in one of three possible

compartments: susceptible (S), infected (I), and recovered (R). If

a node/individual is infected, it will infect susceptible nodes

linked to it with a transmission rate, β. An infected node/

individual stays infectious on average for γ−1 consecutive days,

i.e., recovers with a rate equal to γ. Recovered node/individual

can no longer infect others and its state will no longer change,

which is equivalent to assume that immunization does not vanish

in the considered time horizon. We initialized the system by

fixing all nodes/individuals as susceptible except one, randomly

chosen, whose state is set as infected. The system dynamics can

then be solved and permit to model the epidemics evolution over

time. To simulate the SIR spreading on a network we used the

NDlib Python library presented in Rossetti et al. [36]. We fix the

SIR parameters β equals 0.03 or 0.06, and γ = 4. We adopt two

different transmission rate values of parameter β to describe low

and high epidemic transmission. Higher values of β represent

epidemics with higher transmissibility. We chose relatively small

values for β, according to Kitsak et al. [5], so that the infected

percentage of the population in the network remains small and

the simulation can outline the role of the network structure for

the spreading. In the case of larger β values, where spreading can

reach a large fraction of the population in a few steps, the

spreading would cover almost all the network in a few time

steps thus hiding the role of topological structure to affect the

pace of the spreading. For each real-world network, we

implemented 103 independent SIR simulations each with a

different node/individual initially infected.

The pace of the epidemic spreading can also be evaluated by

the time to infect a given part of the population [37]. We define

the time to reach the 15% of infected nodes in the network. τ15
corresponds to the time steps of the SIR simulation necessary to

have 15% of infected nodes (both considering the currently

TABLE 3 Spreading indicators used in this study.

Indicator key Name Definition

τ15 Time to 15% Time steps of the simulation to reach the 15% of infected nodes (both recovered and infected).

TI Total infected Fraction of total infected nodes (both infected and recovered) at the end of the simulation.

ζ Infected peak Maximum fraction of currently infected nodes occurring along the simulation. It represents the maximum epidemics prevalence.
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infected nodes and the recovered ones). The lower is the time to

infect the fixed fraction of nodes/individuals, the faster is

epidemic spreading.

Then, we assessed the pace of the epidemic spreading by the

total number of individuals that have been infected (TI) at the

end of the simulation, i.e., when there are no more infected nodes

[5, 12] and by the maximum value of infected nodes in a given

day (ζ) [12]. The TI indicator corresponds to the cumulative sum

of new cases, which is equivalent to the number of recovered

nodes at the end of the dynamics, when, by model construction,

no more nodes can be infected. This is the indicator used to

quantify the influence of a given node of the network in a SIR

spreading process by Kitsak et al. [5] and to evaluate the efficacy

of link removal strategies to curb the SIR spreading in social

networks [12]. The TI indicator provides an estimate of the

spread of the disease within a population and it is likely to

correlate with the number of severe, and possible fatal, cases. The

ζ indicator, besides the evaluation of the spreading pace, it

provides an estimate of the pressure over the sanitary system

which might collapse, thus causing higher mortality probabilities

of infected individuals, when a critical threshold is exceeded [12].

Since in epidemiology, “prevalence” is the fraction of a

population currently infected [35], ζ can be defined as the

maximum prevalence occurring during the epidemic

simulations.

The list of the spreading indicators with their definition is in

Table 3.

The regression models

To estimate the goodness of the relationship between the

spreading indicator value (response variable Y) and the network

structural indicator value (independent variable or predictor X) we

performed four types of regression models: linear, quadratic,

exponential, and monomolecular.

Linear: Y � aX + b. It represents the simplest relationship

between two variables i.e. one increases/decreases proportionally

to the other.

Exponential: Y � a · ebX. It is used to model situations in which

1) the response of one variable, to the change of another, begins

slowly and then accelerates rapidly without bound, or 2) its decay

begins rapidly and then slows down to get closer and closer to zero.

A multitude of situations can be modeled by exponential functions,

such as investment growth, radioactive decay, atmospheric pressure

changes, temperatures of a cooling object, etc.

Quadratic: Y � aX2 + bX + c. It represents those cases in

which the maximum (or minimum) value of a variable is

obtained at intermediate values of the independent variable.

In biology, the growth rate of organisms is often modelled as a

quadratic function of temperature. Such pattern can arise

when the disease spread depends on the interaction of two

processes which respond differently to the same NSI

Monomolecular (also known as Brody or Mitscherlich

function): Y � a(1 − b · e−cX) where b and c are growth

parameters, and a is the asymptotic size [38]. The

monomolecular is a special case of the generalised logistic

function and it is a widely used growth curve model for

saturating biological phenomena [38]. This typically occurs

when other elements of the system interfere with the effect of

the considered NSI and smooth its effect

The model selection criterion

We selected the best model using the Akaike information

criterion (AIC) [31].

AIC � 2k − 2 ln(L̂) (1)

where k is the number of estimated parameters in the

regression model (2 or 3 according to the regression

model), and L̂ is the maximum value of the likelihood

function for the model [31]. Given a set of candidate

models for the data, the best model is the one with the

minimum AIC value. Thus, AIC rewards goodness of fit

(as assessed by the likelihood function), but it also

includes a penalty that is an increasing function of the

number of estimated parameters. The penalty discourages

overfitting, which is desired because increasing the number of

parameters in the model almost always improves the

goodness of the fit. Minimization was performed using the

R program function nlm (Gauss-Newton algorithm).

Eventually, to provide an easily interpretable measure of the

goodness of the fitting model performances over network structural

indexes (predictors), we computed the fraction of variance

unexplained (FVU), calculated as:

FVU �
∑n
i�1
(Yo

i − Ye
i )

∑n
i�1
(Yo

i − Yo) (2)

where Yo
i is the observed value of the variable Yi (i.e. the

observed spreading indicators value for the network i), Ye
i is

the estimated value of the variable Yi (i.e., the value of the

spreading indicators estimated by the fitting model for the

network i), Yo is the average observed value of the spreading

indicators over the all networks set and n is the total number

of networks.
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current study are available in the “Netzschleuder” repository

[https://networks.skewed.de/], in the “Stanford Large

Network Dataset Collection” repository [https://snap.

stanford.edu/data/index.html], and in “The Colorado Index

of Complex Networks (ICON)” repository [https://icon.

colorado.edu/#!/].
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