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Educational behavioral psychology refers to the fact that college students

within campus networks have various psychological cognition toward novel

information and behavior. This is hardly ever taken into account or theoretically

examined in weighted network research. According to psychological traits and

a student’s willingness to adopt fresh behaviors, we categorize students’

behaviors into the active and passive. On this basis, a threshold models is

established for the behavior of active and passive students in weighted

networks, and the influence behavioral psychology on information

propagation is discussed. In order to qualitatively investigate the information

propagation mechanism, a partition theory based on edge-weight and

behavioral psychology is developed. Active students encourage the

acceptance of new behaviors and the spread of information, according to

theoretical study and simulation results. However, the phase transition

intersected was more significant. When the percentage of enrolled pupils is

high, a continuous phase transition is present in the growth pattern of the final

adoption size. In contrast, as the proportion of active students declines, the

increasing pattern alterss to discontinuous phase transition. In addition, weight

distribution heterogeneity facilitates the dissemination of information and does

not alter phase transition pattern. Finally, the theoretical analysis is in good

agreement with the simulation results.
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1 Introduction

The campus socialization of college students has been paid more and more attention

as a result of the gradual improvement of higher education. In campus socialization,

students’ online information dissemination is becoming more and more crucial. The

information propagation theory can be used to describe a variety of behaviors of college

students, including social recommendation, online learning, online entertainment, among

others.

For information propagation, researchers have investigated numerous potential

influences on the information propagation mechanisms in depth studies for
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information propagation models, including node distribution

structures [1, 2], memory effects [3, 4], and heterogeneous

adoption thresholds [5, 6].

Numerous research have shown that the spread of knowledge

demonstrates social reinforcement or affirmation [7, 8]. One of

the traditional models for describing social reinforcement is the

threshold model based on non-Markov processes, in which the

adoption of individual behavior demonstrates memory effects

[9]. Additionally, a number of threshold models that are accurate

to the network have been proposed to test their influence on

information transmission, including binary adoption probability

[10], truncated normal adoption probability [11], gate-like

adoption probability [12], and sigmoid adoption probability

[13]. It is worth noting that in the course of information

propagation, the non-redundant feature, i.e., the prohibition

of repetition of information propagation at the same edge,

cannot be ignored.

The distribution of information is also greatly impacted by

the variability of individual closeness in genuine social networks.

People are more likely to obtain information from their friends

and family than from complete strangers. The influence of

intimacy heterogeneity on information dissemination was

confirmed by the researchers, who built the connective links

between people as edges with diverse weight distribution [14, 15].

Existing literature has suggested that populations are

heterogeneous because different people have different attitudes

toward the same action, for example [16–18]. Behavioral

psychology is rarely considered in college educational studies.

On campus, for example, students’ psychological heterogeneity is

common. College students often send and receive messages on

social networks, and their adoption behavior can be influenced

by personal psychology. Some students are very interested in new

information and are willing to adopt and disseminate it when the

information around them is not universally accepted. However,

some students are more passive. They are willing to adopt

information only when there are more adoptors around them.

They are always hesitant about popular behavior, verifying

information multiple times before adopting it. Therefore,

according to the students’ different psychological factors, they

can be divided into active and passive individuals.

Psychologically active students become interested in their own

behavior once they have access to information. They gradually

increase their willingness to accept behavior as they learn more

information. But students with passive psychology will verify this

information several times before taking action. In other words, a

student’s psychology has something to do with the likelihood that

they would pick up a new behavior on campus.

Taking these factors into account, we investigated the effects

of behavioral heterogeneity on weighted network information

propagation. Only a small percentage of p students were active,

while others were passive. To capture the behavioral variability of

students, two adoption threshold probability functions that

correspond to active and passive students are presented. To

further examine the information propagation mechanism, a

partition theory based on edge-weight and population

heterogeneity is developed. Finally, the simulation outcomes

demonstrate that the predictions of the theory are consistent

with the information transmission under behavior heterogeneity.

This article’s remaining sections are organized as follows. The

second section establishes an information transmission model

that makes use of behavior heterogeneity on weighted networks.

A partition theory based on edge-weight and behavior

heterogeneity is demonstrated in Section 3. Section 4 of the

report discusses the experiment’s findings. Finally, Section 5

presents the conclusions.

2 Propagation model with behavioral
heterogeneity

We build a weighted social network model withN individuals

and a degree distribution of p(k) to investigate the impact of

population heterogeneity on the mechanism for information

propagation. Our methodology uses the uncorrelated

configuration model to prevent intra-degree correlations. A

generalized SAR (susceptible-adopted-recovered) model to

depict the information propagation mechanism in weighted

social network models is shown in Figure 1. Each node in the

SAR model is constantly in one of three states: the sensitive state

(S-state), the adopted state (A-state), and the restored state. The

S-state node is able to communicate with its neighbors and does

not adopt this behavior. This behavior has been adopted by

A-state nodes, and they are eager to spread information among

their neighbors. R-state nodes stop taking an active interest in

behavior and stop spreading information.

Additionally, edges with a weight distribution are used to

indicate individual correlations. Then, in order to reflect the

heterogeneity of edge, the distribution of edge weights is

introduced. The edge-weight distribution is denoted by a

function f(ω), and the edge-weight between two neighboring

nodes i and j is denoted by the symbol ωij. Indicate the likelihood

that an S-state node will learn something from its A-state

neighbor node by using the following notation:

λω � λ ωij( ) � 1 − 1 − β( )ωij , (1)

where β is the probability of propagation per unit of information.

If ωij = 1, it is demonstrated by λω = β that edge weight has no

impact on the transmission of information. Additionally, λ(ωij)

increases monotonically as ωij increases.

Let m represent the total amount of data that the S-state node

has successfully received. In weighted social networks, information

does not initially spread becausemj = 0 (j for the S-state node). The

total number of the node j’s message blocks increases by one at each

step, mj right arrow mj + 1, following the successful receipt of a

message from the A-state neighbor I I across the relevant edge.

Frontiers in Physics frontiersin.org02

Ye and Chen 10.3389/fphy.2022.1019118

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1019118


Additionally, two functions are suggested to illustrate the

threshold for individual behavior in order to describe the effects

of behavior heterogeneity on the dissemination of information, as

shown in Figure 1. The function that depicts the behavior

adoption threshold for active students is denoted by

hp m, Tp( ) � 0, 0<m≤Tp,
1, m≥Tp.

{ (2)

The behavior adoption threshold function for conservatives

is represented by

hq m, Tq( ) � 0, 0<m≤Tq,
1, m≥Tq,

{ (3)

only a small percentage of students with p are active, and only a

small percentage of students with q are passive. p + q = 1. In fact,

for active students, they are a very high willing to adopt the

behavior. When small messages are received, their willingness to

act this way is very low. Passive students will adopt behavior only

if there are more adoptors around them.

The following is a summary of the information propagation

details in weighted networks. First, we chose a few of p students at

random to operate as active nodes, while the remaining students

served as passive nodes. Then, we choose a subset of ρ0 students

at random to serve as the A-state node (seed) and all other nodes

as the S-state. This information is transmitted from the A-state

node to all neighbors through corresponding edge. The

likelihood λ(ωij) is matched by a weight of ωij when the

S-State node j successfully gets information from the A-State

neighbor node i. The collection block of the message ismj→mj +

1 when the S-state node j is successful in receiving it. Information

will not be repeated through the same edges due to the non-

redundancy of information propagation. Additionally, with a

chance of hp (m, Tp), if j is active, it adopts the behavior and

changes to the A status. A state changes to A if j is passive with the

probability hq (m, Tq). The A-state node loses interest in the

behavior after information transmission and changes to R-state

with a probability of γ. Information no longer propagates once

there are no A-state nodes left in the weighted network.

FIGURE 1
(A) SARmodel description on weighted networks. Red labels represent active students, such as Nos. 2, 4, 6 and 8. Black labels represent passive
students such as students 3, 5, 7, 9. The symbol ω is edge-weight. At t, A-State Student 1 disseminates information to his/her classmates or friends.
Information cannot be transferred over the edge, as indicated by the dotted lines. Information is not sent across the corresponding borders of solid
lines, as indicated. (B) The left subgraph shows the behavior of active students using a threshold model. The right subgraph is a threshold
threshold model passive student behavior adoption. mis the sum of all the information that S-level students have successfully obtained. pand qare
the scores of active and passive students, respectively.
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3 Propagation theory based on edge-
weight and behavioral heterogeneity

The study of nonredundant information memory with

behavioral heterogeneity on weighted networks is based on

citations. On the basis of this, this paper puts forward a

theory of information partition based on behavioral

heterogeneity and analyzes the mechanism of personal

information dissemination. Assume that the node in a cavity

state [19] implies that it can receive information from its

neighbors and cannot send information externally.

The probability that the node will not get information from

the following node is t because of the random distribution of the

edge weights.

θ t( ) � ∑
ω

f ω( )θw t( ), (4)

where the likelihood that the side of the ω weight does not spread

information to its S-country neighbors is given by θw(t).

The likelihood that the S-state nodes i and ki will collectively

get am pieces communication from their neighbor at time tmay

be written as

ϕ ki, m, t( ) � ki
m

( )θ t( )ki−m 1 − θ t( )[ ]m. (5)

Think about the threshold functions for behavior adoption

and behavioral heterogeneity. If the S-state node i is active, it will

still be in S-sate at time t with a likelihood of not adopting the

behavior after cumulatively accepting m bits of information.

sp ki, m, t( ) � ∑ki
m�0

ϕ ki, m, t( )∏m
l�0

1 − hp l, Tp( )[ ]
� ∑Tp−1

m�0
ϕ ki, m, t( )∏m

l�0
1 − l

Tp
( ).

(6)

The likelihood that the quantity of the aggregate information

pieces by time t is computed by for the active S-state node i is

then

ηp � ∑
ki

P ki( )sp ki, m, t( ). (7)

After receiving m bits of information cumulatively, if the S

state node i is passive, it has not yet exhibited this behavior and is

still in the S-state in terms of time t probability.

sq ki, m, t( ) � ∑ki
m�0

ϕ ki, m, t( )∏m
l�0

1 − hq l, Tq( )[ ]
� ∑Tq−1

m�0
ϕ ki, m, t( ).

(8)

Following that, i and t are the probabilities of the total

amount of information blocks in a passive S-state node.

calculated by

ηq � ∑
ki

P ki( )sq ki, m, t( ). (9)

The likelihood that the S-state node i receives m pieces of

information and maintains S-state, then, up until time t, is

given by

s ki, t( ) � 1 − ρ0( ) psp ki, m, t( ) + qsq ki, m, t( )[ ]. (10)

As a result, we can write the proportion of S-state nodes in a

weighted network at time t as

S t( ) � ∑
k

P k( )s k, t( ) � 1 − ρ0( ) pηp + qηq[ ]. (11)

We start by taking into account the θω(t) before calculating

S(t). Because all nodes in a network have only three states, θω(t)

can be broken down to

θω t( ) � ψS,ω t( ) + ψA,ω t( ) + ψR,ω t( ), (12)

where the probability that the S-state node i contacts an A-state

neighbor j through the appropriate edge of weight ω and has not

successfully received information from the A-state node j by time

t is denoted by the symbol ψA,ω(t). The chance that the S-state

node i contacts a S (or R)-state neighbor j via the matching edge

with weight ω is known as ψS,ω(t) (or ψR,ω(t)).

Then, we compute ψS,ω(t) first. The cavity theory’s influence

prevents the node i from transmitting data to nearby nodes.

Therefore, the S-state node j with kj neighbors can obtain

information from those kj − 1 in addition to the node i.

Consequently, the likelihood that node j will accumulate to

acquire n bits of information from its surrounding nodes by

time t is

ϕ kj − 1, n, t( ) � kj − 1
n

( )θ t( )kj−1−n 1 − θ t( )[ ]n. (13)

Think about the threshold functions for behavior adoption

and behavioral heterogeneity. If the S-state node j is active, it will

still be in S-sate at time t with a likelihood of not adopting the

behavior after cumulatively accepting n bits of information.

Θp kj, t( ) � ∑kj−1
n�0

ϕ kj − 1, n, t( )∏n
l�0

1 − hp l, Tp( )[ ]
� ∑Tp−1

n�0
ϕ kj − 1, n, t( )∏n

l�0
1 − l

Tp
( ).

(14)

After cumulatively accepting n pieces of information, if the

S-state node j is passive, it has not yet adopted the behavior and

will likely still be in S-sate by time t.

Θq kj, t( ) � ∑kj−1
n�0

ϕ kj − 1, n, t( )∏n
l�0

1 − hq l, Tq( )[ ]
� ∑Tq−1

n�0
ϕ kj − 1, n, t( ).

(15)
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Consequently, the likelihood that the node j remains in the

S-state after receiving n bits of information cumulatively is

Θ kj, t( ) � pΘp kj, t( ) + qΘq kj, t( ). (16)

With the corresponding weight margin ω, the likelihood that

the node i will link to the S-state node j is given by

ψS,ω t( ) � 1 − ρ0( )∑kj
kjP kj( )Θ kj, t( )

〈k〉 , (17)

where kjP(kj)/〈k〉 indicates the probability that node i connects
to node j with degree kj, and 〈k〉 is the average degree of the

network.

The evolutionary equation of ψR,ω(t) and ψA,ω(t) is then

examined. With a probability of λω, the S-state node i

successfully takes the information from its A-state neighbor j

via the appropriate edge of weight ω. Thus, θω(t) development

can be described by

dθω t( )
dt

� −λωψA,ω t( ). (18)

On the other hand, the R-state node may transition from the

A-state with a probability of γ if the A-state node loses interest in

information propagation. Therefore, it is possible to determine

the evolution of ψR,ω(t) by

dψR,ω t( )
dt

� γψA,ω t( ) 1 − λω( ). (19)

When the initial conditions θω(0) = 1 and ψR,ω(0) = 0 are

combined with Eqs. 18, 19, we may obtain the evolution of

ψR,ω(t)

ψR,ω t( ) � γ 1 − θω t( )[ ] 1
λω

− 1( ). (20)

Substituting Eq.17–20 into Eq. 12, we can obtain

ψA,ω t( ) � θω t( ) − ψS,ω t( ) − ψR,ω t( )

� θω t( ) − 1 − ρ0( )∑kj
kjP kj( )Θ kj, t( )

〈k〉
−γ 1 − θω t( )[ ] 1

λω
− 1( ).

(21)

FIGURE 2
Unit propagation probability’s impact on the final adaptive size of nodes in a weighted ER network with various percentages of active nodes, in
beta. The phase transition is shown to be impacted by the heterogeneity of the weight distribution in (a1) (αω = 2) and (b1) (αω = 3). The relative
variances and thresholds in subparagraphs (A) and (B), respectively, are indicated in subparagraphs (C) and (D). Additionally, the theoretical
predictions (dotted lines) in subparagraphs (A,B) are in good agreement with the simulation results (symbols). Other parameters are ρ0 = 0.01,
Tp = 1, and Tq = 5.
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Substituting Eq. 21 into Eq. 18, the evolution of θω(t) can be

rewritten as

dθω t( )
dt

� −λω θω t( ) − 1 − ρ0( )∑kj
kjP kj( )Θ kj, t( )

〈kX〉
⎧⎪⎨⎪⎩

−γ 1 − θω t( )[ ] 1
λω

− 1( )}
� 1 − ρ0( )λω∑kj

kjPX kj( )Θ kj, t( )
〈k〉 + γ 1 − λω( )

− γ + λω 1 − γ( )[ ]θω t( ).

(22)

Throughout the network, the density variation of each state

can be expressed as

dR t( )
dt

� γA t( ), (23)

and

dA t( )
dt

� −dS t( )
dt

− γA t( ). (24)

So, by combination and iteration Eq.11 and 23, and Eq.24,

S(t), A(t)and R(t), i.e., you can calculate the density of each state

at any given time step length.

There are only S-state and R-state nodes in the network when

t→∞. The maximum size of behavior adoption is R (∞). Let
dθω(t)
dt |t�∞ go to zero. The likelihood that information

propagation did not occur in the weighted ω at this

moment is

θω ∞( ) � 1 − ρ0( )λω∑kj
kjP kj( )Θ kj,∞( ) + 〈k〉γ 1 − λω( )
〈k〉γ + 1 − γ( )λω〈k〉 .

(25)
S (∞) and R (∞) can be derived by combining and iterating

Eq. 11 and 25, and A (∞) = 0.

4 Results and discussions

We conduct comprehensive numerical simulations and

theoretical studies on weighted Scale-Free (SF) [20] and Erdő-

Rényi (ER) [21] networks, respectively, to validate the theoretical

study presented above. The network size is 104; that is, there are at

least 104 dynamically independent persons in the network. The

network’s average degree is 〈k〉 � 10. The wight distribution

follows gX(ω) ~ ω−αω with ωmax ~ N
1

αω−1 and the average weight

is 〈ω〉 = 8. In addition, the probability of recovery is γ = 1.0.

In our simulations, we employed the relative varianceX Refs.

[22, 23], which denotes the probability of critical unit

propagation and critical conditions

X � N
〈R ∞( )2〉 − 〈R ∞( )〉2

〈R ∞( )〉 , (26)

where the ensemble average is represented by 〈/ 〉. The key

moment of information global propagation is represented by the

highest values of relative variance.

4.1 Information propagation on weighted
ER network

We start by investigating how information spreads on a

weighted ER network. The nodes of the ER network are

subject to Poisson distribution, i.e., P(k) � e−〈k〉〈k〉
k

k! .

In a weighted ER network, Figure 2 investigates the impact of

a unit propagation probability beta on the final adaptation size of

various proportions of active nodes. The initial seed percentage is

rho0 = 0.01. The adoption criteria are Tp = 1 and Tq = 5,

respectively. Figures 2A,B illustrate how the final adoption

size, R (∞), increased to global adoption as β increased.

FIGURE 3
The final adoption size of a single weighted ER network is affected by the interaction of the unit propagation probability of beta and the active
student part of p. There was no global behavior outbreak, discontinuous phase transition, or continuous phase transition in regions I, II, or III as
described in subparagraphs (A) and (B) (αω = 2 and 3, respectively). Other parameters are ρ0 = 0.01, Tp = 1, and Tq = 5.
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Additionally, as the percentage of students who are actively

enrolled rises, so does the eventual adoption size, or R (∞).

The adoption of the behavior can be encouraged by p. There is a

crossover: the R (∞) growth pattern exhibits a continuous phase

transition with a sizable p component (between p = 0.5 and p =

0.8). However, the growth pattern of R (∞) shows that the phase

transition is discontinuous when the p dollar is small (i.e., p =

0.2). Figure 2 3) and 4) simultaneously display the crucial

propagation probabilities and relative variance of 1) and (b),

respectively. Phase transition and the adoption of global behavior

take place at this crucial time. Additionally, there was a rise in the

weighted weighted distribution exponent earlier outbreak of

information propagation outbreak as compared to

subparagraphs 1) and (b). However, the phase transition

pattern is unaffected by the weight distribution. The findings

of the simulation accord well with the theoretical prediction

(line) (symbol).

The co-effect of p per fashionista and beta per unit of

propagation probability is examined in Figure 3 for the

weighted ER network R (∞). The effects of the weighted

heterogeneity of the weight heterogeneity plane (β, p) on R

(∞) are shown in Figure 3 1) (αω = 2) and 2) (αω = 3). The

initial fraction of seeds ρ0 = 0.01. The adoption thresholds are

Tp = 1 and Tq = 5. The crossover phenomena appears when β

increases. There are three areas in the parameter plane (β, p).

There is no widespread trend of adopting new behaviors in

region I, and the percentage of trendy people is quite low (p).

The cause of this is that students’ lack of passion to participate in

information propagation during the earliest stages of information

dissemination prevents information propagation. In area II, the

growing pattern of R (∞) illustrates the discontinuous phase

transition as the proportion of active students p increases. The

growth pattern of R (∞) displays a persistent phase change in

area III. In fact, the dissemination of information and the

adoption of passive behavior are dominated by active students

in the III district. Additionally, the weight distribution’s

heterogeneity speeds up information transfer without altering

the phase transition pattern.

FIGURE 4
Effect of β per unit propagation probability and p active student portion on the final adoption size of weighted SF network individuals. the vertical
subgraphs utilizes the same degree distribution index, i.e., the subgraph from first column to third column corresponds to v = 2, 4. Subgraphs (A) and
(B) present the impact of β and p on the size of final individual adoptions with degree distribution heterogeneity. Figure (C) and (D) present the relative
variances and thresholds for (A,B), respectively. Theoretical analysis (dotted line) is in good agreement with simulation values (symbol). Other
parameters are ρ0 = 0.01, αω = 2, Tp = 1, and Tq = 5.
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4.2 Information propagation on weighted
SF network

The degree index v and the heterogeneity of node degree

distribution in SF networks are negatively associated. Nodes’

degree follows a power-law distribution. The degree exponent of

the SF network is presented by equation p(k) = ξk−v, where ξ = 1/

∑kk
−v. The minimum and maximum degrees are, respectively,

kmin = 4 and kmax ~ 100.

Figure 4 illustrates the effect of unit propagation probability

of β and active student portion of p on individual final adoption

size in weighted SF networks with degree distribution

heterogeneity. the vertical subgraphs utilizes the same degree

distribution index, i.e. the subgraph from first column to third

column corresponds to v = 2, 4. The initial fraction of seeds ρ0 =

0.01. The weight distribution exponent αω = 2. The adoption

criteria are Tp = 1 and Tq = 5, respectively. With the increase of

beta, R (∞) becomes more widely used. Additionally, p

encourages the adoption of the behavior. The growth pattern

of the final adoption size exhibits a continuous and phase

transition with the increase in the percentage of active

students. Additionally, when subgraphs 3) and 4) are

compared, it can be seen that degree distribution

heterogeneity facilitates information dissemination without

changing the growth patterns that ultimately result in

adoption size. Additionally, in Figure 4A, the global adoption

size increases with the percentage of enrolled students when the

degree distribution index is 2.

For a weighted SF network with v = 2, 4, respectively, Figures

5A,B examine the fluctuation of R (∞) on the information

propagation parameter plane (β, p). The initial seed

percentage is ρ0 = 0.01. Alpha αω = 2, which is the exponent

of weight heterogeneity. The adoption criteria are Tp = 1 and Tq =

5, respectively. Phase transitions occur as a result of the crossover

phenomenon when beta increases. Even more exciting, when the

degree distribution heterogeneity is highly heterogeneous, at v =

2, the eventual size of individual adoptions rises slowly as the

proportion of students in work increases. But when the degree

distribution heterogeneity is less heterogeneous, at v = 4, the

eventual size of individual adoptions increases rapidly with the

proportion of active students. In Zone I, there has been no global

outburst behavior adoption. In region II, the growth model of R

(∞) exhibits a sequential phase transition in phase II. In fact, in

the II District (Figures 5A,B), active students dominate the

dissemination of information and stimulate the adoption of

passive behavior.

5 Conclusion

This paper discusses the influence of behavioral

psychology on the dissemination on campus sociality. We

randomly select a small percentage of p students as active,

while others were passive. We also take individual intimacy

heterogeneity into account, which is depicted in the campus

network as the edge-weight. Then, in order to demonstrate the

behavioral psychology, we provide two adoption threshold

functions. For active students, they are willing to receive and

disseminate information if the information around them is

not universally accepted. But passives are willing to adopt

information if only when there are more adoptors around

them. They are always hesitant about popular behavior,

verifying information multiple times before adopting it. A

threshold model based on edge weight and heterogeneity is

suggested to conceptually investigate the impacts of

psychology heterogeneity. We discover several fascinating

information transmission phenomena through theoretical

investigation and simulation findings. First, engaged

FIGURE 5
The combined impact of active student score and unit propagation probability on the final adoption size of weighted SF network users. The
effects of (β, p) on the ultimate adoption size at v = 2.4 are shown in subparagraphs (A) and (B), respectively. In (A,B), two regions appeared: region I
experienced a sustained phase shift while region II did not experience a worldwide behavior outbreak. Other parameters are ρ0 = 0.01, αω = 2, Tp = 1,
and Tq = 5.
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students encourage the spread of knowledge and the adoption

of new behaviors. The phase transition crossover

phenomenon also manifests. The growth pattern of R (∞)

changes has transitioned from a discontinuous phase to a

continuous phase with an increase in p. In addition, the

distribution of weights facilitates the dissemination of

information without altering the pattern of phase transition

pattern. Despite being essential to the spread of information,

behavioral psychology lacks thorough theoretical modeling

and study. The effects of behavior psychology on weighted

work are modeled and analyzed qualitatively and

quantitatively. By considering behavior psychology on

weighted networks, this paper reveals the intrinsic

mechanism of campus social.

Data availability statement

The original contributions presented in the study are

included in the article/supplementary material, further

inquiries can be directed to the corresponding author.

Author contributions

JY and YC designed and performed the research and wrote

the manuscript.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

1. Duan B, Chen H, Sun L, Tang Q, Tian S, Xie M. Identifying influential
spreaders in complex networks by propagation probability dynamics. Chaos (2019)
29(3):033120. doi:10.1063/1.5055069

2. Pang S, Wen X, Fei H. Controllability limit of edge dynamics in complex
networks. Phys Rev E (2019) 100(2):022318. doi:10.1103/physreve.100.022318

3. Williams OE, Lillo F, Latora V. Effects of memory on spreading processes in
non-markovian temporal networks. New J Phys (2019) 21(4):043028. doi:10.1088/
1367-2630/ab13fb

4. Dodds P, Watts J. Universal behavior in a generalized model of contagion. Phys
Rev Lett (2004) 92(21):218701. doi:10.1103/physrevlett.92.218701

5. Peng H, Peng W, Zhao D, Wang W. Impact of the heterogeneity of adoption
thresholds on behavior spreading in complex networks. Appl Mathematics Comput
(2020) 386:125504. doi:10.1016/j.amc.2020.125504

6. Wang W, Tang M, Shu P, Wang Z. Dynamics of social contagions with
heterogeneous adoption thresholds: Crossover phenomena in phase transition.New
J Phys (2016) 18(1):013029. doi:10.1088/1367-2630/18/1/013029

7. Wang W, Tang M, Zhang H, Lai Y. Dynamics of social contagions with
memory of nonredundant information. Phys Rev E (2015) 92(1):012820. doi:10.
1103/physreve.92.012820

8. Han L, Lin Z, Tang M, Zhou J, Zou Y, Guan S. Impact of contact preference on
social contagions on complex networks. Phys Rev E (2020) 101(4):042308. doi:10.
1103/physreve.101.042308

9. Wang W, Shu P, Zhu YX, Tang M, Zhang YC. Dynamics of social contagions
with limited contact capacity. Chaos (2015) 25(10):103102. doi:10.1063/1.4929761

10. Granovetter M. Threshold models of collective behavior. Am J Sociol (1978)
83(6):1420–43. doi:10.1086/226707

11. Yang Q, Zhu X, Tian Y, Wang G, Zhang Y, Chen L. The influence of

heterogeneity of adoption thresholds on limited information spreading. Appl

Mathematics Comput (2021) 411:126448. doi:10.1016/j.amc.2021.126448

12. Zhu X, Wang W, Cai S, Stanley H. Optimal imitation capacity and crossover
phenomenon in the dynamics of social contagions. J Stat Mech (2018)(6) 063405.
doi:10.1088/1742-5468/aac914

13. Fink C, Schmidt AC, Barash V, Kelly J, Cameron C, Macy M.
Investigating the observability of complex contagion in empirical social
networks. In: Tenth International AAAI Conference on Web and Social
Media (2016).

14. Zhu X, Yang Q, Tian H, Ma J, Wang W. Contagion of information on two-
layered weighted complex network. IEEE Access (2019) 7:155064–74. doi:10.1109/
access.2019.2948941

15. Zhu X, Ma J, Su X, Tian H, Wang W, Cai S. Information spreading on
weighted multiplex social network. Complexity (2019) 2019:5920187. doi:10.1155/
2019/5920187

16. González M, HidalgoCésar A, Barabási A-L. Understanding individual
human mobility patterns. Nature (2009) 453:238–782. doi:10.1038/
nature07850

17. Perc M. Does strong heterogeneity promote cooperation by group
interactions? New J Phys (2011) 13(12):123027. doi:10.1088/1367-2630/13/12/
123027

18. Wang W, Tang M, Zhang HF, Gao H, Do Y, Liu ZH. Epidemic spreading on
complex networks with general degree and weight distributions. Phys Rev E (2014)
90(4):042803. doi:10.1103/physreve.90.042803

19. Yuan X, Hu Y, Stanley H, Havlin S. Eradicating catastrophic collapse in
interdependent networks via reinforced nodes. Proc Natl Acad Sci U S A (2017)
114(13):3311–5. doi:10.1073/pnas.1621369114

20. Catanzaro M, Boguná M, Pastor-Satorras R. Generation of uncorrelated
random scale-free networks. Phys Rev E (2005) 71(2):027103. doi:10.1103/physreve.
71.027103

21. Paul E, Rényi A. On the evolution of random graphs. Publ Math Inst Hung
Acad Sci (1960) 5(1):17–60.

22. Shu P, WeiW, Ming T, Do Y. Numerical identification of epidemic thresholds
for susceptible-infected-recovered model on finite-size networks. Chaos (2015)
25(6):063104. doi:10.1063/1.4922153

23. Chen X, Wang W, Cai S, Eugene SH, Braunstein LA. Optimal resource
diffusion for suppressing disease spreading in multiplex networks. J Stat Mech
(2018) 5(5):053501. doi:10.1088/1742-5468/aabfcc

Frontiers in Physics frontiersin.org09

Ye and Chen 10.3389/fphy.2022.1019118

https://doi.org/10.1063/1.5055069
https://doi.org/10.1103/physreve.100.022318
https://doi.org/10.1088/1367-2630/ab13fb
https://doi.org/10.1088/1367-2630/ab13fb
https://doi.org/10.1103/physrevlett.92.218701
https://doi.org/10.1016/j.amc.2020.125504
https://doi.org/10.1088/1367-2630/18/1/013029
https://doi.org/10.1103/physreve.92.012820
https://doi.org/10.1103/physreve.92.012820
https://doi.org/10.1103/physreve.101.042308
https://doi.org/10.1103/physreve.101.042308
https://doi.org/10.1063/1.4929761
https://doi.org/10.1086/226707
https://doi.org/10.1016/j.amc.2021.126448
https://doi.org/10.1088/1742-5468/aac914
https://doi.org/10.1109/access.2019.2948941
https://doi.org/10.1109/access.2019.2948941
https://doi.org/10.1155/2019/5920187
https://doi.org/10.1155/2019/5920187
https://doi.org/10.1038/nature07850
https://doi.org/10.1038/nature07850
https://doi.org/10.1088/1367-2630/13/12/123027
https://doi.org/10.1088/1367-2630/13/12/123027
https://doi.org/10.1103/physreve.90.042803
https://doi.org/10.1073/pnas.1621369114
https://doi.org/10.1103/physreve.71.027103
https://doi.org/10.1103/physreve.71.027103
https://doi.org/10.1063/1.4922153
https://doi.org/10.1088/1742-5468/aabfcc
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1019118

	Social contagion influenced by active-passive psychology of college students
	1 Introduction
	2 Propagation model with behavioral heterogeneity
	3 Propagation theory based on edge-weight and behavioral heterogeneity
	4 Results and discussions
	4.1 Information propagation on weighted ER network
	4.2 Information propagation on weighted SF network

	5 Conclusion
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher’s note
	References


