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Social platforms make information propagation anywhere anytime. Large

quantity data recording information spreading is available for further

understanding the intrinsic mechanism within these stochastic processes.

Based on the empirical spreading trees of tweets on Twitter, the

heterogeneity of Twitter users is explored, turning out the burstiness in the

spreading process. A few super spreaders can significantly change the trends of

information spreading. Moreover, an improved Hawkes process is designed in

this study to better investigate users’ heterogeneity during information

propagation. Verification is provided for accuracy and stability of the

improved Hawkes model in simulating propagation patterns revealed in

empirical sequential data, predicting spreading trends, and predicting

probability of information outbreaks. Our improved Hawkes model is an

effective spreading model for detecting and quantifying super spreaders

during the propagation process, which may shed light on the control and

prediction of information spreading in social media.
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Introduction

In modern society, information develops at a high speed. Online social networks such

as Twitter, Micro-blog, and WeChat provide a free and fast access to all kinds of

information, allowing all users to produce and propagate contents. As a result,

information today is propagated regardless of any temporal and spatial factors and

will have a great influence on individuals and society. Therefore, understanding the

patterns and mechanisms within information propagation is of crucial importance

nowadays. However, it is challenging to describe and investigate all ingredients during

the spreading, such as network topology, features of information, and characteristics of

various users.

Information propagation is a rich and active research area. Research perspectives

mainly include three aspects: mining spreading patterns, predicting spreading popularity,

and information traceability. The methodology is mainly based on a descriptive analysis

and construction of models based on data. There are mainly three ways for modeling
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propagation: network topology–based, user state–based, and

stochastic process–based models [1, 2].

The classical user state–based models are mainly borrowed

from the infectious disease models aiming at modeling the

epidemiological processes. The two common models are SIR

and SIS [3, 4], where S stands for susceptibility, I for infection,

and R for recovery. In both models, nodes in class S switch to

class I with a fixed probability β. However, the SIS model and the

SIR model assume that each node connects to another node with

the same probability so that the connections within the

population are made randomly. The relationship between

nodes, that is, between users, is very important for

information propagation, so the assumption made by the

contagion model is unrealistic.

To investigate the influence of topology on information

propagation, the Independent Cascade (IC) [5]or Linear

Threshold (LT) [6] models are commonly used. These models

utilize directed graphs on which there are two types of node

states, namely, active and inactive and assume that node states

can only be transferred from inactive to active states. When

applied to analyze the information propagation process, a node

transferring from an inactive state to an active state indicates that

the user node has propagated information and can propagate

information to surrounding users. The model based on network

topology has some shortcomings. One is that the weights

between nodes in the model are usually assumed to be the

same or identically distributed values, but the relationship

between users in the actual situation is difficult to be

described uniformly, which is the same as the shortcoming of

the contagion model. The second is that it obtains the static

structure at a certain moment, which cannot keep up with the

rapid changes of information propagation, so the timeliness of

the model is insufficient.

The Hawkes process, first defined by Hawkes, is a class of

point processes whose intensity depends on the history of the

process [7]. It has been widely used in recent years to model

earthquakes, terrorist attacks, finance, and so forth. [8, 9, 10, 11,

12]. They are ideal models to describe information cascades

because each new retweet of a certain piece of tweet not only

increases its cumulative retweet count by one but also gains new

followers who may further retweet the tweet. In comparison with

the aforementioned topology-based and user state–basedmodels,

the Hawkes process makes up for the shortcomings of the

aforementioned models by not making assumptions about

user relationships and by obtaining the complete tweet

propagation state.

Research on spreading patterns, prediction of spreading

trends, and information traceability by the Hawkes process

has been fruitful in the analysis. However, there are still some

limitations in the research. One of the most noteworthy is the

phenomenon of information bursts, which is the main reason for

the significant impact of information propagation on individuals

and society. Therefore, the causes of the burst phenomenon, its

fitting, and prediction need to be urgently considered and solved.

Based on Hawkes processes, this study provides an empirical

analysis and modeling of information propagation and the

exploration and analysis of the information burst

phenomenon. In terms of empirical analysis, we analyze the

spreading process from micro to macro based on real spreading

data, obtain the emergence of the information propagation

process, and focus on the heterogeneity of spreading users. To

better portray the burst of the spreading process, an improved

Hawkes model is constructed to simulate and predict the

development trend and burst phenomenon of the information

spreading process, to restore the real spreading process.

Characterization of the propagation
process

In this section, the dataset used in this study is described first,

and then the characteristics within the empirical propagation

process from micro to macro are illustrated and ended up with

well-founded reasoning of peaks in the propagation sequence,

which is the inspiration of our improved Hawkes processes.

Data description and processing

The data in our study is based on a set of 4626 tweets on

Twitter in 2015 and 2016, with their complete retweet trees. Each

retweet item includes tweet ID, ID of the retweeted, ID of the

retweeter, posting time, and retweeting time, where the posting

time refers to the time when the retweeters retweeted the tweet.

Tweets with at least 300 retweets are picked for further

analysis and modeling to obtain a sufficient amount of data to

study the propagation and to eliminate the noise in the data.

Finally, 150 tweets are selected for exploratory analysis, and four

FIGURE 1
Illustration of the propagation tree.
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of them are chosen as representative tweets for illustration and

visualization.

User heterogeneity analysis

The whole process of information propagation is formed

by users’ secondary transmission on social platforms.

Therefore, the features of different users greatly affect the

propagation process. The influence of a certain user can be

expressed by the speed and range of information propagation

stimulated. Highly influential users can make the content,

read, and re-post fast and vast; therefore, the information is

highly propagated. In topology-based models, the degree

centrality, the proportion of users who are directly

connected to the user node, is widely used to measure the

average influence of an individual on his/her friends [13].

The retweeting relationship is illustrated in Figure 1. User A

created the origin tweet. Then it was retweeted by User A’s direct

followers, User B is one of them, as shown in Figure 1. User C

retweeted the content directly after User B and so forth.

Based on the characteristics of our dataset, the influence of a

user is measured by the number of times he or she directly

retweeted. If User B retweets User A directly, it means that User

A and User B are connected on the social platform, that is, User B

is a follower of User A or they follow each other. If User A’s

influence is high, more users will see that A retweeted a tweet and

will retweet this tweet with relatively high probability, resulting in

more direct retweets of User A’s tweet.

The number of time that each user’s tweet was directly

retweeted is analyzed to investigate users’ influence. Figure 2

shows the distribution of the number of time users’s tweets were

directly retweeted, indicating that the users’ influence is highly

skewed distributed, where 99% of the users’s tweets were directly

retweeted less than 100 times. The inset figure shows the

distribution in the log-log scale, and the fitting line for the tail

has slope −0.3664 and R2 = 0.8853, respectively. The straight line

fitted in the log-log scale provides the power law tail of user

FIGURE 2
Distribution of the count of users being directly retweeted. The inserted is the distribution in log-log scale. The fitted line is log(frequency) =
6.256−0.3664*log(count), with R2 = 0.8853.

TABLE 1 Quantile of the count of users being directly retweeted.

Percentile ratio 0% 20% 40% 60% 80% 100%

Direct retweet counts 1 1 1 2 2 2530
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influence in a linear scale. The power–law distribution is highly

uneven, that is, the scale of direct retweets varies widely, meaning

most direct retweets are small and a few are quite large.

Therefore, the fitted straight line indicates that there is

significant variation in user influence during the

dissemination process, with most of the users having low

influence and a few users having high influence, and users

being heterogeneous. Moreover, as shown in Table 1, 80% of

the users’ tweets were directly retweeted only twice. However,

there are a few users who get many retweets, even up to 2000.

Therefore, there are a few “super spreaders” with great influence

in the spreading process, and their influence is much higher than

that of ordinary users, showing high heterogeneity among

spreaders.

Peak analysis

Due to various influence factors, the sequential data of

information propagation shows different characteristic

patterns. Yasuko et al. investigated the rise and fall patterns of

information propagation through clustering [14]. Inspired by

their results, four representative time sequences are selected from

our sequential data. Figure 3 shows the four propagation

sequences of information (a), (b), (c), and (d).

The peaks within one sequence are significant for the overall

trend and hotness of information propagation. Reasons leading

to the peaks in the information propagation sequence come from

the heterogeneity of users’ influence. In Figure 3, top influential

users are labeled referring to the time they retweeted the tweet,

FIGURE 3
Four representative sequences of tweets propagation with top super spreaders marked. Panel (A), (B), (C), and (D) corresponds to tweet (a), (b),
(c), (d) respectively. Due to different total time lengths of the tweets under consideration, the unit of the horizontal axes in A, B, C, and D are 10 s, 10 s,
10 s, and 80 s, respectively. (A) shows stable propagation and slight fluctuations. The relative silence period may be due to circadian. (B) illustrates a
burst due to the third most influential user. (C) is similar to (B) with only one burst appearing at early stage of the transmission. (D) consists of
multiple bursts, which may appear at any stage during the spreading.
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which is at or right before the time intervals bursts appeared.

Therefore, the posting or retweeting of information by high-

influential users during the propagation process can significantly

impact the hotness and trend of the information, which is the

main reason for a large fluctuation phenomenon within

information propagation.

Modeling information propagation by
Hawkes processes

In order to quantify the burstiness and further predict and

control the propagation process, standard Hawkes processes are

introduced and then improved in this section. We will describe

how to build an information propagation model based on the

Hawkes process, and introduce a Hawkes process simulation

method and parameter estimation. Furthermore, the Hawkes

model is improved according to the characteristics of real

propagation data, and the steps of the improved Hawkes

model to simulate the propagation process are given.

Model description

Information propagation is considered as a random process

of users’ retweeting information. User’ retweeting is influenced

by two factors. One is the background factor, that is, different

content of information has different intensity of attraction to

users. The other is the self-exciting effect, that is, if the retweet

counts in the previous period is high, the popularity of the spread

increases and users will see and retweet the tweet with a higher

probability. Thus, information spreads as a random process

whose intensity varies with time, and the intensity consists of

background factors and self-exciting effects, which is in line with

the Hawkes process.

We refer to the point process whose future evolution depends

on its own history as the self-exciting point process, that is, the

Hawkes process [7]. The Hawkes process can be defined in two

ways: one by defining it as a marked Poisson cluster process,

where the clusters are generated by a certain branching structure,

and the other by using conditional intensity function. The

conditional intensity is defined as shown in the following

equation:

λ(t|Ht− ) � μ(t) + ∫t

0
g(t − u)N(du)

� μ(t) +∑
i: 0< ti < t

g(t − ti). (1)

Here, the exponential kernel Hawkes process proposed by

Hawkes is used to model the process [7]. Assume that ti is the

time when the ith retweet occurs then the intensity of retweeting

at moment t is as follows:

λ(t) � μ +∑
i: 0< ti < t

αe−β(t−ti). (2)

FIGURE 4
Flow chart of Algorithm 1.
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The parameter μ in the model is the background strength of

the tweet. The background strength of the same tweet is a

constant, that is, the propagation process generated by the

attraction of the tweet itself is a homogeneous Poisson process

of strength μ; β is the decay rate, indicating that the influence of

the previous retweets is exponentially decayed over time with the

parameter β; and α is the cumulative strength, indicating the

cumulative influence of the previous retweets, and a retweet is

expected to trigger retweet counts of size α.

Moreover, the branching structure in Figure 1 and the

Hawkes process can be viewed as the duality of each other.

They are both continuous time stochastic processes with non-

negative integers as the state space. In the Hawkes process, each

point may excite future point, as the retweeting events do.

Therefore, the intensity at time t is defined in Eq. 1.

Meanwhile, in the branching process, each retweet may cause

further retweets, which can be regarded as its children.

Model simulation algorithm

There are two simulation methods for the Hawkes model:

intensity-based methods and clustering-based methods [15].

Here, intensity methods for simulation are adopted.

FIGURE 5
Fitting results for the four representative tweets by the improved Hawkes model. Panel (A), (B), (C), and (D) corresponds to the fitting results of
tweet (a), (b), (c), (d) respectively.

TABLE 2 Parameter estimation for the four tweets.

Tweet μ1 α1 β1 μ2 α2 β2

(a) 0.333 0.646 0.929

(b) 0.507 2.827 4.786 0.184 16.639 18.856

(c) 0.061 0.155 0.183 0.017 0.592 0.597

(d) 0.411 0.068 0.094 0.001 0.250 0.252
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The main idea of the simulation algorithm is to first initialize

the intensity λ using the background intensity μ, generating an

exponentially distributed random variable as the time when the

new event point occurs, and in practice as the distance of the

trigger intensity function increases, λ(t) in the interval should

keep decreasing to accept this new point with a certain

probability, and if the point is rejected then the simulation

continues to generate a new point.

Model parameters solving

There are two types of methods for estimating the parameters of

the Hawkes model: kernel density method andmaximum likelihood

method. Here, the maximum likelihood estimation method is used

to estimate the model parameters in this study [16].

For the Hawkes process with a trigger intensity function

ofαe−βt, the log-likelihood is as follows [17]:

log(L(t1, . . . , tn)) � −μtn +∑n

i�1
α

β
(e−β(tn−ti) − 1) +∑n

i�1log
⎡⎢⎢⎢⎣μ

+ α∑
tj < ti

e−β(ti−tj)⎤⎥⎥⎥⎦.
(3)

The maximum likelihood estimation of the parameters is

obtained by solving the parameter values in Eq. 3 by finding the

FIGURE 6
Scatter plot of simulation error. Panel (A), (B), (C), and (D) corresponds to the scatter plot of simulation error of tweet (a), (b), (c), (d) respectively.

Frontiers in Physics frontiersin.org07

Wang and Zhang 10.3389/fphy.2022.1019380

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1019380


partial derivatives of μ, α, and β, respectively, so that the partial

derivatives of the three are zero.

Improved Hawkes information
propagation model

It is revealed that the overall pattern of the real information

propagation process is consistent with the smooth Hawkes

model, but the Hawkes model lacks consideration of peaks,

resulting in some peaks in the propagation sequence that

cannot be fitted by the smooth Hawkes model. Since peaks

play a crucial role during the spreading process, the standard

Hawkes model needs improvement to model high peaks, and

then modeling the heterogeneity in the stochastic process.

It is found in Figure 3 that peaks are information bursts

generated by high-influential users who have retweeted the tweet.

Based on this, the propagation process is divided into two

propagation sub-processes: one is the “burst” propagation

process, which consists of the peak data that cannot be fitted

by the smooth Hawkes process, and the other is the “smooth”

propagation process, which consists of the remaining

propagation data. The propagation process is the

superposition of these two processes. The parameters of the

sub-processes are estimated separately by the maximum

likelihood estimation method, and then the simulated points

are obtained by simulating the real propagation data. Finally, the

fitted points are combined to obtain the fitted results. If the

propagation process simulated after dividing the data is still

unable to simulate the retweeting peak continue the process of

“divide→ simulate→ combine→ check” until the highest point of

the retweeting sequence can be simulated. The algorithm is listed

in Algorithm 1, and the algorithm flow chart is shown in Figure 4

The microscopic user heterogeneity characteristics in the real

propagation process make the propagation process show the

macroscopic characteristics of non-smooth peaks, which are not

consistent with the smooth Hawkes model. Therefore, according

to the characteristics of the real propagation process, we

innovatively divide the propagation process and use the

Hawkes process to simulate different parts of the propagation

process separately to obtain the improved Hawkes process.

Compared with the Hawkes process, in terms of data, the

improved Hawkes process overcomes the drawback that the

Hawkes process cannot fit the non-smooth peaks and makes

the simulation process fit the real propagation process to the

maximum extent. In a practical sense, it takes into account the

heterogeneity of users and portrays the pattern characteristics of

the propagation process, which is important for us to understand

and grasp the intrinsic nature of the propagation process.

The improved Hawkes process that we propose has the

following advantages in modeling the propagation process:

(1) Unified capability: Information propagation is a stochastic

process whose intensity varies with time. Moreover, there are

FIGURE 7
Box plots of simulation errors of tweet (a), (b), (c), and (d). The left figure corresponds to the box plot of simulation error of tweet (a), and the right
figure corresponds to the box plot of simulation error of tweet (b), (c), (d) respectively. The distribution of the intensity error of tweet (a) simulated by
the improved Hawkes model ranges from 0.1 to 0.3, with a mean value of about 0.2; the distribution of the simulation error of tweet (b) ranges from
0.1 to 0.2, with a mean value of about 0.1; the distribution of the simulation error of tweet (c) ranges from 0.1 to 0.4, with a mean value of about
0.26; for tweet (d), which has more burst peaks in the information propagation, the simulation error is enlarged, and it is mainly concentrated
between 0.1 and 0.4, but the simulation error still maintains the mean value of 0.35. The stage on the left side of the vertical dashed line and the
prediction stage on the right side.
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a few “super spreader” in the communication process, and

their retweets can significantly change the trend and heat of

information dissemination, so the real propagation process is

non-stationary. By using the improved Hawkes process to

build amodel, the non-smoothness of the real communication

process is depicted, and the stationary and bursty parts during

propagation are simulated, respectively, resulting in more

accurate description of the propagation process.

(2) Flexibility and scalability: The improved Hawkes process

considers the random outbursts in the propagation process.

Moreover, it simulates and predicts the varying density and

outbursts through the four steps procedure: “divide→
simulate→ combine→ check”.

(3) Practicality: By controlling the participation of detected

“super spreaders” in the propagation process, the

dissemination of information can be facilitated or

inhibited; the improved Hawkes model has a high

prediction rate for the trend of the propagation process

and the information outburst, which is conducive to the

identification of information outburst, timely detection of

abnormalities, and scientific intervention.

(4) Simplicity: It only needs three model parameters, and then

the propagation process can be simulated and predicted.

Experimental results and analysis

The effectiveness of the improved Hawkes model is validated

in this section. Moreover, the evaluation index is defined to test

the effectiveness of our improved model. Finally, the prediction

ability of the improved Hawkes model for the information burst

phenomenon is discussed and compared with the standard one.

FIGURE 8
Prediction results of the real propagation model and the improved Hawkes model. Panel (A), (B), (C), and (D) corresponds to the prediction
results of tweet (a), (b), (c), (d) respectively.
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1. Input: input the time point of each retweet in the

real propagation process:{ti, i � 1 . . .N};
2. Model the propagation process with an exponential

kernel Hawkes process to obtain simulated event

points:{t̂i , i � 1 . . .N};
3. Preliminary check simulation effect: check the

current simulation situation, whether the basic

pattern of the propagation process and the highest

peak value can be simulated, if it fails, go to step

3, if it passes, go to step 6;

4. Divide data: If the current model does not simulate

the mode and peak of the propagation process, the

data will be divided by the peak that can be

simulated, and the propagation will be divided

into the superposition of two propagation

processes {t1i , i � 1 . . .N1}, {t2i , i � 1 . . .N2}, and if the

data has been divided, the part containing the

highest peak value will be divided in priority;

5. Simulate the propagation process respectively,

and the parameters are estimated by maximum

likelihood method for the divided data, and the

simulation points are generated by model

simulation{t̂1i , i � 1 . . .N1}, {t̂2i , i � 1 . . .N2};
6. Combine process: Combine simulation points to

generate propagation process {t̂11,
. . . t̂1i . . . , t̂1N2 , t̂21 , . . . , t̂2j, . . . t̂2N2 , i � 1 . . .N1 , j � 1 . . .N2, . . .}

, and then go to step 2;

7. Output: Output the parameters of the model and the

simulated propagation process.

Algorithm 1 Improved Hawkes model simulation propagation process.

Evaluation index

In order to analyze the improved Hawkes model and the

simulation algorithm, an evaluation index of model fitting, APE

(Absolute Percentage Error) is introduced in the SEISMIC model

constructed by Zhao et al. as a metric to evaluate the fitting degree of

themodel to the final popularity count [18]. APE is defined as follows:

APE(W,T) � |R̂∞(w, t) − R∞(w)|
R∞(w) , (4)

where R is the number of retweets, and Eq. 4 is the ratio of the

absolute error of the final number of retweets to the true value,

that is, the relative error of the number of retweets.

When simulating the propagation process, the most direct

way to test the simulation effect is to consider the average

intensity of propagation. Here. the error of the model

simulation is defined according to the same pattern as APE,

and the final retweet numbers are replaced by the average

intensity of the propagation process for further accurate

measurement of the simulation effect. The average intensity of

the real propagation process is as follows:

�λ � R∞
T
. (5)

The average intensity of the simulated propagation process is

as follows:

�̂λ � R̂∞
T̂
. (6)

Simulation error is defined as follows:

Error �

∣∣∣∣∣∣∣R∞
T − R̂∞

T̂

∣∣∣∣∣∣∣
R∞
T

�
∣∣∣∣∣∣�̂λ − �λ

∣∣∣∣∣∣
�λ

. (7)

Error represents the error of the simulation, which is actually

relative error of intensity. Here, R∞ is the actual final retweet

count, T is the actual propagation duration of tweet, R̂∞ is the

model’s estimate of final retweet count, and T̂ is the model’s

estimate duration of tweets.

Model simulation experiment

The purpose of simulation experiments is to evaluate

whether the improved Hawkes model can fit the real

information propagation process and simulate different

patterns of information propagation. Algorithm 1 is applied to

simulate the four selected representative tweets, and Figure 5

TABLE 3 Predicted peaks of the propagation process.

Information Actual number of
peaks in the
prediction stage

Hawkes model prediction Improved Hawkes model prediction

Probability of
occurrence
of peak (probability
of number > 0)

Average number of
occurrence of peak

Probability of
occurrence
of peak (probability
of number > 0)

Average number of
occurrence of peak

(b) 1 0.44 0 0.78 3

(d) 9 0.84 2 0.92 4

The number of occurrences of peaks is taken as the largest integer not greater than the value.
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shows the fitting results by the improved Hawkes model. Tweet

(a) needs no division, and the peak of information can be

simulated by Hawkes model. (b), (c) and (d) are divided once.

Parameters for the four empirical sequences are shown in

Table 2.

The improved Hawkes model can better describe the overall

trend and represent the fluctuations in the propagation process.

In addition, our model can simulate the bursts of information

propagation. (b), (c), and (d) in Figure 4 are the results of

simulating with two sub-models after one division, that is,

there are peaks in the information propagation process that

cannot be fitted by standard Hawkes model. It can be seen

that almost all the peaks appear during the propagation of

(b), (c), and (d) are simulated by the improved Hawkes

model, and the rising and falling patterns of the peaks can be

well simulated.

Accuracy and stability of model simulation

For the model simulation results, it is described from two

aspects of simulation accuracy and simulation stability.

Simulation accuracy can be reflected by the numerical value

of the simulation error. The smaller the error value is, the closer

the simulated average propagation intensity is to the real average

intensity, the more the simulated propagation process fits the real

propagation process, the higher the simulation accuracy. The

stability of the simulation can be described by the fluctuation

range of the simulation error, the larger the fluctuation range of

the error, the greater the difference in the simulation effect, the

higher the instability of the simulation.

In order to measure the simulation effect of the improved

Hawkes model and compare it with standard Hawkes model,

100 simulations were performed for tweets (a), (b), (c), and (d)

based on standard Hawkes model and the improved Hawkes

model, respectively, where (a) does not need to be divided and

does not need the improved Hawkes. The simulation errors of

the four tweets are calculated, and the error scatter plots

(Figure 6) and box plots (Figure 7) of the four tweets are

plotted to evaluate the simulation accuracy and simulation

stability, and the dashed lines in Figure 6 are the mean error

values.

From Figures 6, 7, it is shown that the simulation error of the

improved Hawkes model is smaller, the simulated intensity is

close to the real value, the fitting accuracy is higher, and the

fluctuation range is smaller, so the simulation stability is higher.

Moreover, the improved Hawkes model effectively improves the

simulation effect and stability of the information propagation

process with burst peaks, especially in the case with Tweet (d).

From the error analysis, it can be seen that the improved

Hawkes model can simulate different information propagation

processes with higher accuracy and stability, and for the

information propagation process where the burst phenomenon

occurs, the improved Hawkes model has a better simulation

effect and better robustness compared with Hawkes model.

Model prediction experiments and
discussion

In order to evaluate the prediction ability of the improved

Hawkes model and test its application in real life, four

information propagation processes are predicted. The data of

the first 50 time intervals of the propagation process are used as

the learning stage to learn the model parameters using the

maximum likelihood estimation method, and the later time is

used as the prediction stage to compare with the predicted

propagation process generated by the model. Figure 8 gives

the comparison of the true propagation pattern of the four

tweets with the predicted results, with the learning.

In addition, the difference between the improvedHawkesmodel

and the Hawkes model lies in its simulation of peaks in the

propagation sequence. In order to test the prediction ability of

the improved Hawkes model for peaks, the occurrence of

information peaks in the prediction stage and the number of

occurrences are predicted. The 90 percentile of retweets count

per unit time interval in the learning stage is taken as the

information peak threshold, and the retweet count greater than

this threshold is regarded as a peak. After testing, two of them, b and

d, the real propagation process of information appeared in the

prediction stage with information peaks, and Table 3 gives the

results of 50 times of prediction peaks by Hawkes model and

improved Hawkes model.

The improved Hawkes model can quickly learn and accurately

predict the propagation trends and fluctuations. The information

peaks and small fluctuations are well fitted. In the prediction stage,

the improved Hawkes model predicted the subsequent development

patterns of the tweet based on the learning results, in which the

smooth fluctuations in the later part of (a) and (c) and the peaks

appearing in the later part of (b) and (d) are predicted.

The improved Hawkes model can predict the peaks in the

propagation process with higher accuracy compared to the

Hawkes model. The results in Table 3 show that, compared

with the standard Hawkes model, in terms of peak occurrence

probability, the improved Hawkes model is more accurate in

predicting peak occurrence if a peak occurs in the subsequent

stages of information propagation. In terms of the count of peak

occurrences, the improved Hawkes model predicted more peaks

than the Hawkes model which means it is more sensitive in terms

of early warning.

Conclusion and discussion

Aimed at mining the propagation law, this study starts from

analyzing the real propagation data, gives the micro and macro
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characteristics of the propagation process, and then constructs

the improved Hawkes model, focusing on the pattern and

explosion phenomenon of the propagation process.

It is found that the direct forwarding relationship among

users reflects the connection between users, and the number of

users being directly forwarded reflects the influence of users,

showing great heterogeneity among users. This is the main

reason for the information explosion phenomenon is that

people with high influence forward information. After

selecting four representative tweets according to the classical

propagation pattern, an improved Hawkes process is established

to quantify the evolving patterns, which is an effective and

quantitative propagation model that accurately and concisely

describes the information propagation process.

However, regarding the construction of the propagation

model, the exponential kernel adopted here is a simple case of

point processes. In real life, the situation may not be

homogeneous, and the intensity is not necessarily

exponentially decaying, which needs further investigation.
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