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We propose a newmethod to convert individual daily trajectories into token time

series by applying the tokenizer “SentencePiece” to a geographic space divided

using the Japan regional grid code “JIS X0,410.” Furthermore, we build a highly

accurate generator of individual daily trajectories by learning the token time series

with the neural language model GPT-2. The model-generated individual daily

trajectories reproduce five realistic properties: 1) the distribution of the hourly

moving distance of the trajectories has a fat tail that follows a logarithmic

function, 2) the autocorrelation function of the moving distance exhibits

short-time memory, 3) a positive autocorrelation exists in the direction of

moving for one hour in long-distance moving, 4) the final location is often

near the initial location in each individual daily trajectory, and 5) the diffusion of

people depends on the time scale of their moving.
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1 Introduction

Big data on individual daily trajectories is important for addressing issues involving

disasters, terrorism, public safety, infectious diseases, spatial segregation, marketing, and

traffic congestion. By analyzing big data on human mobility, we can detect the causes of

traffic congestion [1] and find efficient traffic control strategies to balance economic

activity with infection control [2]; [3]; [4]. We are also able to monitor the evacuation of

people in natural disasters and mass protests through telecommunication providers [5];

[6]. By developing models that satisfy the statistical properties of trajectories, we can

simulate changes in urban mobility in the presence of new infrastructure, the spread of

epidemics, terrorist attacks, and international events such as an Expo [7]; [8]; [9,10]. In

addition, generative models are valuable for protecting the geo-privacy of trajectory data

[11]; [12]; [13]. While it is difficult to control the trade-off between uncertainty and utility

when disclosing real data, synthetic trajectories that preserve statistical properties have the

potential to achieve performance comparable to real data on multiple tasks.

The modeling of human mobility can be classified into four types [14]. The first is the

Trajectory Generation model that generates realistic individual spatial-temporal trajectories

[15]; [16]; [17]; [18]; [19]. The purpose of this model is to generate realistic individual

trajectories for ordinary and extraordinary days. This model is also required to reproduce

trajectories from home to destination and from destination back to home. The second type is

the Flow Generation model that generates realistic Origin-Destination matrices [20]; [21];
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[22]. Thismodel is often used to find the relationships between POIs

(Points of Interest) and human mobility networks. The third is the

Next-Location Prediction model that predicts an individual’s future

location [23]; [24]; [25]; [26]; [27]; [28]; [29]; [30]; [31]; [32]; [33].

This type is developed by inputting weather, transportation, and

other factors to the model to capture the spatiotemporal patterns

that characterize human habits. The fourth type is the Crowd Flow

Prediction model that predicts in/out aggregated crowd flows [34];

[35]; [36]; [37]; [38]; [39]; [40]; [41]; [42]; [43]; [44]; [45]; [46]; [47].

This type is used to understand the relationship between external

factors such as weather, weekly and daily cycles, and events (e.g.,

festivals) and the flow network structure. This research is also

classified as the first type, i.e., Trajectory Generation modelling,

but it also has the ability to predict Next-Location.

Both physics and machine learning approaches have been

taken to develop generativemodels. The physics approach includes

the gravity model, the preferential selection model, the Markov

chain, and the autoregressive model (e.g., ARIMA) [48]; [49].

While these models are simple and intuitive, they have limitations

in generating realistic individual trajectories. On the other hand,

machine learning approach includes language models and

autoregressive-type neural networks [14]; [50]. This approach

generates highly realistic individual trajectories by building

complex models with many parameters. In this study, we build

a model to generate the individual daily trajectories using GPT-2

[51], one of the Transformer models that is becoming a successful

alternative to Recurrent Neural Network in natural language

generation. This model inputs the initial locations in the

morning (e.g., around the home) and then outputs the

individual daily trajectory (e.g., coordinates of the route taken

by public transportation to a sightseeing spot, sightseeing and

eating, and then returning home).

To apply language models such as GPT-2 to individual

trajectories, we need to index the locations as words [14]. We

utilize the Japan regional grid code “JIS X0410” for location

indexing [52]. This code consists of several subcodes. The first-

level subcode represents the absolute location of each grid, where

geographic space is divided into squares with a latitude difference of

40 min and a longitude difference of 1 degree. Each grid is divided

recursively until the desired resolution is achieved. The second-level

and higher subcodes represent relative locations within a divided

grid. We do not need a huge number of unique subcodes, even

when the geographic space is large and the resolution is high. We

can index many locations with subcode combinations. The grid

subcodes, codes, and trajectories (i.e., grid code time series)

correspond to characters, words, and sentences in natural language.

In language models such as GPT-2, the introduction of

subwords between words and letters, such as “un” and “ing”,

increases the accuracy of text generation. Words, subwords, and

characters are called tokens, and the process of identifying tokens

from text is called tokenization. Using tokenizers such as

“SentencePiece” [53]; [54], we can find frequent combinations of

subcodes from individual daily trajectories expressed by “JIS X0410,”

such as major substrings. To apply GPT-2 to individual trajectories,

we propose a new method to convert individual daily trajectories

into token time series by applying the tokenizer “SentencePiece”.

Trajectory generation requires capturing the temporal and

spatial patterns of individual human movements simultaneously.

A realistic generative model should reproduce the tendency of

individuals tomove preferentially within short distances [55]; [56],

the heterogeneity of characteristic distances [55]; [56] and their

scales [57], the tendency of individuals to split into returners and

explorers [58], the routinary and predictable nature of human

displacement [59], and the fact that individuals visit a number of

locations that are constant in time [60].

Subsequent sections are organized as follows. Section 2

introduces big data on individual daily trajectories for training

the model. Section 3 describes the proposed methods: a geospatial

tokenizer based on SentencePiece and the GPT-2 individual daily

trajectory generator and its comparative models. Section 4 presents

the results. We show the statistical spatial-temporal properties that

the model-generated individual daily trajectories must satisfy, and

we discuss the accuracy of themodels for predicting an individual’s

future location. Section 5 offers our conclusions.

2 Data

We used the minute-order location data (280 million logs)

from a total of 1.7 million smartphones (about 28,000 per day) that

passed through the Kyoto Station area (Shimogyo-ku, Kyoto) in

November 2021 and January 2022, provided by Agoop Corp [61].

Kyoto is one of the most famous tourist destinations in Japan, and

many people from all over Japan visit Kyoto for sightseeing.

Location information includes latitude and longitude. GPS

accuracy depends on the smartphone model and the

communication environment, but it is usually within 20 m. We

coarsened each trajectory to a 250-m grid and 30-min order using

a sliding 1-min window. This sliding window converts 1.7 million

trajectories with a 1-min time resolution to 51 (= 1.7 × 30) million

trajectories with a 30-min time resolution. By removing the home

grid for each user, we protected geo-privacy and focused only on

the trajectory when the user is out of the home. The total number

of daily trajectories of individuals who have been out of their

homes for over 10 h is 8.4 million time series.

We indexed each location at 250-m grid resolution using the

Japan regional grid code “JIS X0410” (see Appendix A for the

definition) [52]. The region analysed in this paper is Japan, but if

a region outside of Japan were targeted, the extended JIS

X0410 [62] would be used. The Japan regional grid is a code

given when subdividing Japanese landscape into rectangular

subregions by latitude and longitude. A grid code is

represented by a combination of five subcodes, such as “5235/

36/80/2/3”. The first-level subcode (e.g., 5235) is a four-digit

number representing a unique location enclosed by a square with

a 40-min difference in latitude and a 1-degree difference in
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longitude. In Japan, the land areas can be represented by using

176 first-level subcodes, which covers the whole country. The

second-level subcode (e.g., 36) is a two-digit number indicating

the area created by dividing the first-level grid into eight equal

areas in the latitudinal and longitudinal directions. The third-

level subcode (e.g., 80) is a two-digit number describing the area

obtained by dividing the second-level grid into ten equal areas in

the latitudinal and longitudinal directions. The fourth-level

subcode (e.g., 2) bisects the third-level grid by latitude and

longitude. The fifth-level subcode (e.g., 3) bisects the fourth-

level grid by latitude and longitude. The length of one side is

about 250 m. In total, about 18 million unique grid codes on land

in Japan, at a resolution of 250 m, can be represented by

combinations of only 348 subcodes from the first to the fifth level.

Travel from Kyoto station “5235368023” to Kiyomizu

Temple “5235369224” can be described in subcode time series,

such as “5235/36/80/2/3/_/5235/36/92/2/4/”. We apply the

language model GPT-2 to the generation of individual

trajectories by corresponding regional grid codes to words,

subcodes to characters, and trajectories represented by grid

time series to sentences.

3 Methods

First, to apply GPT-2 to individual trajectories, we build a

geospatial tokenizer to identify tokens derived from the

individual trajectories expressed by grid codes. Next, we

introduce four models that generate individual daily

trajectories: GPT-2, 2-g, 3-g, and Multi-Output Catboost.

3.1 Geospatial tokenizer

Tokenization is a way of separating a piece of text into

smaller units called tokens. Tokens can be either words,

characters, or subwords. Tokenization is essential for a

language model to efficiently learn the structure of a natural

language from a given text. For example, the Oxford English

Dictionary contains approximately 600,000 English words. Here,

we consider the case in which all tokens are words. Statistically

estimating the probability of a word wj occurring after a word wi

from the given finite text is difficult because the combinatorial

explosion of words occurs. In particular, it is nearly impossible to

estimate the probability of rare word combinations. One way to

solve this problem is to introduce subwords, which are

decomposed words in natural language processing. Words are

often composed of subwords, such as “un-relax”, “relax”, “relax-

es”, “relax-ed”, “relax-ing”, and “un-relax-ed”. Rare words often

consist of a combination of common subwords. By setting the

subwords to tokens, we can often statistically estimate the

probability that a sentence containing the rare word wj will

occur, based on the subword-combination probability.

One of the tokenizers that automatically identifies subwords

from a given text is SentencePiece [53]; [54]. In a given text,

SentencePiece assumes that a subword of string cicj exists if the

joint probability p (ci, cj) of strings ci and cj is statistically

significantly higher than the combination probability p (ci)p (cj).

This method finds subwords such as “un”, “es”, “ed”, “ing”, etc.

Tokens in SentencePiece are subwords and characters, and this

tokenizer decomposes text into a minimum number of tokens.

We apply SentencePiece to individual trajectories represented by

grid time series. First, as a technical process, we make a “Grid

subcode from/to byte-character translation map” by assigning a

unique byte character to each subcode. For example, the subcodes

5235/36/36/2/3/are converted to the byte characters ß/ _I/�e/A/1. Note

that we have assigned different byte characters to “36” in the second-

level subcode and “36” in the third-level subcode because they have

different meanings. Then, using SentencePiece, we set all 348 byte-

characters (1st level: 176, 2nd level: 64, 3rd level: 100, 4th level: 4, 5th

level: 4) and frequent byte-character combinations (i.e., frequent

byte-subwords) to tokens for the Japanese land area until the total

reaches 50,000 tokens. Such an algorithm for finding byte-subwords

is called “Byte Pair Encoding”. We used 42 GB of GPU memory for

50,000 tokens. The maximum number of tokens could be increased

depending on available GPUmemory. The finding of p (ci, cj), which

is statistically significantly higher than p (ci)p (cj), depends on the

sample size. Densely populated areas are visited by many people, so

the sample is concentrated. Hence, for trajectories through densely

populated areas, tokens with byte-subwords are frequently chosen.

Finally, we add a comma token “,” to a temporary return

home and a period token “.” to the last return home each day.

This geospatial tokenizer based on SentencePiece transforms the

grid code time series into a token time series as follows.

Grid code time series: . . ._/5235149412/_/5235034923/

_/5235030422/. . .

to

Grid subcode time series: . . ._/5235/14/94/1/2/_/5235/03/49/

2/3/_/5235/03/04/2/2/. . .

to

Byte-character time series:

. . . _/ß/k
_
/�ι/C/3/_/ß/Ĵ/�A/A/1/_/ß/Ĵ/ _E/A/3/ . . .

to

Token time series: . . . /_ßk
_
�ιC/3/_ßĴ�AA/1/_ßĴ _EA/3/ . . .

3.2 Individual daily trajectory generator

We randomly split the 8.4 million individual daily

trajectories explained in the Data section into a 4:1 division,

under the constraints that the same user is not split. We use 4/5 to

build machine learning models and the remaining 1/5 to

compare the statistical properties and prediction accuracy

between the original and model-generated trajectories. In all

models, the split rate is common.
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GPT-2 is one of the transformer models of deep neural

networks that has multiple Transformer layers consisting of Self-

attention and Projection layers. Another well-known transformer

model is BERT [63]. By using attention in place of previous

recurrence- and convolution-based architectures in natural

language generation tasks, the transformer models are becoming

successful alternatives to RNNs (Recurrent Neural Networks) and

CNNs (Convolutional Neural Networks). GPT-2 is an

autoregressive model in neural networks that can sequentially

predict the next token from the previous token, i.e., the next

location from the past locations, by referring only to the input

token sequence prior to the position to be processed in the

Transformer layers. Using the geospatial tokenizer, we convert

the grid codes obtained from the input location coordinates (or the

input grid codes) into byte characters according to the translation

map, and then tokenize their byte characters. By inputting these

tokens into GPT-2, the GPT-2 recursively generates next tokens.

The generated tokens are then reversely converted into grid codes

according to the translation map. Through these processes, an

individual daily trajectory is generated (See Appendix B for a

concrete example). In this paper, we use GPT-2 SMALL

proposed by OpenAI, which consists of 12 attention heads and

12 transformer layers as well as 768 dimensions of the embedding

and hidden states [51]; [64]. Other hyperparameters are also given

with default values. The learning time is about 90 h on oneNVIDIA

RTX A6000. Figure 1 shows the training and validation losses for

each iteration. We used the cross-entropy loss function. Training

and validation losses at epoch = 10 are 1.74 and 1.98, respectively.

We introduce three non-neural network models to compare

with GPT-2 on the accuracy of generating individual daily

trajectories. The first is a 2-g model described by a first-order

Markov chain as follows:

Pr Xt � x|Xt−1 � xt−1, . . . , X1 � x1, X0 � x0( )
� Pr Xt � x|Xt−1 � xt−1( ), (1)

where xt is a grid code of the location where a user visited at time

t. The second model is a 3-g model described by a second-order

Markov chain as follows:

Pr Xt � x|Xt−1 � xt−1, . . . , X1 � x1, X0 � x0( )
� Pr Xt � x|Xt−1 � xt−1, Xt−1 � xt−1( ). (2)

Conditional probabilities in these n-gram models are

estimated from combinations of grid codes that occur at least

30 times in the given texts for training.

The third model is Multi-Output Catboost, one of the multi-

regression trees with gradient boosting [65]; [66]; [67]. Multi-

Output CatBoost is an extension of supervised machine learning

with decision trees. In the multi-regression analysis using a

decision tree, the multidimensional space of the explanatory

variables is divided by the decision trees, and a multi-regression

model is constructed to predict representative values such as the

average value of the objective variables in each divided area. The

learning is performed so that a loss function such as theMulti Root

Mean Squared Error (MultiRMSE) of the training data is

minimized. In this study, we build a Multi-Output Catboost

model that predicts the location vector vt = (longt, latt) defined

by latitude and longitude at time t on a given day from t location

vectors from time 0 to time t − 1 as follows:

vpt � f vt−1, . . . , v1, v0( ), (3)

where v* is the location vector predicted by the model. In this

study, the unit of time resolution is 30 min, and the

maximum of t is 20. Five locations are set for the initial

2.5 h on the initial individual trajectory. That is, the range of t

in the prediction is 5 ≤ t ≤ 20. We use 16 (= 20–5 + 1) Multi-

Output Catboost models to predict the location vector. We

used the official CatBoost Python package [67]. In learning,

we used default values for each hyperparameter: MultiRMSE

as loss function, maximum number of trees at 1,000, and

depth of tree at 6. Other hyperparameters are also given with

default values. The final training loss and validation loss for

the model predicting the location at t = 5 are 0.2638 and

0.2662, respectively. In the case at t = 20, the losses are

0.222 and 0.219, respectively.

4 Results

First, we plot a typical example of the trajectories generated

by each model on a map to intuitively understand the

characteristics of those trajectories. Next, we statistically

clarify the similarities and differences between the

characteristics of the original and model-generated

trajectories. Finally, we evaluate the performance of the

FIGURE 1
(□) Training and (A) validation losses of GPT-2.
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models in predicting the individual daily trajectories. GPT-2

improves prediction accuracy by fine tuning.

4.1 Typical output examples

Figure 2A shows an example of the input and output

locations of the GPT-2 trajectory generator. In this example,

sixteen grid codes were output from the generator by inputting

the following five grid codes. Wemanually verified that these grid

codes are in the following locations on the OpenStreetMap.

Input: Three locations around Osaka Castle → Daito

Tsurumi IC (Kinki Highway) → Katano Kita IC (Daini

Keihan Highway)

Output of GPT-2: Ritto IC (Meishin Highway) → five

locations in downtown Kusatsu → five locations at the AEON

FIGURE 2
Examples of model-generated individual daily trajectories from the same input: (A)GPT-2, (B) 2-g, (C) 3-g, (D)Multi-Output Catboost. Blue and
red icons represent inputs and outputs, respectively. The maps were created using OpenStreetMap.
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shopping mall in Kusatsu → Otsu City Hall → one location in

downtown Kusatsu → Kyoto Station → Osaka Station → one

location around Osaka Castle.

The trajectory generated by GPT-2 is very different from a

random walk and is human-like. In long-distance moving,

expressways and bullet trains are used, and the location

coordinates at 30-min intervals are spatially sparse due to the

high moving speed. Landmarks and commercial areas are chosen

as destinations, where people stay for a long time. They leave in

themorning and return in the evening. The same route is likely to

be chosen for the outbound and inbound trips.

We input the same five initial grid codes as the GPT-2

trajectory generator into the 2-g, 3-g, and Multi-Output

Catboost trajectory generators. Figures 2B,C,D show each of

the sixteen outputs generated sequentially by the generators.

Output of 2-g: Fushimi-Momoyama Castle Athletic Park→
Kyoto Station→Mt. Hiei Sakamoto Station→Mt. Hiei cable car

→ Enryakuji Temple on Mt. Hiei → one location around Mt.

Hiei Sakamoto Station → two locations around Horikawa Gojo

→ eight locations around Kitayama Omiya.

Output of 3-g: Kyotanabe TB (Second Keihan Highway) →
one location around Fushimi → Nishioji Gojo → Enmachi

Station → Horikawa Kitaoji → Kamogawa Junior High School

→ Nishimarutamachi→ Oguraike IC (Second Keihan Highway)

→ Higashi-Osaka City → Kashiba City → Kashihara City →
Yamatokoriyama City → Momoyama → Keihan Ishiyama →
two locations around Ritto City.

Output of Multi-Output Catboost: Kugayama →
11 locations around Shimotoba → Yoko-oji → Oyamazaki

JCT (Meishin Highway) → Kaminomaki area → southern

Takatsuki City.

Typical output examples of these models do not reproduce

the return home. In the example of the 2-g model, the generated

locations are trapped in a specific area and cannot get out of their

area. In n-grams, we cannot statistically estimate the probability

of the occurrence of rare trajectories that would escape from the

trap because the combinatorial explosion in the number of

solutions is unavoidable. In this paper, GPT-2 avoids this

problem by using geospatial tokens. In the example of the 3-g

model, inefficient moving trajectories are generated, such as

multiple trips going back and forth. This phenomenon means

that the memory length of past trajectories is not sufficient in 3-g

to generate realistic individual trajectories. In GPT-2, we have

1,024 tokens in the default setting, which is a sufficient memory

length. Because GPT-2 memorizes the initial location, it can

generate trajectories back to that location. In the example of

Multi-Output Catboost, the generated location is often far from

landmarks and major roads. Catboost adopts a bagging method

that averages the predicted coordinates of multiple regression

trees. If different regression trees predict different destinations,

the output will be their intermediate coordinates. For example, if

xi or xj is the destination, Multi-Output Catboost will predict that

the intermediate location between them is the destination. In this

paper, we do not adopt the bagging method in GPT-2. Instead,

we adopt the greedy method to sequentially generate destinations

with the highest probability.

4.2 Statistical properties of individual daily
trajectories

We investigated the statistical properties of the model-

generated individual daily trajectories following five types of

statistics: 1) Distribution of moving distance, 2) Auto-

correlation of moving distance, 3) Relationship between

moving distance and next moving angle, 4) Recurrence

probability to initial location, and 5) Diffusion coefficient of

people. We measure the distance between two points with the

shortest distance on the surface of the Earth’s ellipsoid model

WGS84 [68]. The inputs for each model are five locations for the

initial 2.5 h in the original trajectory.

For the first type of statistics, the moving distance

distribution, Figure 3 shows the cumulative probability

distribution of the hourly moving distance in a straight line

for the original and model-generated trajectories. Note that the

horizontal axis is on a logarithmic scale. The distribution of

original trajectory is approximated by a logarithmic function

where its R2 is 0.995. Individuals tend to prefer moving within

short distances. Half of all moved distances are less than 4 km.

Using Jensen-Shannon divergence with the base-2 logarithm,

DJS, we measure the similarity of the distance distributions

between the original and each model-generated trajectory. For

2-g, 3-g, Catboost, and GPT-2, DJS is 0.0037, 0.0064, 0.030, and

0.049, respectively. DJS ~ 0 means that these models reproduce

the statistical property in which the distribution of the hourly

moving distance follows a logarithmic function as in the original

trajectories.

The second type is the autocorrelation function of a 30-min

moving distance. Note that this minute dimension is not spatial

but temporal. As shown in Figure 4, since the original

autocorrelation function decays exponentially, the dynamics of

the original movement follow a short-term memory process. The

3-g and GPT-2 models reproduce autocorrelations that follow an

exponential function. On the other hand, Catboost is less

reproducible.

The third type of trajectory is the relationship between

moving distance and next moving angle. Most people move

toward their destinations and thus are not random walkers. In

Figure 5, we show the relationship between the distance |Xt| of

hourly moving vector Xt = (xt − xt−1) and the cosine of the

moving vectors as follows:

cos θ � XtXt+1
|Xt‖Xt+1|, (4)

where xt is a position vector representing location coordinate at

time t.
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In the original trajectories, for moving less than 10 km per

hour, the conditional mean of next moving angle is 〈 cos θ||Xt| <
10 km〉≃ 0. On the other hand, the conditional mean is positive,

〈 cos θ||Xt|≥ 10 km〉 > 0, for a moving of more than 10 km per

hour. If the distance to the destination is less than 10 km, people

can arrive within an hour. On the other hand, if the destination is

more than 10 km away, people may not be able to arrive within

one hour. In that case, they continue to move toward their

destination over the next hour. Figure 5 illustrates these

characteristics of human mobility, which can only be

reproduced by the GPT-2 and 3-g models.

The Fourth type of statistics is the recurrence probability to the

initial location. Most people leave their homes in the morning to go

to their destinations and return home after completing their errands

at these destinations. In this trajectory dataset, the coordinates are

recorded when the smartphones are more than 100 m away from

the homes. Therefore, in many cases, the initial coordinate of the

daily trajectory is around the home or place of staying. We show in

Figure 6 the recurrence probabilities within 3 km of the initial

coordinate for the 5 h until the final time (i.e., homecoming

time) of the individual daily trajectory. On the original

trajectories, the recurrence probability increases from 2 h before

the final time. Only GPT-2 reproduces this property.

As the fifth type of statistics, we investigated the time-scale

dependent properties of trajectories by observing the diffusion

coefficients of people. In Figure 7, we plot the elapsed time from

the initial time (i.e., time scale) on the horizontal axis and the

mean square of the distance from the initial location on the

vertical axis. The four plots for the initial 2 h in the left side of the

figure are initial values of the models, so they are common to the

original and the model-generated trajectories. If the individual

trajectory follows a two-dimensional random walk, the mean of

squares is proportional to the time scale. If people linearly move

away from the initial locations, the mean of squares is

proportional to the square of the time scale. The slope of this

power-law relationship is the diffusion coefficient of people. The

FIGURE 3
Distribution of hourly moving distance in a straight line for (□) original trajectory and trajectories generated by (▲) 2-g, (▼) 3-g, (•) Multi-Output
Catboost, and (A) GPT-2 models. Dashed line represents the logarithmic function. R2 is 0.995.

FIGURE 4
Autocorrelation function of 30-minuts moving distance for
(□) original trajectory and trajectories generated by (▲) 2-g, (▼) 3-
g, (•) Multi-Output Catboost, and (A) GPT-2 Models. Dashed line
represents the exponential function. R2 is 0.9919.
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diffusion coefficient of the original trajectories is around 2 until

the 4-h time scale and around 1 over the 4-h time scale. These

results suggest that the upper limit of moving time from home to

destination for Kyoto tourism is about 4 h. The 3-g, Catboost,

and GPT-2 models successfully reproduce the properties of

people’s diffusion.

4.3 Prediction accuracy

We confirmed the predictive performance of the GPT-2, N-gram,

and Multi-Output Catboost models for individual daily trajectories

using test data not used for training. Five initial coordinates for 2.5 h

were input to predict the coordinates for the next half hour, one hour,

two hours, four hours, and the final time (i.e., homecoming time) of

the individual daily trajectory. The probability that the prediction is

within 1 km (10 km) of the actual location coordinates is shown in

Table 1. For all forecasts, GPT-2 outperforms the other models.

Especially for the last location of the day,we could confirm thatGPT-2

is eight times more accurate than the other models.

4.4 Fine-tuning GPT-2

Many tourists visit the best places to enjoy viewing the

autumn leaves. The autumn leaves season is short in Kyoto,

only about two weeks. In 2021, the weekend of November 27 and

28 was the best time to see the autumn leaves. With only two days

of modeling targets, it is difficult to collect enough orbital data for

the model to learn the characteristics of trajectories from zero. By

fine-tuning the GPT-2 parameters learned in the previous section

with the trajectories for November 27 and 28, we upgraded GPT-

2 to generate the individual daily trajectories for this weekend.

Table 2 shows a comparison of the prediction accuracy by the

GPT-2 model before and after fine-tuning. To measure this

accuracy, we focused on the probability that the prediction is

FIGURE 5
Relationship between hourly moving distance and next moving angle for (□) original trajectory and trajectories generated by (▲) 2-g, (▼) 3-g, (•)
Multi-Output Catboost, and (A) GPT-2 models. Vertical axis is the conditional mean of the cosine between two consecutive one-hour moves.
Dashed line represents a moving distance of 10 km.

FIGURE 6
Recurrence probability to initial location for the 5 h until the
final time (i.e., homecoming time) of the individual daily trajectory:
(□), (▲), (▼) original, 2-g, 3-g, (•) Multi-Output Catboost, and (A)
GPT-2 generated trajectories. Time = 0 represents the final
time.
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within 1 km (10 km) of the actual location coordinates for the

next half hour, one hour, two hours, four hours, and the final

time (i.e., homecoming time) of the individual daily trajectories

for November 27 and 28. We could significantly improve the

accuracy of trajectory prediction on given days by fine tuning the

GPT-2 parameters.

FIGURE 7
People’s diffusion for (□) original trajectory and trajectories generated by (▲) 2-g, (▼) 3-g, (•) Multi-Output Catboost, and (A) GPT-2 models.
Horizontal axis indicates the elapsed time from the initial time. Vertical axis represents the mean square of the distance from the initial location. The
dotted and dashed guidelines show that the mean square of the distance is proportional to the elapsed time and the square of the elapsed time,
respectively. The four plots for the initial 2 h on the left side are initial values of the models.

TABLE 1 Probability that the prediction is within 1 km (10 km) of the actual location coordinates for the next half hour, one hour, two hours, four
hours, and the final time of the day. We performed 24,247 realizations of each model to estimate the probabilities.

30 min 1 h 2 h 4 h final time
of day

2-g 0.29 (0.67) 0.16 (0.54) 0.073 (0.42) 0.035 (0.33) 0.011 (0.20)

3-g 0.33 (0.75) 0.20 (0.61) 0.11 (0.46) 0.053 (0.33) 0.014 (0.19)

Catboost 0.15 (0.70) 0.070 (0.54) 0.041 (0.45) 0.034 (0.40) 0.016 (0.25)

GPT-2 0.40 (0.82) 0.26 (0.70) 0.16 (0.55) 0.10 (0.43) 0.12 (0.40)

TABLE 2 Probability that the prediction is within 1 km (10 km) of the actual location coordinates for the next half hour, one hour, two hours, four
hours, and the end of the day for November 27 and 28.

30 min 1 h 2 h 4 h Final time
of day

GPT-2 before fine tuning 0.38 (0.82) 0.25 (0.70) 0.15 (0.55) 0.09 (0.43) 0.10 (0.35)

GPT-2 after fine tuning 0.58 (0.90) 0.47 (0.82) 0.35 (0.73) 0.21 (0.58) 0.14 (0.41)
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5 Conclusion

We proposed a method to convert individual daily

trajectories into token time series by applying the tokenizer

SentencePiece to a geographic space divided using the Japan

regional grid code JIS X0410. We could build a highly accurate

generator of individual daily trajectories by learning the token

time series with the neural language model GPT-2. The

model-generated individual daily trajectories reproduced

the following five realistic properties. The first property is

that the cumulative distribution of the hourly moving distance

follows a logarithmic function. The second property is that the

autocorrelation function of the moving distance exhibits

short-time memory. The third property is that there is a

positive autocorrelation in the direction of moving for one

hour in long-distance trips. The fourth property is that the last

location is often near the initial location in each individual

daily trajectory. The fifth property is the time-scale

dependence of people’s diffusion. On larger time scales, the

diffusion is slower. Generators based on n-grams and

Catboost, in particular, could not reproduce the recurrence

probability to the initial location.

We investigated the prediction accuracy of each model for

individual daily trajectories. GPT-2 outperformed the n-gram

and Catboost models. Moreover, we showed that fine-tuning the

parameters of GPT-2 with a part of the individual trajectories on

given days could significantly improve the accuracy of the

trajectory prediction for those days.

Aa a final point, we propose three important tasks to be

tackled in the future. The first task is to generate trajectories that

take into account individual attributes such as gender and age.

Since the neural language model can generate text about a given

category by training both various texts and their text categories,

this method could be applied to the generation of trajectories that

depend on individual attributes. As a second challenge, it is

constructive to develop the next-location predictor that handles

sequences of locations and timestamps. The time resolution used

in this paper is fixed at 30 min, so we do not generate the

temporal dimension (e.g., Fushimi-Momoyama Castle Athletic

Park at 10:00 a.m. → Kyoto Station at 11:15 a.m. → Mt. Hiei

Sakamoto Station at 11:20 a.m.). To generate the temporal

dimension, it is necessary to develop a model that trains both

timestamps and location coordinates. The third task is to

generate collective trajectories. In this paper, we introduce

models in which individuals do not interact with each other.

As part of our future challenges, we plan to develop methods for

models to train the interactions. Generating highly accurate

synthetic trajectories from models would contribute to

fundamental knowledge for such areas as urban planning,

what-if analysis, and computational epidemiology.

FIGURE 8
Grid subcode relationships.
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Appendix A:

In this paper, we utilize the Japan regional grid code “JIS

X0,0410” for location indexing Statistics Bureau, Ministry of

Internal Affairs and Communications [52]. This code consists of

several subcodes, where the first-level subcode represents the

absolute location of each grid, the second-level and higher

subcodes represent relative locations within a divided grid.

The first-level subcode (e.g., 5235) is a four-digit number

representing a unique location enclosed by a square with a 40-

min difference in latitude and a 1-degree difference in longitude,

as shown in Figure 8. Throughout Japan, one side-length of this

square is about 80 km. All land areas in Japan can be represented

using 176 first-level subcodes. The first two digits of the subcode

represent latitude (multiplied by 1.5 and rounded down to the

nearest integer) and the last two digits represent longitude. The

first-level subcode is calculated from the latitude and longitude of

the southwest corner of the grid by

First level subcode � �latitude × 1.5� × 100 + ⌊longitude

− 100⌋.

(A1)
The second-level subcode (e.g., 36) is a two-digit number that

represents the area created by dividing the first-level grid into

eight equal areas in the latitudinal and longitudinal directions.

There are 64 second-level subcodes. The length of one side is

about 10 km. The first digit of the second-level subcode indicates

the direction of latitude and the last digit indicates the direction

of longitude. This is connected to the first-level subcode as

“5235/36”.

The third-level subcode (e.g., 80) is a two-digit number that

represents the area created by dividing the second-level grid into

ten equal areas in the latitudinal and longitudinal directions.

There are 100 third-level subcodes. The length of one side is

about 1 km. The first digit of the third-level subcode indicates the

direction of latitude and the last digit indicates the direction of

longitude. This is connected to the first-level and second-level

subcodes as “5235/36/80”.

The fourth-level subcode (e.g., 2) bisects the third-level grid

by latitude and longitude. The length of one side is about 500 m.

The southwest area is represented as 1, the southeast as 2, the

northwest as 3, and the northeast as 4, as in “5235/36/80/2”.

The fifth-level subcode (e.g., 3) bisects the fourth-level grid by

latitude and longitude. The length of one side is about 250 m. The

southwest area is represented as 1, the southeast as 2, the

northwest as 3, and the northeast as 4, as in “5235/36/80/2/3”.

Appendix B:

We explain how the geospatial tokenizer in section 3.1 and

the GPT-2 in section 3.2. Generate a daily trajectory from the

input initial coordinates. First, as shown in the following

example, we input five initial coordinates (latitude and

longitude) that represent the initial 2.5 h moving trajectory

into the geospatial tokenizer.

(34.716, 135.586)→ (34.696, 135.548)→ (34.697, 135.535)→
(34.695, 135.529) → (34.788, 135.689)

The initial coordinates are converted into grid codes

according to the rules of “JIS X0,410” as follows.

5235045644/_/5235043342/_/5235043242/_/5235043214/_/

5235154531/

The grid codes are converted into byte characters according

to the translation map in the geospatial tokenizer, and then their

byte characters are tokenized as follows.

ßZ/γ/B/2/_ßZδB/3/_ßZλB/3/_ßZλC/2/_ßμξD/4/

These initial tokens are input into the GPT-2 to generate the

next token.

ßZ/γ/B/2/_ßZδB/3/_ßZλB/3/_ßZλC/2/_ßμξD/4/_ΨηαD/
By recursively inputting the initial and generated tokens into

the GPT-2, tokens are generated successively. The GPT-2 stops

the recursion process when the end token “.” is generated.

ßZ/γ/B/2/_ßZδB/3/_ßZλB/3/

× _ßZλC/2/_ßμξD/4/_ΨηαD/1/ . . . ßZωA/4/.

Finally, these tokens are reversely converted into grid codes

based on the translation map.

5235045644/_/5235043342/_/5235043242/_/5235043214/_/

5235154531/_/5236402033/ . . . /_/5235044321/.

These grid codes are output as a generated daily trajectory. In

Figure 2A, we plot the location coordinates of these grit codes. In

Section 4.1, we manually show the location names of these grit

codes.
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