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We study the quantum valley and Hall conductances in silicene coupled to a

ferroelectric (FE) layer. The spin orbit interaction in silicene couples the valley,

pseudospin, and real spin degrees of freedom resulting in a topological Berry

curvature in the system. The finite Berry curvature in turn induces a transverse

Hall conductance. In particular, if the Fermi level Ef is within the bulk energy gap,

the Hall conductance is quantized to integer multiples of π. We study the

quantum spin and valley Hall conductivities (QSH and QVH) as functions of the

applied out-of-plane electric field for different values of Ef and temperature.

Both conductivities vary linearly as 1/|Ef| when Ef is within the conduction or

valence bands but reach a quantized plateau value when Ef is within the bulk

gap. Further, by coupling silicene to a FE layer, the QSH and QVH signals can be

modulated by means of the coupling strength. This can potentially provide a

robust topological memory read-out with distinct binary outputs over a wide

temperature range.
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1 Introduction

Silicene is the silicon counterpart of graphene [1–3]. It consists of a monolayer of

silicon atoms arranged in a honeycomb lattice with a low-buckled structure that can be

described by the Dirac Hamiltonian in pseudospin space [4–6]. Because of its novel

electronic properties such as a Dirac cone structure in its low-energy spectrum and the

quantum spin and valley Hall effects [7–11], silicene has recently attracted much attention

in condensed matter physics, not only for its fundamental scientific significance but also

because of its potential applications in semiconductor spintronics [12–17] and

valleytronics [18–22].

Compared to graphene, silicene has a much larger spin-orbit coupling strength and a

buckled structure. These induce significant coupling between three spin-like degrees of

freedom comprising the real, pseudo, and valley spins [11, 23, 24], the interplay of which

leads to a rich transport behaviour [25–27]. The strong intrinsic spin-orbit coupling

(SOC) in silicene can open a considerable bulk band gap at the Dirac points. Silicene is
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therefore a good candidate material for investigating the

quantum spin Hall state [24, 28]. The coupling of the spin

degrees with momentum (k) leads to a finite topological Berry

curvature or Chern number [9, 29–31] and therefore, a finite Hall

conductivity. This results in a robust topological transport that

has been observed in, for example, topological insulators [32–34],

skyrmions [35–39], and Weyl/Dirac semimetals [40–45]. In

particular, because spin and valley Hall currents can coexist

and flow without dissipation in silicene [46–48], it is possible

to design devices with low power consumption.

In this work, we show how the quantum valley and spin Hall

effects can be obtained and modulated in silicene by exploiting

the interplay between the Rashba SOC and coupling to a

ferroelectric layer (see Figure 1). We study how the Hall

conductivities vary with the out-of-plane electric field,

temperature, and Fermi energy. We show that a large band

gap opening can be induced in the silicene system by varying

the out-of-field electric field Ez to modulate the spin/valley Hall

conductivities. Moreover, a sharp step-like change occurs in the

valley (spin) Hall conductivities when the magnitude of the out-

of-plane electric field exceeds (falls below) the Rashba SOC

strength. The QSH, QVH, and quantum phase transitions are

manifested by the relative strength of the applied electric field

with respect to the SOC strength. This may potentially be utilized

in a topological memory device to provide a robust read-out with

distinct binary outputs that are insensitive to variations in the

temperature and FE texture and other imperfections.

2 Silicene-ferroelectric system

The low-energy Hamiltonian [9, 24] for silicene coupled to a

ferroelectric (FE) layer is given by

H kx, ky( ) � Zvf σxkx − ησyky( ) − ηszΔσz + lEzσz (1)

where the σis refer to pseudospin, and η = ±1 and sz = ±1 are the

valley and spin z indices, respectively. Δ is the k-independent

effective SOC strength, and lEZ the energy difference between the

A and B sublattice sites under substrate effects or an applied out-

of-plane electric field Ez [49] caused by the lattice buckling. The

Hamiltonian can be written an effective field in pseudospin space

as H = σ ·b (η, sz) where the effective field is b (η, sz) = (Zvfkx, −

ηyZvfky, − ηszΔ + lEz). The energy eigenvalues are then given by

E±,η,sz k( ) � ± b � ±

��������������������
Zvfk( )2 + Δ − ηszlEz( )2√

(2)

where k �
������
k2x + k2y

√
and the corresponding eigenstates by

|χ+,η,sz〉 �
cos

θ η, sz( )
2

eiϕ η,sz( )

sin
θ η, sz( )

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (3)

|χ−,η,sz〉 �
sin

θ η, sz( )
2

eiϕ η,sz( )

−cos θ η, sz( )
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4)

where θ(η, sz) � tan−1( Zvfk
ηszΔ−lEz

) and ϕ(η, sz) � tan−1(ηky
kx
).

Because η and sz in Eq. 1 can independently take the values

of ± 1 and Eq. 1 is a two-by-two matrix, we introduce the collective

index n = (λ, η, sz) for convenience to label the eight bands of the

systemwhere λ=±1 denotes whether the band is a valence (λ= 1with

eigenenergy E+) or conduction (λ= −1with eigenergyE−) band. There

are therefore four bands at each of the two valleys.

Here, we treat Δ as a fixed material parameter with the value

of 3.9 meV [50] and assume that lEz is a freely adjustable parameter,

which can be varied in an experiment by varying the substrate

material or applying a gate voltage [49]. It is instructive to

examine how the energy distributions of the four bands change

with the variation of lEz. As we shall show later, the sign of the

Hall conductivity of a completely filled valence band is opposite that of

the σz expectation of the states in the band. Eq. 1 therefore implies that

the sign of the Hall conductivity of the completely filled valence band

is given by that of η(lEz− ηszΔ). Depending on the relativemagnitudes

of lEz and Δ, the sign of (lEz − ηszΔ) follows that of lEz for the two
valence bands corresponding to the two values of ± 1 for sz in each of

the two valleys if |lEz| > |Δ|, and has opposite signs in the two valleys

for the same value of sz if |lEz| < |Δ|. The change in the relative signs of
(lEz − ηszΔ) between the two spin polarizations in a given valley at the
critical value of lEz=±Δ changeswhether theHall conductivities of the

four valence bands in the two valleys add up constructively or cancel

out in the calculation of the Hall and valley conductivities. Moreover,

Eq. 2 implies that the band gap between the conduction and valence

bands is 2‖lEz| − |Δ‖, and that the size of the band gap can be changed
by modulating the value of Ez. The critical value of lEz = ±Δ at which

the band gap vanishes corresponds to a topological phase transition.

The energy dispersion relation is plotted as a function of

Zvfkx in Figure 2. The eigenenergies of the bands in one valley

with a given value of sz = ±1 have the same values as those of the

corresponding bands in the other valley with the opposite value

of sz. As mentioned earlier, when |lEz| < |Δ| (Figure 2A), the two

FIGURE 1
Schematic of the system consisting of a silicene layer coupled
to a ferroelectric underlayer.
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valence band states within the same valley have opposite signs of

〈σz〉 (Figure 2A) and when |lEz| > |Δ|, the band gap reopens, but

the two valence states in each valley would now have the same

sign of 〈σz〉 (Figure 2B). The system becomes an insulator if the

Fermi energy is located within the gap [8].

3 Berry curvature and quantum Hall
conductivity

The coupling of the silicene monolayer to the FE layer

breaks the time-reversal symmetry of the system (as evident

from the lEzσz term in Eq. 1, which flips sign under time

reversal), and results in a finite Berry curvature Ωn(k), which

is defined as

Ωn k( ) � i 〈zkxχn k( )|zkyχn k( )〉 − 〈zkyχn k( )|zkxχn k( )〉( ). (5)

For a two-by-two Hamiltonian with the form of H = b ·σ, Ωn

can be calculated using

Ωλ,η,sz k( ) � −λ 1
2b3

b η, sz( ), ·, zkxb η, sz( ) × zkyb η, sz( )( )( ) (6)

and is explicitly given by

FIGURE 2
K and K′ valley dispersion relations of silicene coupled with a ferroelectric layer with Zvf = 300 meVnm−1, Δ = 3.9 meV, and (A) lEz = 2 meV, and
(B) lEz = 6 meV. The thicker lines indicate the bands with positive values of 〈σz〉.
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Ωλ,η,sz k( ) � Zvf( )2
2

λη lEz − szΔη( )
Zvf( )2 + lEz − szΔη( )2( )3/2, (7)

which, as mentioned earlier, is proportional to λ〈k; λ, η, sz|σz|k; λ,
η, sz〉. Sundaram et al. [51] showed that when an electric field is

applied in the x direction, the Berry curvature gives rise to an

anomalous velocity in the y direction perpendicular to the

applied electric field vyn � ExΩn. This anomalous velocity gives

rise to a Hall conductivity

σxy η, sz( ) � e

2π
( )21

Z
∑
λ

∫Ωλ,η,sz k( )f Eλ,η,sz k( )( ) dk

� σ0
π
∫ η lEz − szΔη( )

Zvfk( )2 + lEz − szΔη( )2( )3/2 f E+,η,sz k( )( ) − f E−,η,sz k( )( )( )⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦dk,
(8)

where f(E) is the Fermi-Dirac distribution f(E) = 1/(1 + exp ((E −

Ef)/kBT)), and σ0 � e2

2h is half the quantum conductance.

We then define the spin and valley Hall conductivities σSpinxy

and σValxy as

σSpinxy � σxy 1, 1( ) + σxy −1, 1( )( ) − σxy 1,−1( ) + σxy −1,−1( )( ),
(9)

σVal
xy � σxy 1, 1( ) + σxy 1,−1( )( ) − σxy −1, 1( ) + σxy −1,−1( )( ).

(10)
For convenience, we define

I k, λ, η, sz( ) ≡ ∫ σ0
π

λη lEz − szΔη( )
Zvfk( )2 + lEz − szΔη( )2( )3/2 dk (11)

� 2σ0∫ ληk lEz − szΔη( )
Zvfk( )2 + lEz − szΔη( )2( )3/2 dk (12)

� −σ0 ηλ lEz − szΔη( )��������������������
lEz − szΔη( )2 + Zvfk( )2√ . (13)

We first consider the scenario where Ef = 0, i.e., the Fermi

level lies within the bulk band gap. In this case, f(E−1,η,sz) � 1

for all combinations of η and sz, and f(E+1,η,sz) � 0. Noting

that

I ∞, λ, η, sz( ) � 0 (14)
I 0,−1, η, sz( ) � σ0ηsgn lEz − szΔη( ), (15)

We have

σxy η, sz( ) � I ∞,−1, η, sz( ) − I 0,−1, η, sz( )
� ηsgn lEz − szΔη( ). (16)

Here, we note from Eq. 1 that sgn (lEz − szΔη) = − sgn 〈σz〉 for
a valence band, as mentioned earlier.

We thus obtain

σSpin
xy � 2σ0 sgn lEz + Δ( ) − sgn lEz − Δ( )( ), (17)

σValxy � −2σ0 sgn lEz − Δ( ) + sgn lEz + Δ( )( ). (18)

One consequence of Eq. 16 is that when |Δ| > |lEz| in the

quantum spin Hall effect (QSHE) regime, the Berry curvatures for

the spin up states (sz = 1) in the two valleys have the same sign, and

this is opposite to that of their respective spin down (sz = −1) states.

This results in the spin up and spin down states being driven along

opposite directions perpendicular to the applied electric field by their

anomalous velocity [52], giving rise to a spinHall current (Eq. 17). In

contrast, when |Δ| < |Ez| in the quantum valley Hall effect (QVHE)

regime, the states in the two spin polarizations in each of the two

valleys are driven along the same direction opposite that of the other

valley, giving rise to a valley Hall current (Eq. 18). Experimentally,

the spin and valley Hall currents may be detectable using electrical

means with Hall bar geometries, which has been achieved for

superlattices of the related two-dimensional material graphene

[53, 54]. Special precautions may need to be taken to protect the

silicene sample from exposure to air in the experiment [55]. The

results of Eqs. 17, 18 at Ef = 0 meV are summarized in the lEz − Δ
phase diagram in Figure 3.

We next consider a finite value of the Fermi energy. In an

experiment, the Fermi energy can be set through applying gate

voltages [55, 56] or by doping [57, 58]. Owing to the anti-

symmetries of the Berry curvature about E = 0 as a result of the

factor of λ in Eq. 7 and the relation f (E − Ef) = 1 − f (Ef − E)

obeyed by the Fermi-Dirac distribution (Figure 4), the Hall

conductivities at E = ±Ef are equal to each other. Using this

equality and evaluating Eq. 8 for a finite EF at zero temperature,

we have

σ x, y( ) η, sz( ) � σ0
η lEz − szΔη( )

|Ef| , (19)

FIGURE 3
lEz − Δ phase diagram at Ef = 0.
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regardless of whether Ef is positive or negative. Note that this

expression is consistent with Eq. 16 because |Ef| = |lEz − szΔη| at
the minimum of the (λ = +1, η, sz) band and the maximum of the

(λ = −1, η, sz) band. The corresponding spin and valley

conductivities when Ef is positive and lies above the minima

of all the λ = +1 bands, or when Ef is negative and lies below the

band maxima of all the λ = −1 bands, is then given by

σSpinxy � σ0
4Δ
|Ef|, (20)

σValxy � −σ04lEz

|Ef| . (21)

Notice that because |Ef| assumes its minimum value at the band

minima or maxima, the spin and valley Hall conductivities assume

their largest values when Ef is located within the band gap. This is

because when Ef lies within the band gap, the valence band will be

completely filled and thus all the valence band states will contribute.

Because all of these contributions have the same sign, they sum up

cumulatively. However, when Ef increases above the bandminima of

the conduction bands, there will be contributions from some of the

conduction band states, which lie below Ef. These contributions have

opposite signs from those of the valence bands and thus cancel the

contributions from those valence band states, resulting in a lowering

of the spin and valley condutivities.

We now investigate the effects of a finite temperature. Figures

4B,C show the spin and valley Hall conductivities at 1 K and 10 K at

Ef = 0meV and Ef = 8 meV, respectively. At the lower temperature

of 1 K, the Fermi-Dirac distribution does not deviate very much

from the step function profile at 0 K. The step-like switchover

between the quantum valley Hall and qunatum spin Hall

regimes at lEz = ±Δ with the variation of lEz at Ef = 0meV

implied by Eqs. 17, 18, and Figure 3 is evident in the 1 K curves

in Figure 4B. The changes in the Hall conductivities are slightly

rounded at lEz = ±Δ because of the finite slope of the Fermi-Dirac

distribution with respect to Ef at a finite temperature. In comparison,

the variation of the Hall conductivities with lEz are smoother at 10 K

because of the larger thermal broadening. In addition, the

magnitudes of the peak Hall conductivities tends to be smaller

because some of the valence band states near the band maxima are

unoccupied and do not contribute, while some of the conduction

band states near the bandminima are occupied, and contribute with

an opposite sign.

We next consider the case where Ef has a finite positive value of

2 meV (Figure 4C), which is smaller than Δ. In contrast to the Ef =

FIGURE 4
(A) The Fermi-Dirac distribution f(E) at Ef = 0 meV and T = 1 K (solid line) and T = 10 K (dotted line), and a representative Berry curvature profile.
(B,C). The spin and valley Hall conductivities at T = 1 K (solid lines) and T = 10 K (dotted lines) at (B). Ef = 0 meV, (C). Ef = 2 meV, and (D). Ef = 8 meV.
The values of lEz at which qualitative changes occur in the Hall conductivities as discussed in the text are marked out.
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0 meV scenario considered above where the Fermi energy is always

within the bulk gap between the conduction and valence bands

except at lEz = ±Δ, the location of Ef relative to the band minima and

maxima of the conduction and valence bands now varies with lEz
because the band gap is dependent on lEz. When Ef has a finite

positive value that is smaller than |Δ|, Ef lies in between the band

minima of the two conduction bands in each valley when ‖Δ|− |Ef‖ <
lEz < ‖Δ| + |Ef ‖, and within the bulk band otherwise. When Ef lies

between the bandminima of the two conduction bands, the spin and

valley Hall conductivities both show a linear variation with lEz as

shown in the lEz values between Δ ± Ef in Figure 4C. This is because

from Eq. 13 with k = kF for the occupied bands and k = 0 for the

unoccupied ones, the net spin and valley Hall conductivities is a sum

of terms that are linear in bothΔ and lEz. The size of this linear region

increases with |Ef|. When |lEz| falls outside this range of values, the

Fermi energy is located within the bulk band gap, and the qualitative

behavior of the spin and valley currents are similar to those of theEf=

0 case considered in Figure 4B where the system is in the quantum

spin Hall regime for |lEz| < |Δ − |Ef‖ and the quantum valley Hall

regime for |lEz| > |Δ + |Ef‖. Similarly, at a higher temperature, there is

a smoother variation of the Hall conductivities with lEz.

Finally, we consider the case where Ef has a finite positive value of

8 meV (Figure 4D), which is larger than the positive value of Δ
considered here. Unlike the |Ef| < |Δ| case considered in the previous

paragraph in which Ef is always below the bandminima of at least one

of the conduction bands, Ef can now lie above the band minima of

both conduction bands when |lEz| < Ef − Δ. The independence of the
spin Hall conductivity with respect to lEz in Eq. 20 and the linear

variation of the valley Hall conductivity with respect to lEz in Eq. 21 in

this range of lEz are evident from the 1 K curves. (Note the noticeably

smaller magnitude of the spin Hall conductivity and more obvious

slope of the valleyHall conductivity in Figure 4D compared to those in

Figure 4C in the small |lEz| region. The small slope of the valley Hall

conductivity in Figure 4C in the small |lEz| region is due to thermal

broadening.) When Ef − Δ < |lEz| < Ef + Δ, the Fermi energy lies

between the band minimum of the two bands and both the spin and

valleyHall conductivities showa linear variationwith lEz.When |lEz|>
Ef + Δ, the Fermi energy lies below the minima of both conduction

bands in both valleys, i.e., within the band gap. In this case, because |

lEz| is also larger than Δ, the system is in the quantum valley Hall

regime in which the valley Hall conductivity approaches the constant

value of ± 4σ0 and the spin Hall conductivity approaches the constant

value of 0. Similar to the Ef = 0 case considered just now, a higher

temperature results in a smoother variation of the Hall conductivities

with lEz and smaller peak values of the Hall conductivities.

4 Conclusion

In this work, we study the quantum spin Hall (QSH) and

quantum valley Hall (QVH) conductivities in a silicene-

ferroelectric coupled system, and analyzed the effects of the

ferroelectric coupling strength (which in turn affects the energy

band gap), temperature, and Fermi energy on these conductivities.

Our results show that the QSH and QVH conductivities in the

silicene-ferroelectric system can be readily controlled by tuning the

electric field arising from the ferroelectric coupling. The coupling

could be utilized to ensure a large gap opening (which is proportional

to 2‖Δ| − |lEz‖), which would make it easier in practice to align the

Fermi energy within the band gap. When this alignment is

achieved, the quantum Hall conductivities would attain their

maximum quantized values. Additionally, the ferroelectric

coupling can be modulated to make the electric field

strength equal to the SOC coupling Δ, at which point the

QSH and QVH conductivity values exhibit sharp step-like

jumps. These sharp transitions between quantized plateau

values would be useful for memory applications where either

Hall conductivity can serve as a read-out for the binary states of

the stored data [59, 60]. Lastly, the QSH and QVH outputs are

linked to a topological invariant, i.e., the Berry phase of the

system, which confers protection against imperfections and

perturbations and robustness against thermal broadening.

Hence, utilizing the QSH and QVH effects in the silicene-

ferroelectric coupled system as memory outputs would open

a new avenue for topological spintronic and valleytronic

devices that can be modulated by electrical means.
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