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Modern war is highly dependent on intelligent, unmanned combat systems.

Since many intelligent, unmanned combat systems have network attributes,

it is meaningful to research combat systems from the perspective of

complex network. Heterogeneous network provides a suitable model to

describe real combat network. Previous studies of combat network only

concentrate on homogeneous networks. However, on the real battlefield,

military networks are composed of a large number of heterogeneous nodes

and edges with different functions. In the paper, a superior, intelligent,

heterogeneous combat network disintegration strategy (HDGED) are

obtained by DQN, which embeds heterogeneous networks into a low-

dimensional representation vector as input, rather than ignore the

differences of the nodes and their connections. A method of

heterogeneous graph embedding is first introduced, which adopts type

encoding and aggregation. Besides, a normalized combat capability index

was designed, which could assess the performance of the dynamic

heterogeneous combat networks. On this basis, HDGED was

experimented on networks with uneven node combat capabilities and the

results show that HDGED has improved disintegration effectiveness for

heterogeneous networks of different sizes compared with traditional

methods. Our work provides a new approach to realize the disintegration

of heterogeneous combat networks by deep reinforcement learning, which

is of great significance for optimizing the command operation process, and

deserves further study.

KEYWORDS

heterogeneous combat network, graph embedding, combat capability, network
disintegration, deep reinforcement learning

OPEN ACCESS

EDITED BY

Ye Wu,
Beijing Normal University, China

REVIEWED BY

Peng Ji,
Fudan University, China
Gang Chen,
Xi’an Jiaotong University, China

*CORRESPONDENCE

Hongfu Liu,
Liuliuhongfu@nudt.edu.cn
Jing Chen,
chenjing001@vip.sina.com

SPECIALTY SECTION

This article was submitted to
Interdisciplinary Physics,
a section of the journal
Frontiers in Physics

RECEIVED 17 August 2022
ACCEPTED 22 September 2022
PUBLISHED 12 October 2022

CITATION

Chen L, Wang C, Zeng C, Wang L, Liu H
and Chen J (2022), A novel method of
heterogeneous combat network
disintegration based on deep
reinforcement learning.
Front. Phys. 10:1021245.
doi: 10.3389/fphy.2022.1021245

COPYRIGHT

© 2022 Chen, Wang, Zeng, Wang, Liu
and Chen. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 12 October 2022
DOI 10.3389/fphy.2022.1021245

https://www.frontiersin.org/articles/10.3389/fphy.2022.1021245/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1021245/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1021245/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1021245/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2022.1021245&domain=pdf&date_stamp=2022-10-12
mailto:Liuliuhongfu@nudt.edu.cn
mailto:chenjing001@vip.sina.com
https://doi.org/10.3389/fphy.2022.1021245
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2022.1021245


1 Introduction

Complex network is a research paradigm that represents a

complex system as a network structure, in which nodes represent

objects in a complex system, and edges represent the relationship

between objects. The traditional complex network

predominantly takes the homogeneous network as the

research object. However, the ubiquitous networks in the real

world, such as citation networks in [1], social networks in [2],

recommendation systems in [3], cybersecurity in [4] and military

combat networks, are heterogeneous networks composed of

various types of entities and relationships which can more

accurately describe different types of entities and relationships

in the network.

Compared with the homogeneous network, the

heterogeneous network has multiple types of entities and

relationships, and contains rich structural information and

semantic information, which provides a way to discover the

deeply hidden information in the network. However, due to

the heterogeneity of objects and relationships, many

homogeneous network analysis methods cannot be directly

applied to heterogeneous networks, which complicates the

study of heterogeneous networks. First, the complex structure

of heterogeneous networks makes data processing and

semantic mining more difficult. Second, how to represent

different types of entities and relationships and how to

integrate heterogeneous information is a considerable

challenge. Third, current studies on heterogeneous

networks mainly focus on downstream tasks such as

classification [5], clustering [6], link prediction [7], and so

on, and studies on heterogeneous network disintegration and

heterogeneous network performance evaluation are

insufficient.

The heterogeneous network disintegration such as

terrorist networks, disease transmission networks, and

military warfare networks has important practical

significance. The performance of these complex networks is

mainly affected by a small number of critical nodes, and the

removal of these critical nodes will significantly weaken

certain network functions. Therefore, the core of complex

network disintegration is to find an optimal set of critical

nodes. It is proved that the network disintegration problem is

a typical NP-hard problem [8]. If a network contains many

nodes, it will be tough to find the optimal network

disintegration strategy directly. At present, the research of

complex network disintegration mainly focuses on

homogeneous networks. According to the algorithm

principle, it can be divided into four kinds: 1) The method

based on node centrality uses the centrality ordering of nodes

to solve the network disintegration strategy. Firstly, the

centrality indexes of various nodes are defined, then the

critical nodes in the current network are mined according

to the centrality ranking of nodes, and finally, the network is

disintegrated by removing the nodes with high centrality first.

The methods based on node centrality mainly include:

Romualdo Pastor-Satorras et al. proposed HDA (High

Degree Adaptive) method [9]. Proposed an algorithm called

CI (Collective influence) to measure the influence of nodes

[10]. By defining a specific influence range, the direct and

indirect neighbors of each node in the range were used to

describe the influence value of nodes quantitatively. Then the

node is removed based on the descending order of the node

influence value. The centrality index calculation of this kind of

method is complicated, so it is difficult to apply to large-scale

networks. 2) The method based on optimal breakage aims to

remove all the rings in the network with the least number of

nodes so that the network is broken down into small modules,

mainly including Alfredo et al. proposed a third-order Min-

sum algorithm [11], and proposed a probability model called

BPD (Belief Propagation guided Decimation) to measure the

removal probability of each node in the current network [12].

Nodes are removed based on the probability of removal. Lenka

et al. proposed the CoreHD algorithm to disintegrate the

network [13]. The algorithm’s core is to strip all first-order

nodes of the network based on the K-core decomposition

mechanism and then remove the remaining nodes in the

network in descending order according to the node degree

sequence. This method completely disintegrates the network

and does not apply to the universal network disintegration. 3)

The main idea of the method based on graph segmentation is

to divide the graph into two or more pieces of equal size with

the least number of points, and then continue to decompose

the graph with the same method, and finally wholly divide the

graph, mainly including the RatioCut method proposed by

Lars Hagen obtains the final solution by calculating the

eigenvector corresponding to the second smallest

eigenvalue of the unnormalized Graph Laplacian matrix

[14]. The GND method proposed by Xiao-long Ren deals

with the graph attack problem with node removal cost by

adding the information of point weight to the Graph Laplace

matrix in RatioCu [15]. However, this method takes the

second smallest eigenvalue of Tulapras matrix as the

solution has some limitations. 4) Meta-heuristic-based

algorithms view the network tiling problem as a combined

optimization problem with different objective functions and

constraints, mainly including Deng Ye proposed an optimal

disintegration strategy based on tabu search [16]. This

approach is mainly limited by computing power.

The above methods are limited to homogeneous networks,

and the computational performance limits the disintegration

effect. Moreover, most of the methods are designed only for a

certain problem scenario. Therefore, there is still a lack of an

efficient heterogeneous network disintegration solution

framework. In recent years, some work has tried to use

deep neural networks to study heterogeneous network

representation learning [17–19]. Among them, the shallow
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model decomposed the heterogeneous network into single

networks, respectively represented these networks, and then

integrated the information. For example, HERec uses meta

path to extract multiple homogeneous networks from

heterogeneous networks, represents these homogeneous

networks and aggregates them [3]. The model based on

autoencoder aims to use a neural network to construct the

encoder learning node attribute representation while

maintaining the network structure characteristics. For

example, SHINE obtained feature representations by

compressed coding of heterogeneous information in social

networks, sentiment networks, and pictorial networks,

respectively, and fused them by aggregation functions [20].

The core of the generative adversarial network-based

approach is to obtain robust node representations using

games between generators and discriminators. The method

proposed by uses relational perception to train discriminator

and generators, and improves negative sampling by learning

the potential distribution of nodes [21]. The deep model based

on deep reinforcement learning focuses on the meta-path

selection dilemma and optimizes the overall framework by

taking the downstream task performance as a reward, so as to

learn the node representation while avoiding the meta-path

selection. For example, transformed the node representation

learning of the star network into a Markov decision process,

where the action is to select a specific type of link for learning

or termination of training, and the state is the order of the

selected link types [22]. The key of heterogeneous graph

neural network is how to design an appropriate

aggregation function to capture the semantics contained in

the neighborhood, including structure2vec [23], GCN [24],

GraphSAGE [25], GAT [26], GIN [27], etc., Among them, use

machine learning to learn network dismantling [28]. First

proposed the FINDER operator based on the framework of

graph neural network, and applied the combination of graph

neural network and deep reinforcement learning to find the

critical nodes in the network to solve the optimal

disintegration strategy [29]. But this research object was

still homogeneous network.

In summary, to make up for the shortcomings of traditional

network disintegration methods in solving the heterogeneous

network disintegration problem, this paper first presents the

Heterogeneous network Disintegration strategy based on

Graph Embedding via DQN, called HDGED to solve the

heterogeneous network disintegration problem. The method is

not restricted by the problem scenario and can make full use of

the heterogeneous information and network structure

information of the heterogeneous network to find the critical

nodes in the heterogeneous combat network more effectively to

achieve the optimal network disintegration.

The structure of this paper is as follows: the second section

summarizes the work related to the modeling of combat

networks. The third section introduces the optimal

disintegration strategy for heterogeneous operational networks,

HDGED, proposed in this paper. The fourth section shows the

comparison experiment between HDGED and the baseline

algorithm and provides a detailed analysis of the experimental

results. Finally, the fifth section discusses the conclusions and

future work.

2 Modeling

2.1 Heterogeneous network

As shown in Figure 1, heterogeneous networks are composed

of different types of entities (i.e., nodes) and different types of

relationships (i.e., edges), which are defined as follows.

Definition1: Heterogeneous Networks (or Heterogeneous

Graphs) [17]. Let G = (V, E) be a heterogeneous network,

where V and E represent node sets and edge sets, respectively.

Each node v ∈V and each edge e ∈ E is associated with its function
ϕ(v): V → A and φ(e): E → R, A and R represent node type and

edge type respectively, where |A| + |R|> 2.

2.2 Heterogeneous combat network
model

The combination of different types of combat entities with

various capabilities required for combat forms a heterogeneous

FIGURE 1
An example of a heterogeneous network. Different colors
represent different types of nodes and edges.
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combat network (HCN). In this paper, we mainly study the

problem of how to quickly dismantle the combat network of the

defender from the attacker’s point of view, without considering

the attacker’s entities, so we adopt the model of FINC proposed

in [30] by Dekker to classify the combat forces on the battlefield

into three categories. Based on the roles of various entities in the

combat process, the entities in the weaponry system can be

classified into the following three categories.

1) Sensor entities (S): Reconnaissance, surveillance, and early

warning equipment, such as reconnaissance satellite, unmanned

reconnaissance aircraft, early warning aircraft, radar, and other

operating equipment for early warning, detection, and

reconnaissance missions.

2) Decider entities (D): Communication and command and

control equipment entity, such as command and control system,

communication system, data chains, aerospace information

system, command vehicle, etc.,

3) Influential entities (I): Joint fire attack and interference

entities, such as missiles, cruise missiles, ships, aircraft, attack

helicopters, tanks, network attack, and electronic

interference, etc.,

In military operations, sensor entities are responsible for

detecting enemy targets and transmitting intelligence about

enemy targets to decision entities. The decision entity

performs data fusion and information analysis of target

information from the sensor entity or other decision

entities, makes operational decisions and orders the

influence entity to conduct an attack. The influence entity

receives orders from the decision entity and conducts strikes

on enemy targets. The entire combat process forms a chain,

called the operational chain.

2.2.1 Operational chain
In this paper, the operational chain (OC) is used to represent

the information flow between entities involving various types of

functions.

Definition 2: Operational Chain (OC) [6]. In order to

accomplish a specific combat mission, sensor entities, decision

entities, and influence entities cooperate with each other in an

orderly manner to construct an operational chain (OC).

According to the different types and numbers of entities,

this paper mainly studies the following four operational

chains, which can be divided into basic type and general

type. The basic type, as shown in Figure 1, consists of the

direct connection of sensor entity, decision entity and impact

combat unit. Since any combat unit can act as an intermediary

for information transfer, we extend the basic type into a

general type with intermediary communication nodes.

Considering the timeliness of combat information, we only

consider the case where there is a one-hop intermediary node

in the information transfer process of S-D and D-I. The

general type of OC is shown in Figure 1.

FIGURE 2
Heterogeneous operational chain. As shown in Figure, the OC can be divided into basic type and general type. The basic type, as shown in (A),
consists of sensor operation unit, decision operation unit and influence operation unit directly connected. Since any combat unit can also act as an
intermediary for information transfer, we extend the basic type to a general type with mediated communication nodes, i.e., (C).Considering the
timeliness of operational information, we only consider here the case where there is a one-hop intermediary in the SD and DI information
transfer process, and the general type of OC is shown in (B–D).

FIGURE 3
Heterogeneous combat network. Node S denotes the sensor
entity, node D denotes the decision entity, and node I denotes the
impact entity.
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The Operational Chain can be divided into basic type and

general type. The basic type, as shown in Figure 2A, consists of

a sensor combat unit, a decision-making combat unit, and an

impact combat unit directly connected. Since any combat unit

can act as an intermediary for information transmission, we

extend the basic type to a general type with an intermediary

communication node. Considering the timeliness of

operational information, only the presence of a hop

intermediary node in the process of information

transmission is considered here, and the general type of

OC is shown in Figures 2B–D.

The belligerents in a war establish OCs with enemy

entities as targets, and the operation chains intertwine to

form an operational network eventually. Figure 3 shows the

heterogeneous combat network built by combat chains.

2.2.2 Heterogeneous combat network modeling
Consisting of different types of nodes and edges, heterogeneous

combat networks (HCN) are used to represent various information

flows among sensor entities, decision entities, and influence entities.

Definition 3 Heterogeneous Combat Network (HCN) [6]: aG =

(V, E) whereV � S ∪ D ∪ I � v1, v2, v3/ , vn{ } represents node set
and edge set E � e1, e2, e3, . . . , ew{ } ⊆ V × V represents

information flow between functional entities. Specifically, all

functional entities are divided into a set of sensor entities

S � vS1, v
S
2, v

S
3, . . . , v

S
k{ }, a set of decision entities

D � vD1 , v
D
2 , v

D
3 , . . . , v

D
l{ }, and a set of influence entities

I � vI1, v
I
2, v

I
3, . . . , v

I
p{ }. The variable N = |V| and W = |E| denote

the number of nodes and edges in the combat network, and K = |S|,

L = |D|, P = |I| respectively the number of sensor entities, the number

of decision entities, and the number of influence entities. Different

FIGURE 4
Modeling steps of heterogeneous combat network. Firstly, determining the combat objectives according to the combat tasks and determining
the nodes and edges of the combat network. Finally, the combat network model is generated from the nodes and the edges identified by the
information flow.

FIGURE 5
Framework of the HDGED.
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types of nodes provide different functions during combat. The

operational capabilities of the sensor entity, decision entity, and

impact entity are denoted as CAS, CAD and CAI. The modeling steps

of the heterogeneous combat network model are shown in Figure 4.

3 Optimal disintegrating strategy of
heterogeneous combat network

This paper first proposes the Heterogeneous network

Disintegration strategy based on Graph Embedding via

DQN, called HDGED. Furthermore, we combine graph

embedding with deep reinforcement learning to solve the

optimal disintegrating strategy of heterogeneous networks.

Among them, the graph embedding part contains two parts:

encoding and decoding. In the encoding part, we embedded

different types of nodes in the way of type encoding and

designed a multi-layer GCN network to aggregate the

structural features and type features of nodes so as to

obtain the representation vectors and graph representation

vectors of different types of nodes. The decoding process is

designed as a deep Q network, and the encoded

representation vector is decoded into the Q value of deep

reinforcement learning. Then, we train the optimal

disintegrating strategy based on the computed Q value

through deep reinforcement learning. The overall

framework is shown in Figure 5.

3.1 Heterogeneous network encoding

First, we encode the current heterogeneous combat network,

and we take the removal of nodes as the executive action and the

remaining graph after the removal of nodes as the state. An

action (remove node) and a state (remaining graph) is

represented as a set of representation vectors. These

representation vectors capture the structural information, type

information and connections between other nodes of this node

and are used to efficiently estimate the expected future benefits Q

(s, a) of current action for this state.

The key to heterogeneous network encoding is to solve the

following two problems:

1) Node heterogeneity. How to design node feature encoding

for different nodes with heterogeneous information in

heterogeneous networks is a tough problem.

2) Fusion of heterogeneous neighbor feature information

representation. It is also a challenge to obtain a comprehensive

node representation considering the influence of different node

types in aggregating heterogeneous neighbor feature

information.

For problem 1), we first encode the heterogeneous features of

different types of nodes by using one-hot representation. The

length of the vector of one-hot representation is the number of

node types, where the corresponding type component is 1 and

the rest components are 0. This encoding approach is concise and

effective in adding discrete type features to the node feature

vector. Secondly, in order to maintain the graph structure

information, we add the structural features of the nodes into

the node feature vectors, which finally form the node feature

vectors.

For problem 2), in the process of aggregating heterogeneous

neighbor feature information, we convolve the adjacency matrix

and feature matrix of different types of neighbor nodes separately

to obtain the representation of each type of neighbor node. Then,

we aggregate the representations of different types of neighbors

by nonlinear functions. Finally, in order to maintain the

neighborhood structure information of different types of

nodes, we convolve the aggregated representation matrices

FIGURE 6
Framework of node representation vector encoding.
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with the adjacency matrices to obtain the final representation

vector.

3.1.1 Node representation vector
Figure 6 is the overall framework of the node

representation vector. Firstly, the type adjacency matrix is

calculated respectively according to S, D, and I node types,

i.e., AS, AD, AI. Secondly, the feature matrixs of three node

types S, D, and I are constructed respectively according to the

type features and structural features of nodes:FS, FD, FI. The

feature matrix contains the structure information and type

information of the node. We convolve the type adjacency

matrix with the feature matrix, after that, we take the result of

the convolution through the nonlinear activation function. In

order to maintain the neighborhood structure information of

different types of nodes, the results are convolved with the

adjacency matrix again, and finally obtain the node

representation vector through the nonlinear activation

function, which is the action representation vector XN in

the deep reinforcement learning process. In addition, if the

node is weighted, we need to multiply the weight of the node

when getting the embedding vector. As shown in Eq. 1.

Hj � σ gcn1 Aj, Fj( )[ ], j � S, D, I
XN � σ gcn2 A,HS HD‖ ‖HI( )[ ]{ (1)

Where, Aj, j = S,D, I are the adjacency matrices of nodes of S, D

and I, Fj, j = S, D, I are the feature matrix of nodes of S, D and I, σ is

the activation function,A is the adjacencymatrix of the whole graph,

‖ is the stitching operation, andXN is the node representation vector.

3.1.2 Graph representation vector
Figure 7 is the overall framework of the graph representation

vector. The graph representation vector represents the current

state of the graph and contains heterogeneity information and

structure information. We obtain the type feature vector Rj, j = S,

D, I by nonlinear aggregation of each of the three type node

feature matrices Fj, j = S, D, I. After that, we connect the type

feature vectors and map them nonlinearly to a latent space to

obtain the graph feature vector L. Finally, we let the graph feature

vector L through the multilayer perceptron and get the graph

representation vector XG. As shown in Eq. 2.

Rj � σ WjFj + bj( ), j � S, D, I
L � σ Wk RS RD‖ ‖RL( )[ ]
XG � σ Wmσ WnL + bn( ) + bm[ ]

⎧⎪⎨⎪⎩ (2)

Where, Fj, j = S, D, I is node feature matrix, Rj, j = S, D, I is

type feature vector, L is graph feature vector, and XG is graph

representation vector. The algorithm flow of the encoding is

shown in Algorithm 1.

Algorithm 1. Heterogeneous network encoding.

3.2 Heterogeneous network decoding

In the decoding stage, we decode the graph state

representation vector XG and node action representation

vector XN into the value Q in DQN, that is, the mapping of

state-action (XG,XN) to Q(XG,XN). Q(XG,XN) can predict

the maximum cumulative benefit of the action XN performed in

FIGURE 7
Framework of graph representation vector encoding.
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the state XG. We use multilayer perceptrons to parameterize the

Q function. More specifically, it is defined as Eq. 3:

Q XG,XN( ) � Whσ XT
N ·XG ·Wi( ) (3)

Where,Q(XG,XN) is the Q value obtained by decoding, σ is

the activation function, XG is the vector representing graph state,

and XN is the vector representing node action. The algorithm of

the decoding is shown in Algorithm 2.

Algorithm 2. Heterogeneous network decoding.

3.3 Heterogeneous network performance
evaluation

For heterogeneous networks, the evaluation metrics of

homogeneous networks, such as gaint connected component

size do not accurately reflect the characteristics of

heterogeneous networks. For heterogeneous combat networks,

we need to evaluate not only the connectivity of the network but

also the operational capability of the network. Therefore, in this

paper, based on the “Rescaling Combat Capability Index” in [6],

we propose the normalized operational capability index R to

evaluate the operational performance of heterogeneous combat

networks based on the characteristics of heterogeneous combat

networks.

First, we define the combat capabilities of the three types of

entities. Since the battlefield environment is dynamic and the

performance of various types of weapons and equipment is

constantly changing, we believe that the performance of

weapons and equipment is closely related to the network

structure, and in a complete combat network, each combat

entity cooperates with each other and can give full play to the

capabilities of each entity. On the contrary, if the combat network

is attacked, the capabilities played by the combat entities will be

limited accordingly. Therefore, in order to model the combat

capabilities of individual entities more realistically and

accurately, we define combat capabilities as CAi, i = S, D, I,

where i is the entity type. Suppose li is a operational chain OC,

including sensor entity S � sj{ }, decision entity D � dj{ }and
influence entity I � ij{ } li can be calculated as Eq. 4:

U lj( ) � 1

lj
∣∣∣∣ ∣∣∣∣ ∑sj∈S CAS sj( ) ∑

dj∈D

CAD dj( )∑
ij∈I

CAI ij( ) (4)

Where, CAS(sj), CAD(dj), CAI(ij) represents the detection
ability of the sensor entity, the decision-making ability of the

decision entity and the attack ability of the influence entity

respectively in the weapon system, and |lj| represents the

length of the operational chain.

FIGURE 8
Topology diagram of the typical military network: FINC.
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In this paper, we assume that the attacker has complete

information about the defender’s operational network and the

attack is a node attack, if a node is attacked, the edges it is

connected to will be removed together. If ~V ∈ V denotes the set of

nodes attacked and ~E ∈ E denotes the set of edages removed, then

the network obtained after the node attack is ~G � (V − ~V, E − ~E).
We define the ratio fN � | ~V|/N ∈ [0, 1] as the attack intensity.

For a heterogeneous combat network G, and a group of

operational chains OCs, LG � lk{ }, k � 1, 2, . . . , m, the combat

capability can be expressed as Eq. 5:

O G( ) � ∑U lk( ) (5)

Among them, O(G) is the combat capability index known as

G. When the node sequence ~V � v1, v2, . . . , vj{ } is removed, we

normalize O(G) as shown in Eq. 6 to represent the connectivity

performance of the attacked network,

P ~V( ) � P v1, v2, . . . , vj( ) � O G\ v1, v2, . . . , vj{ }( )
O G( ) (6)

One of the key issues related to attack strategies is an

evaluation method for attack effectiveness. We used to

calculate the mean value R of the combat capability index

after being attacked to assess the attack efficiency of the attack

strategy on the heterogeneous combat network. We draw on the

evaluation method of network robustness and propose a

heterogeneous network combat cumulative normalized combat

effectiveness as the evaluation index of the strategy. Our goal is to

learn an optimal node removal sequence to make the network

disintegrates rapidly, i.e., to minimize the R value as shown in

Eq. 7:

R v1, v2, . . . , vN( ) � 1
N

∑N
j�1

P ~V( ) � 1
N

∑N
j�1

O G\ v1, v2, . . . , vj{ }( )
O G( )

(7)
Where N is the number of nodes in the G, and

O(G\ v1, v2, . . . , vj{ }) is the combat capability index after

removing the set of nodes v1, v2, . . . , vj{ } from the G.

In some cases, the attack cost (cost of attacking resources,

cost of attacking time, etc.,) of different nodes is different. Our

formula for defining the weighted R is as Eq. 8:

Rcost v1, v2, . . . , vN( ) � 1
N

∑N
j�1

P ~V( )c vj( )

� ∑N
j�1

O G\ v1, v2, . . . , vj{ }( )
O G( ) c vj( ) (8)

Among them, c(vk) represents the normalized attack cost of

the node,∑N
j�1c(vj) � 1.

3.4 Attack strategy learning

After the encoding-decoding is completed, we use the deep Q

network algorithm in deep reinforcement learning to find the key

nodes in the combat network. We view it as a Markov process:

interacting with the environment to produce a series of states,

FIGURE 9
The performance of HDGED on the test set under two scenarios as the training progresses. The reward function is represented by the R value.
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actions, and rewards. The environment is the input combat

network, the state is defined as the remaining network after

attacking node, the action is defined as the removal of the critical

node under attack, and the reward is defined as the reduction

value of the combat network disintegration evaluation index R

after taking action.

We decode each vector pair (state, action) into a real Q value,

which is used to predict the expected future payoff if this node is

selected. Based on the calculated Q value, in the training stage, we

adopt the greedy selection strategy ϵ, that is, each time with

probability (1 − ϵ) to select the highest Q value of the node, with

probability randomly selected node. When a round is over (i.e., the

remaining graph become isolated nodes),n transfer tuples are

collected, i.e., (Si,Ai, R(i,i+n), S(i+n)) and R(i,i+n) = ∑i+nRk, into the

experience replay pool. At the same time, we update the learning

parameters of the encoding process and decoding process through

the batch training samples from the experience replay pool. See

Algorithm 3 for the algorithm process.

Algorithm 3. DQN training.

We require the embedded vectors can thoroughly learn both the

heterogeneous information of the network and make full use of the

structural information of the network. Therefore, we design the training

loss function as Eq. 9.

FIGURE 10
Comparison of disintegration capability of HDGED and baseline algorithms on scale-free HCN of four different scales without considering the
cost of network attacks.
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L � LQ + αLG

LQ � rt,t+n + γmax Q̂ st+n, â( ) − Q st, at( )( )2
LG � ∑N

i,j

si,j xi − xj

���� ����22

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(9)

Where, LQ is Q learning loss, rt,t+n is the reward after n steps,

Q(st , at) is the predicted value of Q, LQ is graph reconstruction loss,

and α is weight coefficient.

4 Experimental comparison and
analysis

4.1 Experimental setting

Based on the characteristics of military operations,

200 scale-free Heterogeneous Combat Networks (HCNs) of

20–50 nodes are synthesized as training set, where the

synthesized networks are generated using the Barabási-

Albert (BA) model (Barabási and Albert, 1999). Among

them, 100 networks have no weights for nodes, and the

nodes of the other 100 networks are randomly assigned

weights which represents the attack cost of the nodes. The

two groups are trained and applied separately. In order to test

the disintegration effect of the algorithm on HCNs of

different sizes and the migration ability of the algorithm

on different networks, we generated two types of networks

as test sets, i.e. scale-free network and small-world network.

Four different scales were generated for each type of network,

the number of nodes was 90–150, 150–300, 300–600 and

600–900, and 100 networks were randomly generated for

each scale, and then evaluate the average performance of

the algorithm on these 100 networks. And experiments were

carried out on the typical military network, FINC, which is

from the paper “An efficient link prediction index for complex

military organization” published by [31]. It contains

89 combat entities, including 12 Decider entities (D),

26 Influential entities (I) and 51 Sensor entities (S), and

150 communication links linking the entire military

network. The topology of the military network is shown in

FIGURE 11
Comparison of disintegration capability of HDGED and baseline algorithms on small world HCN of four different scales without considering the
cost of network attacks.

Frontiers in Physics frontiersin.org11

Chen et al. 10.3389/fphy.2022.1021245

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1021245


Figure 8, where the red nodes represent Decider entities (D),

the green nodes represent Sensor entities (S), and the yellow

nodes represent Influential entities (I). Depending on the

information flow on the HCN, the edges of the HCN are

classified into five types, including S − S, S − D, D − D, D − I,

and I − S. We set the initial combat capability of each entity to

be the same, and CAS, CAD and CAI are both set to 2.

As for the baseline algorithms, considering that there are

relatively few researches on disintegration for heterogeneous

operational networks, and we evolve some existing attack

strategies against homogeneous networks so that they become

baseline strategies applicable to heterogeneous operational

networks. These include strategies that attack only a single

type of node: HDSA (high-degree sensor node adaptive),

HDDA (high-degree decision node adaptive) and HDIA

(high-degree influential node adaptive). HDA (high degree

adaptive) and HPA (high PageRank adaptive) are strategies

that rank the networks according to their degree attributes

and PageRank attributes.

4.2 Experimental results and analysis

During the training phase, the parameters were stored for every

250 iterations. The value of the loss function gradually tends to be

stable as the training progress. We load the parameters recorded

every 250 iterations into the HDGED, and then applied HDGED on

a test set contains 200 different networks with 60–90 nodes. The R

value of each network disintegration during testing is calculated and

averaged, which can be regarded as the performance of HDGED.

For validation the convergence of the learning process, the results of

the reward function obtained each time are drawn into a curve as

shown in Figure 9. It can be found that with the progress of training,

the average R value obtained by HDGED on the test set became

lower and lower until it is stable. This phenomenon shows that the

effect of HDGED is getting better and better. Subsequently, we apply

the algorithm to other various scenarios as follows.

In Figures 10, 11, we show the HDGED and four baseline

algorithms on four scale-free HCNs and small worlds, respectively,

without considering the attack cost. Compared with the average

FIGURE 12
Comparison of disintegration capability of HDGED and baseline algorithms on scale-free HCN of four different scales with considering the cost
of network attacks.
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effect on HCN, it can be seen that our method has the smallest R

value and the smallest variance, and achieves the effect of SOTA on

two types of four different scale networks.

In Figures 12, 13, we show the HDGED algorithm and four

baseline algorithms on four scale-free HCNs and small-world HCNs,

respectively, considering the attack cost. Compared with the average

effect on the above, the attack cost here is obtained by random

assignment. It can be seen that our method has achieved SOTA in

various scenarios.

In order to further verify the algorithm, we conducted

experiments on the real military network FINC, as shown in

Figure 14, respectively showing the cases where the attack

cost is not considered and the attack cost is randomly

assigned (node weights are random) effects of the

following methods. The X-axis is the attack strength (fN),

and the Y-axis is the normalized combat capability index

P( ~V). In the initial stage of decomposition, the curve of the

HDGED algorithm declines the fastest, and the curve of the

HDSA algorithm declines the slowest. It can be seen that the

HDGED decomposition efficiency is the highest. The area

enclosed by each curve is the R value of the algorithm. The

smaller the area, the better the performance of the algorithm.

The results show that under the same conditions, the HDGED

algorithm achieves the SOTA effect and has higher

decomposition efficiency.

Figure 15 shows the disintegration results of the HDGED

algorithm and HDA algorithm on a scale-free heterogeneous

combat network of size 97. We can see that the HDGED

algorithm finds the critical nodes in the combat network that

affect the combat capability and disintegrates them. The

results show that the HDGED algorithm disintegrates the

network combat capability to 0 after attacking 13 nodes.

However, the network structure is heavily damaged after

HDA attacks 13 nodes, but the network still has combat

capability. Analyzing the reason, the decision nodes in the

heterogeneous combat network have more influence on the

combat capability of the network than the sensor nodes and

the influence nodes, so the HDGED algorithm first

disintegrates the decision nodes in the heterogeneous

combat network. On the other hand, the HDA algorithm

FIGURE 13
Comparison of disintegration capability of HDGED and baseline algorithms on small world HCN of four different scales with considering the
cost of network attacks.
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FIGURE 15
Comparison of disintegration capability of HDGED andHDAon a scale-free HCNof scale 97. (A) is the HCNof scale 97, in which the blue node is
the sensor entity, the green node is the decision entity, the red node is the influence entity, the numbers of the three of them are 55, 12, and 30,
respectively. (B) shows the result after HDGED attacks the 13 nodes in the original network, and the gray node is the attacked entity, P( ~V) = 0. (C)
shows the result after HDA attacks the 13 nodes in the original network, P( ~V) = 0.63.

FIGURE 14
The performance of HDGED on the FINC military network without considering the attack cost and considering the attack cost. It can be seen
that with the removal of nodes, the network performance gradually decreases. (A, B) Shows specifically the degradation of the operational
performance of the FINC network when facing HDGED and other baseline strategies.
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attacks according to the node degree ranking and does not

consider the influence of nodes on the combat capability, so

the disintegration efficiency is lower than HDGED.

5 Conclusion

Research on the disintegration of heterogeneous networks

such as terrorist networks, disease transmission networks, and

military combat networks is of great significance in the real

world. However, the current network disintegration strategies are

limited to homogeneous networks and cannot be directly applied

to heterogeneous networks. Therefore, this paper takes the

heterogeneous combat network as the research object to study

the heterogeneous network disintegration strategy, and the main

contributions are as follows.

Firstly, this paper presents a optimal disintegration strategy of

heterogeneous combat networks based on the combination of graph

embedding and deep reinforcement learning. Through training, our

proposed HDGED algorithm can fully exploit the heterogeneous

and structural information of the heterogeneous network and

quickly find the critical nodes affecting the network function.

Secondly, our approach can be extended to heterogeneous

combat networks of different scales. We have conducted

comparative experiments on heterogeneous combat networks of

different scales. And experiments were carried out on the FINC

network. Ourmethod is able tomaintain stable disintegration effects

for heterogeneous combat networks of different sizes, and its

disintegration effects are all better than the baseline algorithm.

Thirdly, our method has good mobility for heterogeneous

combat networks with uneven combat capabilities. Through

extensive training for combat networks with uneven combat

capabilities, our method can discover the critical nodes that

affect the global network combat capabilities without getting

caught in a few localized nodes with extensive individual

combat capabilities, thus maintaining a stable disintegration

effect.

Fourthly, we design the normalized operational capability

index to more accurately assess the connectivity and operational

capability of the dynamically changing heterogeneous combat

network.

Finally, the research in this paper fills the gap in the study of

heterogeneous network disintegration, which has some

significance for exploring general heterogeneous network

disintegration and has necessary guidance for the future

intelligent combat. In the future, we will further study the

disintegration of HCNs under incomplete information

conditions.
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