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Identifying the material properties of unknown media is an important scientific/

engineering challenge in areas as varied as in-vivo tissue health diagnostics and

metamaterial characterization. Currently, techniques exist to retrieve the

material parameters of large unknown media from elastic wave scattering in

free-space using analytical or numerical methods. However, applying these

methods to small samples on the order of few wavelengths in diameter is

challenging, as the fields scattered by these samples become significantly

contaminated by diffraction from the sample edges. Here, we propose a

method to extract the material parameters of small samples using

convolutional neural networks trained to learn the mapping between far-

field echoes and the material parameters. Networks were trained with

synthetic time domain echo data obtained by simulating the free-space

scattering of sound from unknown media underwater. Results show that

neural networks can accurately predict effective material parameters such as

mass density, bulk modulus, and shear modulus even when small training sets

are used. Furthermore, we demonstrate in experiments executed in awater tank

that the networks trained with synthetic data can accurately estimate the

material properties of fabricated metamaterial samples from single-point

echo measurements performed in the far-field. This work highlights the

effectiveness of our approach to identify unknown media using far-field

acoustic reflection dominated by diffraction fields and will open a new

avenue toward acoustic sensing techniques.
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Introduction

Extracting material parameters of unknown objects using far-field scattered elastic

waves is an essential challenge for applications such as acoustic imaging, non-destructive

evaluation, and metamaterial characterization. Conventional approaches typically apply

numerical or computational methods to invert the wave equation and obtain the

properties of the medium under investigation. In these approaches the medium is
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probed in free-space with acoustic waves and the scattered sound

is processed to extract all of the components of material

parameter tensors such as mass density and stiffness.

However, these methods are limited to large-sized samples

where diffraction from the sample edges does not disturb too

much the scattered fields [1, 2]. Also, these methods typically

require probing the sample from multiple directions to obtain all

the desired properties.

However, in many cases including metamaterial design and

in-vivo tissue diagnostics, the unknown objects are elastically

small having diameters of a few wavelengths of the probing wave

and the influence of diffraction is significant. This makes the

aforementioned approaches ineffective and unable to produce all

the elastic properties of interest. For instance, ultrasound

elastography and impediography are used to extract only a

small number of stiffness tensor components and impedance

of abnormal tissues. Changes in these material properties could

sometimes be linked to pathological tissue changes [3, 4], which

suggests that tissue diagnostics could improve significantly if all

the mechanical properties of these complex, anisotropic media

were measured (instead of just a few) including all the stiffness

and mass density tensor components.

Techniques reduce the influence of diffraction in small-sized

samples have been studied, but most solutions are incompatible

with free-space diagnostics methods. For example, waveguides

are extensively used to remove the effect of edge diffraction

[5–14]. However, these methods are not applicable when the

objects cannot be placed in waveguides (e.g., non-destructive

evaluation such as tissue diagnostics) or when the existence of

waveguides can adversely affect the measurement itself [15] (e.g.,

metamaterial characterization underwater).

A recent study has shown that, instead of mitigating the

effects of diffraction, complex spatial diffraction patterns

obtained in near-field measurements can be used to effectively

extract the material parameters of small metamaterial samples

with the help of machine learning algorithms [16]. However,

near-field measurements are not always available, e.g., in-vivo

tissue diagnostics. Nevertheless, it has also been shown that

echolocating animals use far-field scattered wave to

discriminate acoustically small objects such as fish [17],

which suggests that the information contained in the

diffracted fields could be extracted from far-field single

point measurements.

Here, we propose a method to estimate the material

parameters from single point far-field scattered wave (echo)

measurements. In our approach, we utilize convolutional

neural networks (CNNs) to map the complex patterns

induced by edge diffraction in the time domain echoes to

material parameters such as mass density, bulk modulus, and

shear modulus. Moreover, we show that this method requires

probing the unknown material from only one direction, in

contrast to conventional analytical methods that require many

directions of incidence [1, 2]. Results show that CNNs trained

with synthetic time domain echoes can effectively predict these

material parameters. Importantly, we show that our CNN trained

with synthetic data can process actual measurements produced

by a hydrophone and can accurately predict the material

parameters of fabricated metamaterial samples, which

demonstrates that our method is robust to measurement errors.

Methods

Experimental setup

Figure 1A illustrates the experimental setup used to evaluate

the material parameters of a sample under test from far-field

scattered fields. In the setup, a small sample with known

geometry and unknown material parameters is placed

underwater and ensonified by a point source. The far-field

backscattered acoustic wave (echo) is recorded by a receiver

co-located with the source. The diffraction from the small sample

edges generates patterns in the far-field echoes which are

determined by the mechanical properties of the sample.

Without loss of generality, in this paper the sample is

isotropic and thus its elastic behavior is determined by mass

density (ρ), bulk modulus (K), and shear modulus (G). We also

assume the lossless sample is non-resonant and thus its

dispersion is negligible.

We consider a rectangular sample of widthW, height H, and

thickness T in a background medium of known material

parameters (ρ0, K0, G0). The sample is ensonified by a point

source situated a distance d in front of the sample. The distance d

is chosen large enough to assure that the evanescent field

components scattered by the sample attenuate enough at the

receiver.

Figure 1B shows examples of far-field echoes determined by

two material parameter sets [(ρ = 400 kg/m3, K = 0.5 GPa, G =

30 kPa) and (ρ = 6,000 kg/m3, K = 12 GPa, G = 50 GPa)] for a

scenario in which the source produces a 7-cycle Gaussian pulse of

full width at half maximum (FWHM) bandwidth 20% centered at

120 kHz in a water background (ρ0 = 1,000 kg/m3, K0 = 2.25 GPa,

G = 0 Pa) andW =H = 4λ, T = 0.16λ, d = 15λ. Here λ = 12 mm is

the wavelength corresponding to 120 kHz. The material

dispersion is considered small enough so that ρ, K, and G are

approximately constant in the frequency band excited. The

echoes were simulated using a three-dimensional time-domain

solver of the elastic wave equation included in the k-Wave

toolbox [18]. Figure 1B depicts two types of echo differences.

The first is an amplitude variation (top) mostly caused by

different mechanical impedances and the second corresponds

to relative phase variations between the various frequencies

contained in the acoustic pressure, which translate in slight

echo pattern changes in certain regions of the signal (bottom).

The latter are caused by how the fields scattered by the sample

edges (i.e., diffracted fields) interfere in the far-field. Our method
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seeks to map these pattern changes to the material parameters

that produced them.

Material parameter retrieval using CNNs

Convolutional neural networks are known for their

excellent performance in pattern recognition tasks. For

instance, they are used with great success for image

recognition and classification [19, 20]. Recent studies in

acoustics also showed that CNNs work well with acoustic

data to identify and classify sounds in both time- (1D) and

time-frequency domains (2D). In these works, the marine

mammal species were classified using the sounds produced by

animals using CNNs [21, 22]. Our goal here is to solve a

related regression problem by training CNNs directly on the

time-domain echo data to learn the edge-diffraction induced

patterns of temporal echoes (see Figure 1B) and map them to

the material parameter tuple (ρ, K, G).

Mathematically, the trained CNNs should provide the

closed-form mapping g: F → M, where F is the set that

contains far-field echoes and M is the N-dimensional set of

unknown material parameters. Finding g is a complicated

problem. However, finding the inverse mapping g−1: M → F
is a much easier task. For instance, with given material parameter

tuple m ∈ M, the corresponding far-field echo f ∈ F can be

simulated or even measured experimentally. Here, to estimate g,

we compute numerically f ∈ FT for a range of material

parameters m ∈ MT and train a CNN using this data. The

symbols FT and MT stand for the two subsets used for

training the CNN. The trained CNN extrapolates g for data

in the entire M. To assess the prediction performance, the

trained CNNs are tested on a separate dataset (test set)

f ∈ FV � g−1(MV), where the ground truth values of

material parameters m ∈ MV are known and MV ∩ MT � ∅
is the empty set. Equally important, we will see that the trained

CNN also provides insight into the salient echo features that

identifies the sample.

The set of material parameters M for which g is defined is

chosen depending on application. For example, if we want to

determine the effective macroscopic properties of a metamaterial

sample, we choose M to encompass all the possible material

parameters the sample could have. To illustrate the method in an

example, we consider a metamaterial sample designed to operate

underwater and whose elastodynamic behavior and effective

material parameters were determined in our previous work

[16] (see Figure 2). These effective properties obtained with a

different method will be used to validate the approach described

here. The metamaterial has W = H = 50 mm, T = 2 mm, and

consists of copper spheres with a diameter of 2 mm pressure

fitted inside a 3D-printed polylactic acid (PLA) matrix. The

fabricated metamaterial sample has the same geometry and

size as used in the simulations of far-field echoes. Far-field

echoes reflected by this metamaterial will be measured to

characterize the material properties of the sample using our

proposed approach.

In this design, a single unit cell consists of a copper sphere

inside an empty square of PLA and everything is permeated by

water. The material parameters of copper are ρ = 8,960 kg/m3,

K = 123 GPa, and G = 45 GPa and the surrounding water has the

FIGURE 1
Schematic of material characterization using far-field acoustic echoes. (A) A small sample of known geometry and unknown material
parameters is ensonified by a point source and echoes aremeasured by a receiver co-locatedwith the source. (B) Far-field echoes from two different
materials show complex time domain variation. The top and bottom panels show echoes before and after normalization. The change in material
parameters result in echo amplitude and shape variations.
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properties listed above. Hence, the fabricated artificial material is

expected to have effective macroscopic properties between those

of water and copper. However, the exact values depend strongly

on several unknown factors such as the friction force between the

PLA and the spheres and the exact material properties of the

plastic. Similar to [16], we choose the size ofM conservatively to

cover the material parameters of our fabricated sample, namely, ρ

∈ (400, 6,000) kg/m3, K ∈ (0.5, 12) GPa, and G ∈ (0, 50) GPa.

The source position and properties are the same as used in

the example shown in Figure 1. Namely, the source is placed

directly in front of the sample at d = 185 mm away from it. The

source ensonifies the metamaterial with a 7-cycle Gaussian pulse

centered at 120 kHz. Synthetic echoes were generated by

randomly sampling the material parameters

m � (ρ, K, G) ∈ MT ⊂ M. The mass density was sampled

following a uniform distribution. The elastic moduli K and G

cover large intervals of several orders of magnitudes and thus

their logarithms were sampled uniformly. For each m we

simulated the far-field echoes f = g−1(m). The echoes were

simulated using k-Wave at a sampling rate of 1 MHz. Each

echo consists of 314 samples (which corresponds to 0.314 ms

long signals) and is long enough to contain the diffraction

patterns. A total of 2000 echoes were generated and divided

into training and test sets with a ratio of 4:1. In this work, we

followed the paradigm described in [23] where test sets are used

to assess the loss function during training to prevent overfitting

and to assess the final performance of the network.

In the following, we will show that the prediction from

trained CNNs on synthetic test sets show good estimation of the

material parameters, and the accuracy improves when trained

with a second training dataset of narrower range informed by

the first set. More importantly, we will show that the CNNs

estimate very well the material parameters of the fabricated

metamaterial sample and provide very close values to those

reported in [16].

Results

Material parameter estimation in a large
material space

The CNN used in this work consists of three convolutional

layers followed by two fully-connected layers. The inputs are 1D

signals of 314 samples that represent time domain echoes. The

first convolutional layer has 16 channels and a kernel size of 1 ×

5 samples and is followed by a 1 × 2 max-pooling layer. The

second and third convolutional layers have 32 and respectively

64 channels with kernel sizes of 1 × 10 and respectively 1 ×

15 samples. Both of these convolutional layers are also followed

by 1 × 2 max-pooling layers. All three convolutional layers use

rectified linear units (ReLUs) activation functions. The two fully-

connected layers consist of 2048 nodes and employ ReLU

activation functions. The output layer consists of three nodes

that represent the estimated material parameters. The three

output nodes were linearly mapped to values between 0 and

1, and thus all outputs are equally weighted to compute the

mean-square-error (MSE) loss. The converged loss curves shown

in Supplementary Figure S1 of the supplementary material

illustrate that the networks were trained without overfitting

the training datasets.

Figures 3A–C show the estimated material parameters for the

media represented in the test set. Given the wide range of elastic

moduli covering multiple orders of magnitude, K and G (Figures

3A,B) are plotted on logarithmic scales and the mass density

(Figure 3C) is plotted on a linear scale. The scattered plots with

circular dots indicate the estimation versus ground truth value

and the red solid lines show the ground truth vs. ground truth

lines that become the indicator of correct prediction. The mean

and confidence interval of the predicted material parameters

calculated from 12–13 uniformly divided ranges of the material

parameters are depicted with blue lines and error bars,

respectively. The confidence interval was determined as ± 2σ

of the mean, where σ is the standard deviation in each range. If

the estimated material parameters followed normal distributions,

this would indicate 95% confidence intervals. Although the

distributions of our output variables are unknown, we verified

that 93% of the data fall within the ± 2σ confidence intervals.

FIGURE 2
Fabricated metamaterial sample consisting of copper
spheres embedded in a PLA matrix.
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Figures 3A–C show that the estimated material parameters

match well the real values. One exception is the shear modulus

for which smaller values have negligible influence on the

scattered acoustic field. Consequently, low G media behave

elastically like acoustic fluids and the exact shear modulus

value is irrelevant from the point of view of elastic waves

scattering, consistent with previous findings [16, 24].

After assessing theCNNperformanceusing the test set analysis,

we analyze the neural network ability to process experimental

measurements inevitably affected by experimental errors. The

experiment was performed in a cube-shaped water tank with a

side length of 50 cm (Figure 4A). A single Teledyne-Reson TC

4013 hydrophone was placed in front of the sample a distance

d = 185 mmaway from it to accurately replicate the setup shown in

Figure 1. The hydrophone plays the role of source and receiver. The

source pulse used in the experiment was identical to the one used for

synthesizing the training and test datasets, i.e., a 7-cycle Gaussian

broadband pulse centered at 120 kHz. The incident pulse was

measured 3 cm in front of the sample to measure the incident field

amplitude and thus calibrate the amplitude of the backscatteredfield.

Before submerging the sample into the water tank and doing the

measurement, the sample was degassed in a vacuum chamber to

removeanypossible air bubble formationat the surface and inside the

matrix, which influences the sample reflectivity.

The measured echo shown in Figure 4 (solid line) is passed

through the CNN. The estimated material parameters are �ρ �
1833.2 kg/m3, �K � 2.63 GPa, and �G � 256 MPa and the

confidence intervals of the estimation were ρ ∈ (782–3,632)

kg/m3, K ∈ (1.82–4.57) GPa, and G ∈ (39.8 MPa −4.79 GPa).

The estimated effective material parameters were roughly in

the same range as the previously reported values [16]. To

increase the precision of the estimation we train a second

CNN in a smaller material parameter spaceM′ obtained using
the ± 2σ confidence intervals given above. As a result, the

volume of M′ reduces by a factor of 15 compared to the

original space M.

Material parameter estimation in the
reduced material space

The training approach described in the previous section

was repeated with the smaller material parameter space M′.
Given the smaller M′, a total of 850 simulations were

generated and divided into training and test sets with a

ratio of 4:1. Figures 3D–F show the estimations for the test

set. The second CNN was able to estimate the material

parameters significantly better than the first CNN, as

FIGURE 3
Test set estimation of bulk modulus (A,D), shear modulus (B,E), and mass density (C,F). Bulk and shear moduli are plotted on log scales. Dotted
arrows indicate predicted values using the measured echo from the metamaterial sample, and the highlighted regions illustrate the confidence
intervals for those predictions. The first row shows estimated values in the largeM space and the second row shows those from the reducedmaterial
spaceM′. The confidence intervals (error bars) are significantly smaller for the lower row. The estimated values from the metamaterial sample
bounded by the confidence interval highlighted in (D–F) show excellent agreement with the reported values published in [16].
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reflected in a smaller confidence intervals than these shown in

Figures 3A–C. The second CNN performs better than the first

CNN because its output cover a much smaller space than the

first CNN. Consequently, the training set of the second CNN

samples more densely the network’s output space leading to a

better interpolation of the outputs than the first CNN.

After verifying that the CNN performs well, we passed the

measured echo through the CNN to obtain the effective material

parameters of the fabricated sample. The estimated effective

material parameters are highlighted together with their

confidence intervals in Figures 3D–F. The estimated values are
�ρ � 1251.3 kg/m3, �K � 2.45 GPa, and �G � 74.1 MPa and match

very well previously reported values for the same metamaterial

sample [16]. For reference, the effective material parameters

reported in the past work were �ρ � 1285.1 kg/m3, �K � 2.5

GPa, and �G � 0.72 MPa. The two sets of values are within

2.6% and 2% of each other for the mass density and the bulk

modulus, respectively. The discrepancy in the predicted shear

moduli is irrelevant, given that low values of G have no influence

on the scattering characteristics of the metamaterials, as

explained earlier. To further test the robustness of the trained

CNN, we have used an echo produced by the same metamaterial

sample but for a different position of the source/receiver. In this

additional experiment, the metamaterial sample was moved by

2 mm from its original position. (see Supplementary Figure S2).

To further validate the CNN estimations, we performed another

numerical simulation with the estimated material parameters and

compared the numerically simulated echo against themeasurement.

The measured and simulated echoes show an excellent match. The

small differences are unavoidable experimental errors caused, for

example, by the scattering from the physical hydrophone, which

contaminates the measured echo in the 0.7–0.8 ms interval.

However, we will show in the following that the disturbances

due to these errors have little influence on the parameter estimation.

Analysis of echo features targeted by
the CNN

Neural networks are excellent at mapping patterns in

complicated input signals to output quantities that influence

these patterns. An interesting opportunity arises in which we can

probe the CNN to understand salient features in the input echoes

that facilitate this mapping. Specifically, we performed an

analysis in which the input echoes were occluded with a

sliding window of size five samples, which is equivalent to the

kernel size of the first convolutional layer. We zeroed the echo

inside the occluded window and passed the modified signal to the

network. The variation of the CNN outputs provides significant

information about echo regions targeted by the CNN.

We applied this method in two scenarios. First, we occluded the

measured echo which we tested our CNNupon (Figure 4B). Second,

the occlusion analysis was applied to all the echoes in the test set for

the second CNN trained to process the reduced material spaceM′.
Figure 5A presents again the measured echo and Figures 5B–D

show the material parameters predicted with the occluded echo. The

horizontal axis in Figures 5B–D is the starting point of the occlusion

window. For instance, t = 0ms in Figure 5B indicates the occlusion

window was placed from t = 0ms–0.005ms. The regions that were

most sensitive to the estimation of material parameters are highlighted

in each figure. The results show that the sensitive regions for predicting

the bulkmodulus and themass densitywere around t=0.02ms and t=

0.04ms,which correspond to the early and tail regions of the echo pulse

(see Figure 5D). On the other hand, it can be seen that the region

targeted by the CNN to estimate the shear modulus was between

0.03 and 0.045ms, which corresponds to the mid-to-tail part of the

echo. It is also interesting to note that the disturbance caused by

experimental errors at t = 0.07–0.08ms has caused a variation in the

shear modulus which translated in a larger than expected estimated

value of 74.1MPa. But this error has not influenced the other two

FIGURE 4
Measurement setup (A) and simulated echo using the predicted material parameters (B). The far-field echo simulated using the predicted
material parameters shows excellent match with themeasurement, and demonstrates that the CNN estimates well the effective material parameters
of the sample.
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material parameters, which further demonstrates that the influence of

the shear modulus is represented in the latter part of the echo signal.

To generalize this observation, we performed the same

analysis to the simulated echoes in the test set. Figure 5E

shows the averaged waveform (solid line) of the normalized

170 echoes in the test dataset, and the ± one standard deviation

region (shaded areas). Together these provide an idea of the echo

waveforms produced by various material parameters. Figures

5F–H show the average variation in each material parameter and

up to one standard deviation away from the average (shaded

region) as a result of the occlusion. The quantities are normalized

to the case when no occlusion was applied. These metrics

represent the relative sensitivity to the occlusion. The targeted

regions for the bulk modulus and mass density were consistent

with the analysis applied only to the measured echo.

Between the two sensitive regions, t = 0.04 ms was

more sensitive (~ 2 folds) to the change in material

parameters, indicating that the CNN may be more

relying on this region. This is understandable because

the initial part of the echo represents the specular

reflection, and thus has the same shape independent on

the material parameters. However, this region still plays a

significant role in the CNN decisions most likely because

the early echo peaks represent time references used to

measure the timing of subsequent peaks.

Interestingly, Figure 5G shows that the CNN is targeting

different regions for G than the other two parameters, most

notably the later parts of the echo consistent with Figure 5C.

Figure 5C shows an additional echo region of interest than 5 g

because the simulated test echoes obtained for relatively small

values of G are essentially zero in the region 0.07–0.08 ms (see

Figure 5A). As a result, occluding this region influenced by the

experimental errors has no effect on the CNN output.

Discussion

In this work, we proposed a convolutional neural network-

based method for characterizing material properties of

unknown small material samples in free-space from single

point far-field measurements. The success of our method

relies on two factors, namely the excellent ability of CNNs

to deal with pattern recognition tasks and a judicious

generation of training datasets. Unlike conventional

methods that attempt to mitigate the diffraction from the

sample using large samples and multiple directions of

incidence, our approach maps the unique diffraction

patterns occurring in the time-domain echoes to the

material parameters that produced these patterns.

Moreover, analysis of the CNNs provide important insights

into what parts of the echoes are targeted by the networks.

This work presents amulti-tier method in which the accuracy

of the CNN increases with each level. Each level produces closed-

form expressions of the material parameters versus time-domain

echo for increasingly smaller material parameter space that

converges towards the effective material properties. The

advantage of this method is the significant reduction in the

training set size at the expense of training more networks.

FIGURE 5
Measured echo (A) and the average of the normalized echoes in the test set (E). Prediction change in bulk modulus (B,F), shear modulus (C,G),
and mass density (D,H) when input echoes were occluded with sliding time window. The top row illustrates the output material parameters by
occluding the measured echo, where the case of no occlusion is plotted with red dotted line. The bottom row illustrates normalized variation of the
output parameters where the dotted lines illustrate the mean from the test set and the shaded regions illustrate ± one standard deviation
regions. Regions that are most sensitive to changes are highlighted with a vertical band.
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The CNNs were trained with synthetic data obtained in

unsupervised numerical simulations, so that the training

procedure is fast and inexpensive. This is in contrast with

other machine learning approaches that rely on slow and

expensive measurements for training. Remarkably, our

CNNs trained with numerical simulations maintain

ability to characterize fabricated samples from measured

echoes.

Our approach is considerably simple yet has robust

performance. The only apparatus used to probe the sample is

a single hydrophone employed as both source and receiver and

the method require only one measurement point. The results of

this work highlight the effectiveness of identifying unknown

media using diffraction fields and will open a new avenue

toward far-field acoustic sensing.
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