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The physical process of stimulated Raman scattering (SRS) in the diamond and

the performance of the Raman laser in the multi-phonon absorption band of

2.5–3 μmwere theoretically studied. A theoretical model for the external-cavity

diamond Raman laser emitting at the waveband was built based on the Raman

coupled-wave equation and boundary conditions. Raman laser output

characteristics such as lasing threshold, input–output, and temporal

behavior of Stokes conversion were investigated and theoretically simulated

by varying the values of the length of the diamond and the transmittance of the

output coupler. The numerical modeling shows that to reduce the impact of the

multi-phonon absorption and obtain a higher conversion efficiency, it is

necessary to appropriately increase the output coupling of the cavity. Taking

the 3 μm diamond Raman laser optimization as an example, it is predicted that

the conversion efficiency of 10% could be obtained with a diamond length of

1 cm, a transmittance of 69%, and a pump intensity of 1.2 GWcm−2. The

theoretical model also could be used to investigate other wavelengths of

the external-cavity diamond Raman laser and be helpful for the optimum

design of diamond Raman lasers in the mid-infrared band.
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Introduction

Stimulated Raman scattering (SRS) has been widely used as an effective nonlinear

frequency conversion technique with the advantages, such as beam cleanup, pulse

compression, automatic phase-matching with no critical incident angle requirement,

and narrow linewidth [1–6]. Efficient solid-state Raman lasers have been demonstrated

with different configurations [7, 8]; among the various materials, the diamond possesses a

high Raman gain coefficient (17 cmGW−1), record-high thermal conductivity

(2,000 Wm−1K−1), low thermal expansion coefficient (1.1 × 10–6 K−1), a broad optical

transmission window (0.23–2.5 μm and >6.5 μm), and large Raman shift (1,332.3 cm−1)

[9–11]. All of this means that diamond is a Raman medium with great potential and

excellent performance.
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Extensive studies on diamond Raman lasers have been

demonstrated from ultraviolet to the mid-infrared spectral

regime [12–20]. Combined with the ‘‘beam cleanup’’ of Raman

conversion, an output power of 381 W and a conversion

efficiency of 61% have been achieved in the diamond

Raman laser at 1,234 nm [21]. Limited by the inevitable

multi-phonon absorption in a 2.5–6.5-μm region, the

conversion efficiency of 28.7% was obtained at 2.52 μm [22]

and pumped by a narrow linewidth Q–switched Tm:YAP laser

at 1.88 μm; the tunable diamond Raman laser was also

achieved at 2.5 μm [23]. The diamond Raman laser operates

in a 3.38–3.8-μm region with a pump source of 2.33–2.52 μm,

and the conversion efficiency of 15% was generated at

3.075 μm [18].

Coupled-wave equations are powerful tools for analyzing

laser performances and have been utilized to analyze and

predict Raman lasers [24–29]. Analytical analysis of the

external-cavity Raman laser was reported, which was

consistent with the experimental results, but there was no

analysis of the temporal pulse characteristics [30]. An

analytical model for mid-infrared silicon Raman lasers was

developed by J. Ma, and it could be applied in the theoretical

analysis of diamond Raman lasers, provided that there was no

multi-phonon absorption and the absorption coefficient of

pump and Stokes were assumed to be equal in the model;

due to multi-phonon absorption in 2.5–6.5 μm, the larger error

would occur by the simplified model [31]. At present, the Tm or

Ho-doped/co-doped solid-state laser has been rapidly

developed [32–38]; if they are used as pump sources,

combined with a diamond as the Raman medium, the Stokes

of 2.5–3 μm mid-infrared high-power or high-energy pulsed

laser would be obtained, which are located in the multi-phonon

absorption band of the diamond. Therefore, we carried out a

numerical simulation in order to be closer to the actual situation

rather than the analytical solution for a more rational design of

the diamond Raman laser in a multi-phonon absorption band.

In this study, we focus on our theoretical analysis of the

diamond mid-infrared Raman laser based on the coupled-wave

equations, which are located at the multi-phonon absorption

band. The characteristics of the mid-infrared diamond Raman

laser under different conditions are analyzed and discussed in

detail, such as lasing threshold, input–output, and temporal

behavior of Stokes conversion characteristics. The optimal

laser resonator schemes are presented thoroughly, which is

helpful for the optimum design of mid-infrared diamond

Raman lasers.

Theoretical model

According to λs = (1/λp-vR/c)
−1, where ]R is the frequency in

Hz of the Raman vibration, using a Tm or Ho-doped/co-doped

solid-state pulsed laser as the pump source, the Stokes

wavelength is 2.5–3 μm, as shown in Figure 1A. By neglecting

the anti-Stokes waves, high-order Stokes and other nonlinear

effects such as four-wave mixing, stimulated Brillouin scattering

(SBS), the evolution of coupled-wave equations of the pump, and

Stokes intensities with forward (+) and backward (−)

propagation for the extra-cavity Raman laser are given by [27,

30, 31]

(± z

zz
+ n

c

z

zt
)I±p � −αpI±p − g

λs
λp

(I+s + I−s )I±p,

(± z

zz
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c

z
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)I±s � −αsI±s + g(I+p + I−p)I±s

, (1)

FIGURE 1
(A) Raman signal versus the pump wavelength. (B) Absorption spectrum of the diamond.
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where z is the position in the cavity, n is the refractive index of the

diamond, t is the time, g is the effective Raman gain coefficient,

and αp and αs are the linear absorption loss coefficients at the

pump (λp) and Stokes (λs) light, respectively. The corresponding

boundary conditions are

I+p(0) � (1 − Rpl)Iin + RplI
−
p(0),

I−p(z) � RprI
+
p(z),

I+s (0) � RslI
−
s (0),

I−s (z) � RsrI
+
s (z)

, (2)

where Iin is the input pump intensity, and Rm,n is the reflectivity

of the resonator at both ends for the pump and Stokes. The

absorption coefficient of the diamond is shown inFigure 1B,

which was calculated by the following equation (39):

a � −
ln(−T2+

						
T4+4T2

mR2
√
2TmR2 )
l

, (3)

where R=(n-1)2/(n+1)2 and n is the refractive index of the

diamond; T = 1-R, Tm is the transmittance measured using

the Bruker OPTICS GmbH Fourier transform infrared

spectrometer, and l is the length of diamond. It is to be noted

here that the absorption parameters discussed in the following

studies are all based on the measurements of the inset. The

simulation analysis is directly realized by programming

according to Eqs 1, 2, and the reliability of the program has

been verified in [23], so there is no other formula derivation.

Simulation results and discussion

First, to more intuitively understand the process of the SRS in

dynamic stability, the intensity distributions of the pump and Stokes

in the resonator for an input intensity of Iin = 800MWcm−2 are

simulated, and the intra-cavity fields from the models as a function

of distance along the cavity are shown in Figure 2A. Taking the

output Stokes-shifted wavelength (λs) of 3 μm (αs = 1.58 cm−1) as the

research object and the corresponding pump wavelength (λp) as

2.14 μm (αp = 0.11 cm−1), g = 1.59 cmGW−1. One observes that for

L = 1 cm (the cavity length is equal to the length of the diamond,

theoretically), the pump intensity is rapidly depleted due to the

conversion to Stokes radiation and the linear absorption loss as it

propagates along the diamond. After being reflected at the right end,

the pump intensity propagates in the inverse direction and is damp

continually (dotted line, black). As the pump intensity gradually

decreases, the SRS process gradually decreases; therefore, the

intensity distribution of Stokes (solid line, red) shows an upward

and then downward trend. The output intensity of the Raman laser

is the difference between the forward propagation and the backward

propagation on the right end (output transmittance of 10%), and the

output intensity is 6.5 MWcm−2 under these conditions.

Actually, the length of the cavity is longer than that of the

Raman medium; therefore, the intensity distribution is simulated

as the length of the cavity, and diamond lengths are 1.5 cm and

1 cm, respectively, as shown in Figure 2B. The straight line

represents the intensity distribution that does not change

within the distance between the mirrors and the diamond,

which means that there is no SRS process in the absence of a

Raman medium.

The input–output characteristics of Stokes relating to

different parameters are presented, and the output intensity of

Stokes Iout was defined as Iout = Is
+(L) (1-Rsr), as shown in

Figure 3. The pump intensity of 1 GWcm−2 is set in Figures

3A,C. Different optimal transmittances corresponding to

different diamond lengths for the maximum output intensity

are shown in Figure 3A. As can be seen, the optimal T is larger for

the longer length of the diamond, but the output intensity is

reduced. The output intensities of 57.1 MWcm−2 (L = 1 cm, T =

63%) and 29 MWcm−2 (L = 3 cm, T = 87%) are obtained,

respectively. In Figure 3B, above the threshold intensity, the

FIGURE 2
Intensity distributions of the pump and Stokes with the cavity. (A) 1-cm length of the cavity. (B) 1.5-cm length of the cavity.
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output intensity of the Raman laser increases linearly with the

increase of the pump intensity. The slope of the output intensity

increases with the increase of T, but the threshold intensity gets

higher. The characteristic relationship between the output

intensity and L with different T is studied, as shown in

Figure 3C. The different optimal lengths of the diamond

correspond to different T for the maximum output intensity.

No Stokes is observed as the length of the diamond is less than

0.85 cm for T = 80%, which is due to the intensity of 1 GWcm−2

below the threshold intensity.

In addition to the parameters such as pump intensity, L, and

T, the influence of linewidth on the laser performance also needs

to be considered. The Raman gain can be measured by the

relationships [40]:g � gR · ( 1
1+ΔvP/ΔvR), where gR � �A�τ

L · (Es−E0
s )/E0

s
Ep

,
�A and �τ are the effective area and pulse width of the pump,

respectively. L is the length of the diamond, Es is the amplified

probe energy, Es
0 is the unamplified probe energy, and Ep is the

pump energy. Δ]p and Δ]R (1.5 cm−1) are linewidths of the pump

and Raman linewidth of the diamond. The effective Raman gains

constant g that is lower than the peak Raman gain constant of the

diamond, gR, due to the convolution of the pump-beam spectrum

of spectral width Δ]p with the Raman gain spectrum of the

spectral width Δ]R. The relationship between the normalized

effective Raman gain and the linewidth is shown in Figure 4A.

The effective Raman gain decreases as the linewidth increases,

corresponding to the increase in the threshold intensity, as shown

in Figure 4B. Therefore, it is necessary to choose a pump source

with a narrower linewidth to reduce the threshold intensity or

improve the output performance of the Raman laser.

By the coupled-wave equations and the boundary conditions,

the threshold characteristics of the extra-cavity diamond Raman

laser are calculated under different transmittances and pump

wavelengths; the threshold intensity as a function of L for

different parameters is shown in Figure 5. The simulation

parameters in Figure 5 (an, n = 1, 2, and 3) are based on our

measurement, and the parameters in Figure 5 (bn, n= 1, 2, and 3) are

FIGURE 3
Input–output characteristics of the diamond Raman laser.(A) Output intensity versus T (B) Output intensity versus pump intensity (C) Output
intensity versus L.

FIGURE 4
(A) Normalized effective Raman gain versus the linewidth. (B) Threshold intensity versus length for various linewidths.
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based on [10]. The measured linear propagation loss is larger than

the reported linear propagation loss in [10]; thismay be attributed to

introduced impurities in the processing of diamond; therefore, the

threshold intensity in Figure 5 (an, n = 1, 2, and 3) is larger than that

in Figure 5 (bn, n = 1, 2, and 3) under the same conditions. Themid-

infrared diamond cavities can oscillate for any given length if enough

pump intensity is available, even if strong absorption occurs in these

bands. In addition, it is evident that for a fixed T, there is an

optimum L in which the lasing threshold reaches the minimum.

According to [9], the Raman gain coefficient decreases with the

increases in pump wavelength, that is, the gain of 2.2 μm is larger

than the gain of 2.3 μm or 2.5 μm, but the threshold intensity is

larger due to stronger absorption of Stokes in 3.11 μm

(corresponding to the pump wavelength of 2.2 μm). The

threshold intensity reaches GWcm−2 magnitude; it is not

advisable to adopt the traditional method for reducing the

Fresnel reflection loss by plating the antireflection film on both

ends of the diamond, but the Brewster-cut diamond can be applied,

FIGURE 5
Threshold intensity versus L for various output facet transmittances with different pump wavelengths.

FIGURE 6
Output intensity versus output facet transmittance T and diamond length L for different pump intensities. (A) Ip = 750 MWcm−2, (B) Ip =
950 MWcm−2, and (C) Ip = 1.2 GWcm−2.
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which can effectively avoid the Fresnel reflection loss, and the

diamond has a very high damage threshold (3–4 GWcm−2) [20].

According to the previous analysis, the parameters need to be

analyzed in detail. As shown in Figure 6, the influence of the

resonator parameters, T and L, on the output intensity of the

extra-cavity diamond lasers is studied and simulated with the 3D

plot. As can be seen, the optimal L and T could be found under

certain pump intensities. When the diamond length is fixed,

different pump intensities correspond to different values of the

optimal T and the optimal T increases with the increases in the

pump intensity. When L is fixed, the gain in the resonator

increases with the increases in the pump intensity; at the

same time, the output efficiency can effectively be improved

by increasing T, as shown in Figure 6.

The output intensity of Stokes increases with the increases of the

diamond length on the condition of the pump intensity, and T is

constant and then reaches its highest intensity for a certain L.With

further increasing diamond length, the output intensity decreases

due to the overall net gain of the Raman laser and is reduced for the

strong absorption loss in a longer diamond length. Due to the three-

phonon absorption of the diamond at ~3 μm, the output intensity

could be effectively improved by properly increasing the T value of

the resonator, but the smaller number of Stokes light photons are

reflected into the resonator, and it is difficult to form the oscillation,

which results in the higher threshold. For a low T of the resonator,

more Stokes light photons are confined in the cavity, and multiple

oscillations could be formed in the resonator; the output intensity is

correspondingly reduced for the low T value, as shown in Figure 6.

Therefore, to reduce the absorption loss of Stokes in the resonator,

the larger T of the resonator is preferred for the stronger pump

intensity in the multi-phonon absorption band. In this case,

maximum conversion efficiencies of 10% are obtained at an

input intensity of 1.2 GWcm−2 with L = 1 cm and T = 69%.

Furthermore, increasing the length will result in lower conversion

efficiency and higher lasing threshold simultaneously.

The temporal behavior of Stokes conversion could be analyzed

by the output pulse shapes of the pump and Stokes with different

pump intensities, as shown in Figure 7. In Figure 7A, no appearance

of Stokes was observed with the pump intensity below the threshold

intensity, and the residual pump intensity is equal to the incident

pump intensity, theoretically, but it is not in Figure 7A; it is due to

the linear absorption loss of the diamond. The pump intensity is

rapidly converted to the Raman intensity once the threshold

intensity is reached in the SRS process. This results in pump

intensity decreases; however, the pump intensity does not

continuously decrease, which corresponds to a depression in the

residual pump, as shown in Figures 7B,C. Pulse-shortening is well

known in the Raman lasers, and the consequence is that the Stokes

pulses often have a much shorter duration than the pump pulses,

sometimes by order of magnitude. The inset in Figure 7B is the

temporal pulse of Stokes with the pump intensity of 750 MWcm−2.

The Stokes pulse duration of 4.4 ns is obtained under the pump

pulse duration of 10 ns in Figure 7 (c). The temporal pulse profiles

share similar characteristics to those seen in [18, 41] and verify the

correctness of our theoretical analysis.

Conclusion

In summary, we have modeled the characteristics of the extra-

cavity diamond mid-infrared Raman laser based on the coupled-

wave equation and boundary conditions with different parameters,

which is helpful for understanding the physical process of SRS in the

diamond. The input–output, threshold intensity, and temporal

behavior of Stokes conversion characteristics of the Raman laser

with different conditions are presented by numerically solving the

coupled-wave equations. The performance of the length and the

transmittance are simulated and discussed, which is helpful for the

optimization of the diamond Raman laser in the mid-infrared

regime.

FIGURE 7
Temporal pulse behavior of the pump, residual pump, and Stokes. (A) Pump intensity below the threshold intensity. (B) Pump intensity is
750 MWcm−2. (C) Pump intensity is 1.2 GWcm−2.
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