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The Caputo fractional order Lotka-Volterra system is time-consuming in

practical applications, since its starting point is fixed. To tackle this problem,

a short memory fractional order Lotka-Volterra system (SMFrLVS) is proposed,

where the chaotic attractor of the short memory fractional order Lotka-Volterra

system is achieved by the predictor-corrector method. Then, a multilayer

fractional order Lotka-Volterra system with short memory (MSMFrLVS) is

introduced, whose chaotic behaviors are explored via Poincare sections and

frequency power spectra. A quantum image encryption algorithm is proposed

by combining MSMFrLVS with quantum dual-scale triangular map. A quantum

circuit of the dual-scale triangular map is designed with ADDER-MOD2n. At the

permutation stage, the plaintext image is transformed into quantum form with

the generalized quantum image representation model. The resulting quantum

image is divided into sub-blocks and scrambled by the quantum dual-scale

triangular map. Subsequently, the intra and the inter permutation operations on

bit-planes are realized by sorting pseudo-random sequence and by quantum

Gray code, respectively. At the diffusion stage, the initial values of theMSMFrLVS

are generatedwith a plaintext correlationmechanism. The ciphertext image can

be acquired by carrying out three-level diffusion operations. It is demonstrated

that the proposed quantum image encryption algorithm performs better than

some typical image encryption algorithm in terms of security, robustness,

computational complexity and encryption speed.
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1 Introduction

Lots of efficient quantum image encryption algorithms have been developed [1–5].

Since chaotic systems have good dynamic characteristics, they are very suitable for

quantum image encryption [6–8]. Dai et al. presented an image encryption and

compression algorithm based on 4D hyper-chaotic Henon map [9]. Zhou et al.
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designed a secure quantum image encryption algorithm based on

5D hyper-chaotic system [10]. Ye et al. explored a fast image

encryption scheme based on public key cryptosystem, quantum

logistic map and the substitution-permutation network [11].

Khan et al. proposed a fast quantum image encryption

scheme based on affine transform and fractional order

Lorenz-like chaotic dynamical system [12]. Signing et al.

provided an image encryption algorithm by combining a

chameleon chaotic system with dynamic DNA coding [13].

Wang et al. researched a color image encryption scheme by

combining hyper-chaotic system with improved quantum

revolving gate [14]. Li et al. proposed an image encryption

scheme by combining quantum chaos with discrete fractional

wavelet transform [15]. Wu et al. designed a quantum image

encryption based on 2D logistic map and quantum Baker map

[16]. Hu et al. presented an efficient quantum color image

encryption scheme using a new 3D chaotic system [17].

Kamran et al. proposed a secure image encryption algorithm

based on quantum walk and chaos [18].

There have been numerous proposals for quantum image

encryption algorithms with image scrambling methods [19–21].

Hu et al. proposed a quantum image encryption algorithm based

on Arnold transform and wavelet transform, where the wavelet

coefficients are scrambled by the Arnold transform [22]. Liu et al.

designed a quantum image encryption algorithm by combining

general Arnold transform with substitution tables (S-box)

scrambling [23]. Liu et al. developed a quantum block image

encryption algorithm with quantum Arnold transform based on

the superposition property of quantum states [24]. Zhou et al.

suggested a multi-image encryption scheme based on quantum

3D Arnold transform [25]. However, these methods have some

limitations and cannot be used to scramble the rectangle image.

For any rectangle image, it should be expanded into the square

image or divided into many square images before scrambling,

which will add extra space and increase computational

complexity.

A fast quantum image encryption scheme for a rectangle

image based on the MSMFrLVS and quantum dual-scale

triangular map is proposed. During the encryption process,

the plaintext image is represented with the generalized

quantum image representation (GQIR) model, the image sub-

blocks are shuffled with quantum dual-scale triangular

map. Subsequently, the bit-level permutation is performed by

the random sequence generated by theMSMFrLVS and quantum

Gray code, respectively. Then, the three-level diffusion

operations among the pixel values, binary bits and pixel bits

are implemented by the chaotic sequences originated by the

MSMFrLVS. Simulation analyses show the proposed quantum

image encryption algorithm has good encryption performance

and can resist any key sensitivity attacks and any brute-force

attacks.

The rest of this paper is organized as follows: The basic

knowledge of the GQIR for images, the MSMFrLVS and the Gray

code are introduced in Section 2. The quantum circuits of dual-

scale triangular map are designed in Section 3. The proposed

quantum image encryption scheme is shown in Section 4.

Numerical simulation analyses are described in Section 5.

Finally, a conclusion is given in Section 6.

2 Preliminaries

2.1 Generalized quantum image
representation

In Ref. [26], the generalized quantum image

representation (GQIR) can store arbitrary integer numbers

H × W quantum images with �log 2H� + �log 2 W� + q qubits,

where q is the image color depth, �log 2 H� and �log 2 W�
remarked as h and ω are the sizes of the Y-axis coordinate

information and the X-axis coordinate information,

respectively. Hence, an H × W quantum image |I〉 with

GQIR can be expressed as

|I〉 � 1( �
2

√ )h+ω ⎛⎝ ∑H−1

Y�0
∑W−1

X�0
⊗q−1
i�0

∣∣∣∣Ci
YX〉|YX〉⎞⎠

|YX〉 � ∣∣∣∣y0y1/yh−1〉|x0x1/xω−1〉, yi, xi ∈ {0, 1}
|CYX〉 � ∣∣∣∣C0

YXC
1
YX/Cq−1

YX〉, Ci
YX ∈ {0, 1}

,
(1)

where |YX〉 and |CYX〉 are the location information and the

color information, respectively.

2.2 Multilayer short memory fractional
order Lotka-Volterra system

2.2.1 Short memory fractional order system
The α order Caputo fractional derivative of function f(t) is

defined as [27]

C
t0
Dα

t f(t) �
1

Γ(1 − α)∫t

t0

f(s)
(t − s)α ds, 0< α< 1, (2)

where Γ(·) is the Gamma function. The standard Caputo

fractional order system is illustrated as

FIGURE 1
Short memory fractional order system.
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C
t0
Dα

t x(t) � f(t, x(t)), x(t) � x0, (3)

where t0 is the fixed starting point of the fractional order system.

The standard fractional order system Eq. 3 stores memory

from t � t0. Wu et al. proposed a short memory fractional order

system which holds memory from t* � tk and provides more

freedom in the real-world applications [28], as shown in Figure 1.

Let the interval [t0, T] be divided into m1 subintervals of length

n1h1 such that [t0, T] � [t0, t1] ∪ [t1, t2] ∪/∪ [tm1−1, tm1], n1 is

an integer and h1 � (T − t0)/N1. The short memory fractional

order system is given as

{ C
t*
Dα

t x(t) � f(x, t), x(t0) � x0

tp � tk, t ∈ [tk, tk+1], k � 0, . . . , m1 − 1
. (4)

2.2.2 Short memory fractional order Lotka-
Volterra system

The fractional order Lotka-Volterra chaotic system is defined

as [29].

C
t0
Dα1

t x � γx + ex2 − ϖxy − λzx2

C
t0
Dα2

t y � −μy + τxy
C
t0
Dα3

t z � −ξz + σzx2

, (5)

where αi(i � 1, 2, 3) represents the fractional order of the system
Eq. 5, γ denotes the intrapopulation natural growth rate of the

prey, ϖ denotes the effect of the predator on the prey, μ is the

intrapopulation natural growth rate of the predator, τ is the

positive effect of the prey on the predator, the parameters

γ,ϖ, μ, τ, and the constants e, ξ, σ are positive.

We define the SMFrLVS as

C
t*
Dα1

t x � γx + ex2 − ϖxy − λzx2

C
t*
Dα2

t y � −μy + τxy
C
t*
Dα3

t z � −ξz + σzx2
. (6)

In Eq. 6, the starting point of the SMFrLVS is the variable

point t* rather than a fixed point t0 such that the SMFrLVS

improves the speed of the numerical computation.

2.2.3 Predictor-corrector method for the
SMFrLVS

The predictor-corrector method is one of the most widely

methods used in the chaotic analysis of the fractional order

system, which explains the approximate solution of the nonlinear

fractional order differential equations. The SMFrLVS is solved by

the predictor-corrector method as follows.

For the interval [t0, t1], the predicted values are given as

xp
1 � x0 + hα11

α1Γ(α1) (γx0 + ex2
0 − ϖx0y0 − λz0x

2
0)

yp
1 � y0 + hα21

α2Γ(α2) ( − μy0 + τx0y0)
zp1 � z0 + hα31

α3Γ(α3) ( − ξz0 + σz0x
2
0)

. (7)

The numerical solutions are determined by

x1 � x0 + hα11
Γ(α1 + 2) [(1 + α1)(γx0 + ex2

0 − ϖx0y0 − λz0x
2
0) + γxp

1 + exp
1 2 − ϖxp

1y
p
1 − λzp1x

p2
1 ]

y1 � y0 + hα21
Γ(α2 + 2) [(1 + α2)( − μy0 + τx0y0) + τxp

1y
p
1 − μyp

1 ]
z1 � z0 + hα31

Γ(α3 + 2) [(1 + α3)( − ξz0 + σz0x
2
0) + σzp1x

p2
1 − ξzp1 ]

.

(8)

For t ∈ [tk, tk+1], 1≤ k≤m1 − 1, and m1 ≥ 2, the predicted values

are defined as

xp
k+i+1 � xk + hα11

Γ(α1)∑ij�0bj,i+1(γxk + ex2
k − ϖxkyk − λzkx

2
k)

yp
k+i+1 � yk + hα21

Γ(α2)∑ij�0bj,i+1( − μyk + τxkyk)
zpk+i+1 � zk + hα31

Γ(α3)∑ij�0bj,i+1( − ξzk + σzkx
2
k)

, (9)

where the coefficient bj,i+1 is expressed as

bj,i+1 � 1
α
[(i + 1 − j)α − (i − j)α]. (10)

The numerical solutions are defined as

xk+i+1 �xk + hα11
Γ(α1 +2)

⎛⎝∑i
j�0
aj,i+1(γxk+j + ex2

k+j −ϖxk+jyk+j −λzk+jx2
k+j)

+γxp
k+i+1 + exp2

k+i+1 −ϖxp
k+i+1y

p
k+i+1 −λzpk+i+1xp2

k+i+1)
yk+i+1 �yk + hα21

Γ(α2 +2)
⎡⎢⎢⎣∑i
j�0
aj,i+1(−μyk+j + τxk+jyk+j)+ τxp

k+i+1y
p
k+i+1 −μyp

k+i+1⎤⎥⎥⎦
zk+i+1 � zk + hα31

Γ(α3 +2)
⎡⎢⎢⎣∑i
j�0
aj,i+1(− ξzk+j +σzk+jx2

k+j)+σzpk+i+1xp2
k+i+1 − ξzpk+i+1⎤⎥⎥⎦

,

(11)

where the coefficient aj,i+1 is given as

aj,i+1 �
⎧⎪⎨⎪⎩ iα+1 − (i − α)(i + 1)α, j � 1;(i − j + 2)α+1 + (i − j)α+1 − 2(i − j + 1)α+1, 1< j≤ i;

1, j � i + 1.

(12)

The parameters are set as γ � 1, ϖ � 1, μ � 1, τ � 1, e � 2,

ξ � 3, σ � 2.7, h1 � 0.01, N1 � 5000, and the initial values are

taken as [1, 1.4, 1]. When αi(i � 1, 2, 3) � 0.8, the chaotic

attractors of the SMFrLVS with phase portraits are plotted in

Figure 2. When αi(i � 1, 2, 3) � 0.95, the chaotic attractors of the

SMFrLVS with phase portraits are described in Figure 3. The

SMFrLVS can significantly save time and is more suitable for

practical applications than the fractional order Lotka-Volterra

system, since the SMFrLVS starts from t*, as shown in Table 1.

2.2.4 Multilayer short memory fractional order
Lotka-Volterra system

We propose the MSMFrLVS as follows
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C
tp
Dα1′

t x � γx + ex2 − ϖxy − λzx2

C
tp
Dα2′

t y � −μy + τxy
C
tp
Dα3′

t z � −ξz + σzx2

C
tp
Dα4′

t w � (υx2 − 1)tanh(w)
, (13)

where the parameters γ,ϖ, μ, τ, and the constants e, ξ, σ, υare

positive, α′i(i � 1, 2, 3, 4) represent the fractional order of the

MSMFrLVS, the starting point of the MSMFrLVS is tp. The

numerical solutions of the MSMFrLVS are acquired with the

predictor-corrector method, the chaotic attractors of the

MSMFrLVS with phase portraits are depicted in Figure 4,

when α′i(i � 1, 2, 3, 4) � 0.95 and N1 takes 2000, 3000, 4000,

5000, the values of other parameters remain unchanged, it is

illustrated that the number of layers of the MSMFrLVS increases

with the increase of N1. When N1 � 5000 and

α′i(i � 1, 2, 3, 4) � 0.7, 0.8, 0.85, 0.9, the values of other

parameters remain unchanged, the chaotic attractors of the

MSMFrLVS with phase portraits are displayed in Figure 5, it

is shown that the number of layers of the MSMFrLVS decreases

as the increase of the fractional order.

It is difficult to describe the orbits of a chaotic system

concisely due to the disorder of the orbits. One of the ideas is

to reduce the dimension of description and simplify the

trajectory of the space into a series of discrete points, thus the

Poincare section is observed. A large number of points observed

at the intersection of the phase space trajectory and the Poincare

section are a feature of the chaotic motion, as shown in Figure 6.

In addition, the continuous frequency power spectrum is

generally regarded as an indicator of chaos, the frequency

power spectra of the MSMFrLVS are plotted in Figure 7.

2.3 Gray code

Gray code is a signal coding method and generally used in the

digital conversions [30]. Gray code can be expressed as

{ ϕi � δi ⊕ δi+1, i � 0, 1, . . . , q − 1
ϕq � δq

, (14)

where δ is a positive integer with binary code δ � δqδq−1/δ1δ0.

3 Quantum realization of the dual-
scale triangular map

3.1 Quantum representation of the dual-
scale triangular map

Li et al. [31] proposed 2D dual-scale triangular map which

can be utilized to scramble a rectangle image directly. For a given

FIGURE 2
Phase portraits of the SMFrLVS when αi (i = 1, 2, 3) = 0.8 in: (A) x-y-z space, (B) x-y, (C) x-z, (D) y-z planes.
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M × N matrix, (x, y) represent the pixel coordinates and

(x′, y′) corresponding to the changed pixel coordinates. 2D

dual-scale triangular map is defined as

[ x′
y′] � [ a 0

c d
][ x

y
]mod[M

N
], (15)

where a, c and d are non-negative integers. Note that a and M

should be co-prime, so should d and N.

The inverse dual-scale triangular map is⎧⎨⎩ x � (a−1x′)modM

y � (d−1y′ − px + s)modN
, (16)

where p � d−1c and s � ceil(cM/N) ·N · d−1, ceil(x) denotes that
each element of x is rounded to the nearest integer greater than or

equal to that element. (a−1a)modM � 1 and (d−1d)modN � 1.

According to the classical dual-scale triangular map, the quantum

representation of the dual-scale triangular map can be expressed as

{ ∣∣∣∣x′〉 � ∣∣∣∣axmod 2m〉∣∣∣∣y′〉 � ∣∣∣∣(cx + dy)mod 2n〉 . (17)

Correspondingly, the quantum representation of the inverse

dual-scale triangular map can be defined as

{ ∣∣∣∣x〉 � ∣∣∣∣a−1x′mod 2m〉∣∣∣∣y〉 �
∣∣∣∣∣(d−1y′ − px + s)mod 2n〉 . (18)

3.2 Quantum circuits for the dual-scale
triangular map and the inverse dual-scale
triangular map

3.2.1 Quantum circuits for the dual-scale
triangular map

According to Eq. 17, the states |x′〉 and |y′〉 are independent
of each other. Therefore, the quantum circuits of |x′〉 and |y′〉
can be designed.

(1) Quantum circuit |x′〉. According to Eq. 17, |x′〉 can be

achieved with a steps.∣∣∣∣x, x〉 →
∣∣∣∣x, 2xmod 2m〉 →/→

∣∣∣∣x, axmod 2m〉. (19)

axmod 2m from the first step to the last step can be acquired

with the ADDER-MOD2m network [32], as shown in

Figure 8A.

FIGURE 3
Phase portraits of the SMFrLVS when αi (i = 1, 2, 3) = 0.95 in: (A) x-y-z space, (B) x-y, (C) x-z, (D) y-z planes.
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(2) Quantum circuit |y′〉. According to Eq. 17, |y′〉 can be

realized with c + d + 1 steps.

|x, x〉 → |x, 2xmod 2n〉 →/→ |x, cxmod 2n〉 →
∣∣∣∣y, cxmod 2n〉

→
∣∣∣∣y, (cx + y)mod 2n〉 →/→

∣∣∣∣y, (cx + dy)mod 2n〉.
(20)

It shows that cxmod 2n from the first step to the c-th step can

be obtained with the ADDER-MOD2n network. In the (c + 1)-th
step, x is substituted for y. (cx + dy)mod 2n from the (c + 2)-th
step to the last step can be constructed with the ADDER-MOD2n

network. The quantum circuit |y′〉 is depicted in Figure 8B.

FIGURE 4
Phase portraits of the MSMFrLVS in x-y-w space and x-z-w space: (A,B): N1 � 2000, (C,D): N1 � 3000, (E,F): N1 � 4000, (G,H): N1 � 5000.

FIGURE 5
Phase portraits of the MSMFrLVS in x-y-w space and x-z-w space: (A,B): α′i � 0.7, (C,D): α′i � 0.8, (E,F): α′i � 0.85, (G,H): α′i � 0.9

TABLE 1 Time comparison between the SMFrLVS and the fractional
order Lotka-Volterra system.

N1 The SMFrLVS (s) Fractional order Lotka-Volterra
system (s)

4,000 0.863 14.575

8,000 0.992 66.054

16,000 1.077 226.386

30,000 1.272 1306.923

40,000 1.437 1802.287

50,000 1.624 3,256.137
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3.2.2 Quantum circuits for the inverse dual-scale
triangular map

To recover the plaintext image from the scrambled image, the

quantum circuits of |x〉 and |y〉 should be involved. From Eq. 18,

the inverse transform uses subtraction operation. A theorem

stated in [32] provides a solution to realizing the subtraction

operation. (x − y)mod 2n � (x + (�y + 1))mod 2n, (21)

where �y � yn−1yn−2 . . .y0, yi � 1 − yi, i � n − 1, n − 2, . . . , 0.

(1) Quantum circuit |x〉. FromEq. 18, it requires a−1 steps to realize
|x〉, as illustrated in Figure 9A. |x〉 can be constructed as∣∣∣∣x′, x′〉 →/→

∣∣∣∣x′, a−1x′mod 2m〉. (22)
a−1x′mod 2m from the first step to the last step can be created

with the ADDER-MOD2m network.

(2) Quantum circuit |y〉. By recalling Eq. 18, |y〉 can be

implemented with p + d−1 + 6 steps, as depicted in

Figure 9B.

|�x, �x〉 →/→
∣∣∣∣�x, p�xmod 2n〉 →

∣∣∣∣p, p�xmod 2n〉 →
∣∣∣∣p, p(�x + 1)mod 2n〉

→
∣∣∣∣y′, p(�x + 1)mod 2n〉 →/→

∣∣∣∣∣y′, (p(�x + 1) + d−1y′)mod 2n〉
→

∣∣∣∣∣s, (p(�x + 1) + d−1y′)mod 2n〉 →
∣∣∣∣∣s, (p(�x + 1) + d−1y′ + s)mod 2n〉.

(23)
It demonstrates that p�xmod 2nfrom the first step to the p-th

step can be obtained with the ADDER-MOD2n network. �x is

superseded by p in the (p + 1)-th step. In the (p + 2)-th step,

p(�x + 1)mod 2n is acquired with the help of the ADDER-

MOD2n operation. In the (p + 3)-th step, p is replaced by y′.
From the (p + 4)-th step to the (p + d−1 + 4)-th step,

(p(�x + 1) + d−1y′)mod 2n is generated with the ADDER-

MOD2n network. In the (p + d−1 + 5)-th step, y′ is

substituted for s. In the last step, (p(�x + 1) + d−1y′ +
s)mod 2n is accomplished by the ADDER-MOD2n network.

4 Quantum image encryption and
decryption algorithm

4.1 Quantum image encryption algorithm

The proposed quantum image encryption scheme based on

theMSMFrLVS and quantum dual-scale triangular map is shown

in Figure 10. The plaintext image is represented with the GQIR

model. During the permutation stage, the position information of

the quantum image is shuffled by the block-level permutation

and the intra and the inter bit-level permutation operations,

while the color information of the quantum image remains

unchanged. In the diffusion stage, three-level diffusion

operations including pixel values, binary bits and pixel bits are

accomplished for the scrambled image.

Assume the plaintext image of sizeN × M with a color depth

q to be encrypted is expressed as |I〉 and its GQIR representation

can be written as

|I〉 � 1( �
2

√ )n+m ∑2n−1
Y�0

∑2m−1
X�0

⊗
q−1
j�0

∣∣∣∣Cj
YX〉|YX〉. (24)

The specific encryption algorithm involves the following

steps.

Step 1: Block-level scrambling is performed. To effectively

realize the block-level arrangement, the plaintext image

FIGURE 6
3D view of the MSMFrLVS and the Poincare section in: (A,B): x-y-z space, (C,D): x-y-w space, (E,F): x-z-w space, (G,H): y-z-w space.
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should be decomposed into sub-blocks. If the block size is

2w1 × 2w1 , then the number of blocks is 2n−w1 × 2m−w1 after

division. Assume that Qdst represents the quantum dual-

scale triangular map which is applied on the n − w1 and m −
w1 qubits and the scrambled block image |Ib〉 can be

acquired.

FIGURE 8
Quantum circuits:(A) |x′〉, (B) |y′〉.

FIGURE 7
Frequency power spectra of the MSMFrLVS in: (A) x, (B) y, (C) z, (D) w planes.
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|Ib〉�Qdst |I〉� 1( �
2

√ )n+m ∑2n−1
Y�0

∑2m−1
X�0

⊗
q−1
j�0

∣∣∣∣Cj
YX〉Qdst |YX〉

� 1( �
2

√ )n+m ∑2n−1
Y�0

∑2m−1
X�0

⊗
q−1
j�0

∣∣∣∣Cj
YX〉Qdst(∣∣∣∣yn−1yn−2/y0〉|xm−1xm−2/x0〉)

� 1( �
2

√ )n+m ∑2n−1
Y�0

∑2m−1
X�0

⊗
q−1
j�0

∣∣∣∣Cj
YX〉Qdst(∣∣∣∣yn−1yn−2/yw1〉)∣∣∣∣∣yw1−1/y0〉

Qdst(|xm−1xm−2/xw1〉)
∣∣∣∣xw1−1/x0〉

� 1( �
2

√ )n+m ∑2n−1
Y�0

∑2m−1
X�0

⊗
q−1
j�0

∣∣∣∣Cj
YX〉

∣∣∣∣∣yn−1′ yn−2′ /yw1′ yw1−1/y0〉
∣∣∣∣xm−1′ xm−2′ /xw1′ xw1/x0〉.

(25)

According to Eq. 17, the scrambled position qubits

|yn−1′ yn−2′ /yw1′ 〉 and |xm−1′ xm−2′ /xw1′ 〉 can be obtained as

⎧⎪⎨⎪⎩
∣∣∣∣yn−1′ yn−2′ /yw1′ 〉�Qdst(yn−1yn−2/yw1)

� (c|xn−1xn−2/xw1〉+d
∣∣∣∣yn−1yn−2/yw1〉)mod2n−w1∣∣∣∣xm−1′ xm−2′ /xw1′ 〉�Qdst(xm−1xm−2/xw1) � (a|xm−1xm−2/xw1〉)mod2m−w1

.

(26)

The circuit of image block-level permutation based on Qdst is

depicted in Figure 11.

Step 2. : To improve the security of the system, a plaintext

correlation mechanism is employed to obtain the initial values of

the MSMFrLVS. The method is expressed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′(0) � x(0) +∑8
i�1
hi × 10−6 + h9 ⊕ h10 ⊕/h16

1010

y′(0) � y(0) + ∑24
i�17

hi × 10−6 + h25 ⊕ h26 ⊕/h32
1010

z′(0) � z(0) + ∑40
i�33

hi × 10−6 + h41 ⊕ h42 ⊕/h48
1010

w′(0) � w(0) + ∑56
i�49

hi × 10−6 + h57 ⊕ h58 ⊕/h64
1010

, (27)

where x(0), y(0), z(0) and w(0) are the initial values of Eq. 13,
hi is a 256-bit hash value, x′(0), y′(0), z′(0) and w′(0) are the
updated initial values of Eq. 13. Obviously, the new initial values

are related to the plaintext image.

Step 3: The initial values x′(0), y′(0), z′(0) and w′(0) are

iterated with Eq. 13 m′ + 2n × 2m times, m′ is set to 100. To

avoid the harmful effect of transient procedure, a new chaotic

sequence {ϒi|i � 1, 2, . . . , 2n × 2m} is obtained after abandoning

the former m′ elements, where ϒ ∈ {x, y, z, w}.
Step 4: The new chaotic sequence is transformed into integer

sequence, {ϒp
i |i � 1, 2,/, 2n × 2m},

ϒp
i �

∣∣∣∣⌊(ϒi − �ϒi�) × 1014⌋∣∣∣∣mod 256, (28)

where �ϒ� rounds ϒ to the nearest integer towards zero.

FIGURE 9
Quantum circuit (A) |x〉, (B) |y〉.
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Step 5. : Bit-level permutation includes the intra bit-planes

permutation and the inter bit-planes permutation. The intra bit-

planes permutation is accomplished by sorting the sequence

{xp
i |i � 1, 2,/, 8} in ascending order. The corresponding

quantum circuit is shown in Figure 12, where the exchange of

bit-planes is implemented with quantum swap gate.

For pixel (Y,X), a quantum sub-operation φYX can be

constructed as

φYX � I ⊗ ∑2n−1
y�0

∑2m−1
x�0,YX ≠ yx

∣∣∣∣yx〉〈yx∣∣∣∣ + GYX ⊗ |YX〉〈YX|. (29)

where GYX to realize bit-planes permutation operation is

defined as

GYX

∣∣∣∣C(y, x)〉 � GYX

∣∣∣∣∣c7yxc6yxc5yxc4yxc3yxc2yxc1yxc0yx〉
�

∣∣∣∣∣c1yxc4yxc7yxc6yxc3yxc0yxc5yxc2yx〉 , (30)

By applying the quantum sub-operation φYX on the block-

level permutation image |Ib〉, the bit-planes of pixel (Y,X) are
scrambled.

φYX|Ib〉 � 1( �
2

√ )n+mφYX
⎛⎝ ∑2n−1

y�0
∑2m−1

x�0,YX ≠ yx

∣∣∣∣C(y, x)〉∣∣∣∣yx〉 + |C(Y,X)〉|YX〉⎞⎠
� 1( �

2
√ )n+m ∑2n−1

y�0
∑2m−1

x�0,YX ≠ yx

∣∣∣∣C(y, x)〉∣∣∣∣yx〉 + φYX(∣∣∣∣∣c7yxc6yxc5yxc4yxc3yxc2yxc1yxc0yx〉|YX〉)
� 1( �

2
√ )n+m ∑2n−1

y�0
∑2m−1

x�0,YX ≠ yx

∣∣∣∣C(y, x)〉∣∣∣∣yx〉 + ∣∣∣∣∣c1yxc4yxc7yxc6yxc3yxc0yxc5yxc2yx〉|YX〉.

(31)

FIGURE 10
Flowchart of image encryption algorithm.

FIGURE 11
Quantum circuit for the block-level permutation based on
Qdst.

FIGURE 12
Quantum circuit of the intra bit-planes permutation.
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To complete bit-planes scrambling of all the pixels, a

quantum operation S is defined,

|Ik〉 � S|Ib〉 � ∏2n−1
Y�0

∏2m−1
X�0

φYX|Ib〉

� 1( �
2

√ )n+m ∑2n−1
Y�0

∑2m−1
X�0

∣∣∣∣∣c1yxc4yxc7yxc6yxc3yxc0yxc5yxc2yx〉|YX〉

� 1( �
2

√ )n+m ∑2n−1
y�0

∑2m−1
x�0

∣∣∣∣C′(y, x)〉∣∣∣∣yx〉.
(32)

Step 6. : The inter bit-planes permutation is accomplished with

quantum Gray code. By scrambling quantum image |Ik〉 with

quantum Gray code, the scrambled quantum image |Is〉 is

obtained. The circuit of quantum Gray code is shown in

Figure 13A.

Step 7. : The sequence {w′
i|i � 1, 2,/, 2n × 2m} is given by

w′
i � wp

i mod 3. (33)

The scrambled quantum image |Is〉 is chosen to perform

diffusion operations among pixel values, binary bits and pixel bits

according to the sequence {w′
i|i � 1, 2,/, 2n × 2m}.

Step 8. : If w′
i � 0, then the pixel values diffusion operation is

performed.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
aa � floor(1

2
× 104 sin(4 sinyp(i) + 1))mod 256

bb � floor(0.9 cos 3.9πzp(i) × (1 − zp(i)) × 104)mod 256

Ie(i) � (Is(i) + aa ⊕ bb)mod 256

.

(34)
If w′

i � 1, then the binary bits diffusion operation is

performed.

Ie(i) � Is(i) ⊕ yp(i) ⊕ zp(i). (35)

Ifw′
i � 2, then the pixel bits diffusion operation is performed.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 � floor(yp(i)
100

)
b1 � floor(yp(i) − 100a1

10
)

c1 � floor(yp(i) − 100a1 − 10b1)
, (36)

⎧⎪⎨⎪⎩ a11 � [a1 + floor(0.99 sin 0.99 × 104πa1)mod 100]mod 10
b11 � [b1 + floor(0.99 sin 0.99 × 104πb1)mod 100]mod 10
c11 � [c1 + floor(0.99 sin 0.99 × 104πc1)mod 100]mod 10

,

(37)
abc � (100a11 + 10b11 + c11)mod 256, (38)

Ie(i) � [abc + floor(0.99 sin 2π104zp(i)) + Is(i)]mod 256.

(39)
According to Eq. 36, the hundreds place a1, tens place b1, and

one place c1. They were then entered into Eq. 37 to obtain a11,

b11, and c11. They are then substituted in Eq. 38 and combined to

FIGURE 13
Circuits (A) Quantum Gray code, (B) Inverse quantum Gray code.
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yield abc. Finally, the quantum ciphertext image |Ie〉 can be

generated by substituting them into Eq. 39.

4.2 Quantum image decryption algorithm

The decryption process is the reverse process of the

encryption process, the specific image decryption process is as

follows.

Step 1: The encryption quantum image |Ie〉 performs three-level

diffusion operations with the integer sequences {yp
i |i �

1, 2, . . . 2n × 2m} and {zpi |i � 1, 2, . . . 2n × 2m}, the scrambled

quantum image |Is〉 is retrieved.

Step 2. : The quantum image |Ik〉 is retrieved by the inverse

quantum Gray code on the scrambled quantum image |Is〉, the
circuit of the inverse quantum Gray code is depicted in

Figure 13B.

Step 3: The quantum image |Ib〉 is obtained by the inverse bit-

planes exchange operation S−1 on the quantum image |Ik〉.

|Ib〉 � S−1|Ik〉 � ∏2n−1
Y�0

∏2m−1
X�0

φ−1
YX|Ik〉

� 1( �
2

√ )n+m ∑2n−1
Y�0

∑2m−1
X�0

G−1
YX

∣∣∣∣c1YXc4YXc7YXc6YXc3YXc0YXc5YXc2YX〉 ⊗ |YX〉

� 1( �
2

√ )n+m ∑2n−1
Y�0

∑2m−1
X�0

∣∣∣∣c7YXc6YXc5YXc4YXc3YXc2YXc1YXc0YX〉 ⊗ |YX〉.

(40)
Step 4: The plaintext image can be recovered by performing

inverse Qdst on the quantum image |Ib〉.
|I〉�Q−1

dst |Ib〉

� 1( �
2

√ )n+m ∑2n−1
Y�0

∑2m−1

X�0
⊗
q−1
j�0

∣∣∣∣Cj
YX〉Q−1

dst(∣∣∣∣∣yn−1′ yn−2′ /yw1′ yw1−1/y0〉
∣∣∣∣xm−1′ xm−2′ /xw1′ xw1/x0〉⎞⎠

� 1( �
2

√ )n+m ∑2n−1
Y�0

∑2m−1

X�0
⊗
q−1
j�0

∣∣∣∣Cj
YX〉Q−1

dst

∣∣∣∣yn−1′ yn−2′ /yw1′ 〉
∣∣∣∣∣yw1−1/y0〉Q−1

dst

∣∣∣∣xm−1′ xm−2′ /xw1′ 〉
∣∣∣∣xw1−1/x0〉

� 1( �
2

√ )n+m ∑2n−1
Y�0

∑2m−1

X�0
⊗
q−1
j�0

∣∣∣∣Cj
YX〉

∣∣∣∣yn−1yn−2/y0〉|xm−1xm−2/x0〉

� 1( �
2

√ )n+m ∑2n−1
Y�0

∑2m−1

X�0
⊗
q−1
j�0

∣∣∣∣Cj
YX〉|YX〉.

(41)

5 Numerical simulation and
discussion

The numerical simulations are run on a MATLAB R2019b

platform due to a lack of equipment. To test the effectiveness and

reliability of the proposed quantum image encryption algorithm,

the plaintext images in Figures 14A–C are image “Barbara” of

size 580 × 720, image “Arnav” of size 248 × 300, and color image

“Girls” of size 321 × 481 × 3 [33–35]. The block size w1 has been

set to four. The simulation parameters are as follows: a � 1, c � 2,

d � 1, γ � 1, ϖ � 1, μ � 1, τ � 1, e � 2, ξ � 3, σ � 2.7, h1 � 0.01,

N1 � 5000, x(0) � 1, y(0) � 1.4, z(0) � 1 and w(0) � 1. The

relevant ciphertext images are shown in Figures 14D–F. Because

all ciphertext images are encrypted and exhibit chaotic behavior,

attacks will have an enormously difficult time extracting the

original plaintext images. When decrypted with the correct keys,

Figures 14G–I show the corresponding decrypted images. There

is no discernible difference between the original plaintext image

and the decrypted image, indicating that the proposed fast

quantum image encryption scheme based on a multilayer

short memory fractional order Lotka-Volterra system and a

dual-scale triangular map is effective.

The proposed algorithm was evaluated using three types of

statistical property analyses, comprising histogram, correlation

of adjacent pixels, and information entropy. The histogram

assures that plaintext images and ciphertext images are

different from each other. The association between two

neighboring pixels was shown by the correlation of adjacent

pixels. The information entropy looks at the encryption effect of

the ciphertext images. In order to verify the proposed algorithm’s

resistance to various attacks, differential attack analysis, noise

attack analysis, and shear attack analysis were also carried out. To

show the space and sensitivity of the keys, key space analysis and

key sensitivity analysis are then done. The proposed algorithm’s

computational complexity was then described. Last but not least,

tests and comparisons of the encryption and decryption times in

seconds were performed. All of the preceding analyses will

guarantee that proposed algorithms would both be technically

proficient and efficient.

5.1 Statistical property analysis

5.1.1 Histogram
The histograms of the color images “Girls,” “Sailboat,” and

“Goldhill” are shown in Figures 15A–C, and the histograms of

the corresponding ciphertext images are shown in Figures

15D–F. It is demonstrated that the histograms of ciphertext

images differ noticeably from those of plaintext images. The

pixel values of ciphertext images are evenly distributed and

completely different from those of plaintext images. It

demonstrates that the proposed quantum image encryption

scheme can withstand the histogram attack.

Furthermore, the chi-square test is used to precisely measure the

difference between the ciphertext image and the plaintext image.

χ2 � ∑255
L�0

(oL − eL)2
eL

, (42)

where oL is the observed number of the L-th gray level and eL is

the expected number of the L-th gray level. Table 2 displays the

results of the chi-square test on ciphertext and plaintext images.

Table 2 shows that the chi-square values of ciphertext images are
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less than 5% of the significance level, demonstrating that the

proposed encryption scheme can withstand the histogram attack.

5.1.2 Correlation of adjacent pixels
Assume that N pairs of adjacent pixels need to be randomly

selected from the image to be investigated, and the gray values are

recorded as (x, y), the correlation coefficient between two

vectors is defined as

CXY �
∑N
i�1

(xi − 1
N ∑N

i�1
xi)(yi − 1

N ∑N
i�1
yi)����������������������������∑N

i�1
(xi − 1

N ∑N
i�1
xi)2∑N

i�1
(yi − 1

N ∑N
i�1
yi)2

√ . (43)

The correlation distribution of plaintext image “Girls” and

ciphertext image “Girls” in horizontal, vertical and diagonal

directions are depicted in Figure 16. The correlation

coefficients of plaintext images and ciphertext images are

edited in Table 3. As can be seen from Figure 16 and Table 3,

the correlations between the adjacent pixels of plaintext images

are extremely strong, while the correlations between the adjacent

pixels of ciphertext images are close to 0, which are almost no

correlations. Compared with [10, 24], the proposed image

encryption scheme has stronger capacity to resist the

correlation analysis attack.

5.1.3 Information entropy
The information entropy H(x) calculation formula is

written as

H(x) � −∑255
i�0
p(xi)log 2 p(xi), (44)

where p(xi) represents the probability of the gray value i. The

theoretical value of information entropy for a gray-scale random

image with level 256 is 8 bits. The information entropy of

FIGURE 14
Plaintext images, ciphertext images and decryption images: (A) “Barbara,” (B) “Arnav,” (C) “Girls,” (D) “Barbara,” (E) “Arnav,” (F) “Girls,” (G) “Barbara,”
(H) “Arnav,” (I) “Girls.” (“Barbara” is from the University of Southern California’s signal and image process institute image dataset, “Arnav” is from the
IMDB-WIKI 500k dataset, “Girls” is from the Berkeley segmentation dataset (BSD) 500 dataset.).
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plaintext images and ciphertext images is listed in Table 4. It is

demonstrated that the information entropy of each ciphertext

image approaches the theoretical value, whereas the information

entropy of each plaintext image deviates significantly from the

theoretical value, and the image encryption effect outperforms

[10, 24].

5.2 Differential attack analysis

To quantitatively measure the difference between two

images of the same size, Number of Pixels Change Rate

(NPCR) and Unified Average Changing Intensity (UACI)

can be performed.

FIGURE 15
Histograms of plaintext images and ciphertext images: (A) “Girls,” (B) “Sailboat,” (C) “Goldhill,” (D) “Girls,” (E) “Sailboat,” (F) “Goldhill.”

TABLE 2 Chi-square test.

Image Plaintext image Ciphertext image

Barbara 1.6314e+05 235.6696

Arnav 4.0976e+04 278.3243

Bridge 1.5584e+05 265.5647

Lake 1.5144e+05 259.4658

Baboon 1.4652e+04 265.2458

R channel 1.4164e+05 236.4007

Girls G channel 1.1872e+05 206.2859

B channel 1.6640e+05 234.2054

R channel 1.6543e+05 256.5642

Sailboat G channel 1.2564e+05 286.2656

B channel 1.3654e+05 266.6462

R channel 1.5621e+05 269.5354

Goldhill G channel 1.4365e+05 275.3564

B channel 1.6543e+05 265.3564

Critical value (5%) 293.2478 293.2478
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⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
NPCR � ∑N

j�1
∑M
i�1

D(i, j)
M × N

× 100%

UACI � ∑N
j�1

∑M
i�1

∣∣∣∣c1(i, j) − c2(i, j)∣∣∣∣
M × N × 255

× 100%

. (45)

Besides NPCR and UACI, Block Average Changing Intensity

(BACI) can also measure the difference between two random

images.

BACI � 1

(M − 1)(N − 1) ∑(M−1)(N−1)

i�1

mi

255
. (46)

If the NPCR of the two images is 100%, and the UACI is close

to the theoretical value, but the visual effects of the two images are

similar, it indicates that NPCR and UACI are still insufficient in

describing the differences between the two images, and BACI

makes up for this deficiency. The theoretical value of BACI is

26.7712%. From Table 5, NPCR, UACI and BACI are all close to

the theoretical values. Therefore, the proposed encryption

scheme is very sensitive to any small changes of the pixel of

plaintext image.

5.3 Key space analysis

The key space of the image cryptosystem should be large

enough to resist brute force attack effectively. The key space

should be at least 2128. In the proposed scheme, the key space

contains the parameters of quantum dual-scale triangular map,

the initial values of the MSMFrLVS and the hash value of

plaintext image. The key space of quantum dual-scale

triangular map is estimated to be 108. The precision of the

initial values of the MSMFrLVS is 1015, the total key space is

108 + 1015×4 + 2256. Therefore, the key space of the proposed

algorithm is large enough to resist the brute-force attack.

5.4 Key sensitivity analysis

A good image encryption system should have strong key

sensitivity. To be more precise, the key sensitivity of the system is

evaluated by the mean-squared error (MSE).

MSE � 1
M × N

∑M
x�1

∑N
y�1

[D(x, y) − I(x, y)]2, (47)

where M × N denotes the image size, D(x, y) and I(x, y)
represents the pixel values of decryption image and plaintext

image at the position (x, y), respectively. Figures 17B–E show the

MSE curves with wrong keys x0 + 10−14, y0 + 10−14, z0 + 10−14

and w0 + 10−14, respectively. As can be seen from Figure 17, the

ciphertext images obtained under the condition of minor changes

of the keys are quite different. Since the keys are randomly

selected from the key space, it can be explained that each key in

the key space is valid and sensitive.

5.5 Shear attack analysis

In addition to the noise attack, the ciphertext image is also

susceptible to malicious cutting by the attacker during the

process of transmission and processing, therefore it is

necessary to analyze the anti-clipping ability of the proposed

algorithm. Figure 18 shows the ciphertext images of different

FIGURE 16
Correlation distribution of two adjacent horizontal, vertical and diagonal pixels of “Girls”: (A) R channel, (B)G channel, (C) B channel; Correlation
distribution of two adjacent horizontal, vertical and diagonal pixels of encryption “Girls”: (D) R channel, (E) G channel, (F) B channel.
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clipping regions and their corresponding decryption images.

From Figure 18, the resolution of decryption images varies

with the cutting degree of ciphertext images, but the crucial

information of the decryption images can still be identified.

Therefore, the proposed encryption algorithm has a certain

ability to resist the shear attack.

TABLE 4 Information entropy.

Images Plaintext image (bit) Ciphertext image (bit)

Barbara 7.6578 7.9996

Arnav 7.4914 7.9973

Baboon 7.4465 7.9985

Bridge 7.2645 7.9976

Lake 7.6548 7.9992

R channel 7.7771 7.9975

Girls G channel 7.5523 7.9981

B channel 7.2687 7.9975

R channel 7.6782 7.9968

Sailboat G channel 7.6485 7.9978

B channel 7.4356 7.9986

R channel 7.6897 7.9991

Goldhill G channel 7.8562 7.9981

B channel 7.7568 7.9985

Reference [10] 7.1273 7.9970

Reference [24] 7.0097 7.9970

TABLE 3 Correlation coefficients of adjacent pixels.

Correlation coefficient Horizontal Vertical Diagonal

Plaintext Barbara 0.9803 0.9806 0.9591

Ciphertext Barbara 0.0079 −0.0087 −0.0035
Plaintext Arnav 0.9844 0.9837 0.9730

Ciphertext Arnav 0.0097 0.0100 −0.0138
Plaintext Baboon 0.9763 0.9356 0.9435

Ciphertext Baboon 0.0053 0.0059 0.0043

Plaintext Bridge 0.9786 0.9442 0.9624

Ciphertext Bridge 0.0023 0.0045 0.0026

R channel 0.9678 0.9494 0.9304

Plaintext Girls G channel 0.9456 0.9247 0.8827

B channel 0.9162 0.8944 0.8352

R channel −0.0093 −0.0303 −0.0049
Ciphertext Girls G channel −0.0177 −0.0203 0.0057

B channel −0.0155 0.0052 −0.0117
Plaintext Sailboat R channel 0.9356 0.9869 0.9364

G channel 0.9468 0.9576 0.9567

B channel 0.9256 0.9564 0.8967

R channel −0.0053 0.0134 0.0036

Ciphertext Sailboat G channel 0.0054 −0.0023 0.0054

B channel −0.0034 0.0098 −0.0068
Reference [10] −0.0423 0.0202 −0.0212
Reference [24] 0.0295 0.0187 0.0393
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5.6 Computational complexity

Assume that I is anM × N image, andN is greater thanM. The

computational complexity of the proposed quantum image

encryption algorithm primarily depends on quantum dual-scale

triangular map, the intra bit-planes permutation and quantum

XOR operation. In the block-level permutation stage, the basic

gates of ADDER-MOD2n are 28n − 12 and the complexity of the

ADDER-MOD2n is about 140n [1]. Hence, the computational

complexity of quantum dual-scale triangular map is O(n). In

addition, the intra bit-planes permutation involves four quantum

swap gates, and each swap gate is achieved by three C-NOT gates,

thus the intra bit-planes permutation is realized by 12n basic gates,

the computational complexity of the intra bit-planes permutation is

O(n). What’s more, the quantum XOR operation needs 8n − 16

Toffoli gates [36], and each Toffoli gate is composed of six C-NOT

gates, thus the quantum XOR operation involves 384n − 768 basic

gates, and the computational complexity of the quantum XOR

operation is O(n). Consequently, the computational complexity of

the proposed quantum algorithm is O(n), while the computational

complexity of the corresponding classical image encryption scheme is

O(22n). Obviously, the proposed quantum image encryption

algorithm is better than its classical counterparts in terms of

computational complexity.

5.7 Noise attack analysis

Assume that the ciphertext image “Arnav” is added with the

Gaussian noise.

C′ � C + kG, (48)

where C′ and C are the noisy ciphertext images and the noise-free

ciphertext images, k represents noise intensity, G is the Gaussian

noise with zero mean and unit standard deviation. Figure 19A shows

FIGURE 17
(A) Plaintext image, MSE curves: (B) x0, (C) y0, (D) z0, (E) w0.

TABLE 5 NPCR, UACI and BACI.

Image NPCR% UACI% BACI%

Barbara 99.6090 33.4476 26.7930

Arnav 99.5820 33.3371 26.6211

Baboon 99.6032 33.4562 26.7568

Bridge 99.5962 33.3685 26.6238

Lake 99.5658 33.3456 26.8664

R channel 99.6237 33.4665 26.8179

Girls G channel 99.6538 33.3546 26.7534

B channel 99.5456 33.1562 26.6481

R channel 99.6023 33.4356 26.5562

Sailboat G channel 99.6548 33.3346 26.7652

B channel 99.5964 33.3450 26.6724

R channel 99.6432 33.3315 26.6482

Goldhill G channel 99.6023 33.3725 26.7315

B channel 99.6130 33.4456 26.6856
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the MSE curves with different noise intensities, Figures 19B–E give

the decryption images with noise intensities 2, 4, 6 and 8. From

Figure 19, with the increase of noise intensity, decryption images

becomemore andmore blurred, but the outline of decryption images

can still be seen clearly, the proposed image encryption scheme can

resist the noise attack to some degree.

5.8 Encryption time analysis

The length of the execution time is an index to evaluate the

quality of an encryption algorithm. The execution time of the

proposed algorithm and Refs. [9, 12, 16, 17] are listed in Table 6.

In [9, 16, 17], the pseudo-random sequences are originated by

iterating the 4D hyper-chaotic Henon map, 2D logistic map and

3D chaotic system, respectively, which take too much time. In

[12], the encryption process is time-consuming owing to the

FIGURE 18
Sheared images in different position: (A–D), the corresponding decryption images: (E–H).

FIGURE 19
Results of noise attack: (A) MSE curve, noise intensities: (B) k � 2, (C) k � 4, (D) k � 6, (E) k � 8.

TABLE 6 Encryption and decryption time in second.

Time(s) Proposed scheme [9] [12] [16] [17]

Encryption time 0.9235 1.2540 1.2230 1.9450 1.9123

Decryption time 0.9582 2.3540 1.1958 2.2895 2.0012
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fractional-order Lorenz-like chaotic system. In our algorithm, the

initial point of the MSMFrLVS is variable such that the algorithm

can save the encryption time greatly, thus the proposed image

encryption algorithm can be developed for fast image encryption.

6 Conclusion

The quantum image encryption scheme is proposed by

combining the MSMFrLVS with the quantum dual-scale

triangular map. The block-level permutation, intra and inter bit-

plane permutations, and three-level diffusion operations are used to

implement the encryption process. The independent parameters of

quantum dual-scale triangular map, the initial values and the control

parameters of the MSMFrLVS and the hash value of plaintext image

consist of the keys of the proposed quantum image encryption

algorithm. As a result, the encryption system’s key space is

sufficiently large. Numerical simulation analyses demonstrate the

proposed algorithm’s reliability and effectiveness, and it requires less

computation time. Furthermore, the proposed image encryption

algorithm has lower computational complexity than its

conventional counterparts. In the future, we will focus on

combining quantum image encryption with semi-quantum

cryptography protocols [37] in order to propose an algorithm

with improved security and quantum communication capacity.
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