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The computation of dynamical properties of nuclear matter, ranging from

parton distribution functions of nucleons and nuclei to transport properties

in the quark-gluon plasma, constitutes a central goal of modern theoretical

physics. This real-time physics often defies a perturbative treatment and the

most successful strategy so far is to deploy lattice QCD simulations. These

numerical computations are based onMonte-Carlo sampling and formulated in

an artificial Euclidean time. Real-time physics is most conveniently formulated

in terms of spectral functions, which are hidden in lattice QCD behind an ill-

posed inverse problem. I will discuss state-of-the art methods in the extraction

of spectral functions from latticeQCD simulations, based on Bayesian inference

and emphasize the importance of prior domain knowledge, vital to regularizing

the otherwise ill-posed extraction task. With Bayesian inference allowing us to

make explicit the uncertainty in both observations and in our prior knowledge, a

systematic estimation of the total uncertainties in the extracted spectral

functions is nowadays possible. Two implementations of the Bayesian

Reconstruction (BR) method for spectral function extraction, one for MAP

point estimates and one based on an open access Monte-Carlo sampler are

provided. I will briefly touch on the use ofmachine learning for spectral function

reconstruction and discuss some new insight it has brought to the Bayesian

community.
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1 Introduction

1.1 The physics challenge

After a successful decade of studying the static properties of the strong interactions,

such as their phase diagram (for reviews see e.g. [1, 2]) and equation of state (for recent

studies see e.g., [3–5]) through relativistic heavy-ion collisions (for an overview see e.g.,

[6]) and more recently through the multi-messenger observations of colliding neutron

stars (for a review see e.g. [7]), high energy nuclear physics sets out to make decisive

progress in the understanding of real-time dynamics of quarks and gluons in the coming

years.
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The past heavy-ion collision campaigns at collider facilities

such as RHIC at Brookhaven National Laboratory (BNL) and the

LHC at the European Center for Nuclear Physics (CERN)

provided conclusive evidence for the existence of a distinct

high-temperature state of nuclear matter, the quark-gluon-

plasma (for a review see e.g., [8]). At the same time, theory,

by use of high-performance computing, predicted the

thermodynamic properties, such as the equation of state

[9–13] of hot nuclear matter from first principles. When data

and theory were put to the test in the form of phenomenological

models based on relativistic hydrodynamics, excellent agreement

was observed (for a review see e.g., [14]).

Similarly past e−+p collider experiments at HERA (DESY)

revealed (for a review see [15]) that the properties of nucleons can

only be understood when in addition to the three valence quarks

of the eponymous quark-model also the virtual excitations of

quarks and gluons are taken into account. In particular the

emergent phenomenon of asymptotic freedom manifests itself

clearly in their data, as the coupling between quarks and gluons

becomes weaker with increasing momentum exchange in a

collision (for the current state-of-the art see e.g., [16]).

Simulations of the strong interactions are by now able to map

this intricate behavior of the strong coupling over a wide range of

experimentally relevant scales, again leading to excellent

agreement between theory and experiment (for a community

overview see Chapter 9 of [17]).

Going beyond the static or thermodynamic properties of nuclear

matter proves to be challenging for both theory and experiment. In

heavy-ion collisions most observed particles in the final state at best

carry a memory on the whole time-evolution of the collision. This

requires phenomenology to disentangle the physics of theQGP from

other effects e.g., those arising in the early partonic stages or the

hadronic aftermath of the collision. It turns out that in order to

construct accurate multi-stage models of the collision dynamics (see

e.g., [18–20]), a variety of first-principles insight is needed. The

dynamics of the bulk of the light quarks and gluons which make up

the QGP produced in the collision is conveniently characterized by

transport coefficients. Of central interest are the viscosities of

deconfined quarks and gluons and their electric charge

conductivity. The physics of hard probes, such as fast jets (see

e.g., [21]) or slow heavy quark bound states (see e.g., [22]), which

traverse the bulk nearly as test particles on the other hand requires

insight into different types of dynamical quantities. In this context

first principles knowledge of the complex in-medium potential

between a heavy quark and antiquark, the heavy quark diffusion

constant or the so-called jet quenching parameter q̂, which

summarizes the momentum broadening of a parton jet is called

for. As it turns out computing any of these quantities represents a

major challenge for numerical simulation methods of the strong

interactions.

Going beyond merely establishing asymptotic freedom and

instead revealing the full 6-dimensional phase space (i.e., spatial

and momentum distribution) of partons inside nucleons and

nuclei is the aim of an ambitious collider project just green-lit in

the United States. The upcoming electron-ion collider [23] will

be able to explore the quark and gluon content of nucleons in

kinematic regimes previously inaccessible and opens up the first

opportunity to carry out precision tomography of nuclei using

well-controlled point-particle projectiles. Simulations have

already revealed that the virtual particle content of nucleons is

vital for the overall angular momentum budget of the proton (see

e.g., [24, 25]). A computation of the full generalized transverse

momentum distribution [26] however has not been achieved yet.

This quantity describes partons in terms of their longitudinal

momentum fraction x, the impact parameter of the collision bT
and the transverse momentum of the parton kT. Integrating out

different parts of the transverse kinematics leads to simpler

object, such as transverse momentum distributions (TMDs,

integrated over bT) or generalized parton distributions (GPDs,

integrated over kT). Integrating all transverse dependence leads

eventually to the conventional parton distribution functions

(PDFs), which depend only on the longitudinal Bjorken x

variable. A vigorous research community has made significant

conceptual and technical progress over the past years, moving

towards the first-principles determination of PDFs and more

recently GPDs and TMDs from lattice QCD (for a community

overview see [27]). Major advances in the past years include the

development of the quasi PDF [28] and pseudo PDF [29]

formalism, which offer complementary access to PDFs besides

their well-known relation to the hadronic tensor [30]. With the

arrival of the first exascale supercomputer in 2022, major

improvements in the precision and accuracy of parton

dynamics from lattice QCD are on the horizon.

1.2 Lattice QCD

In order to support experiment and phenomenology, theory

must provide model independent, i.e., first-principles insight into

the dynamics of quarks and gluons in nuclei and within the QGP.

This requires the use of quantum chromo dynamics (QCD), the

renormalizable quantum field theory underlying the strong

interactions. Renormalizability refers to the fact that one only

needs to provide a limited number of experimental

measurements to calibrate each of its input parameters (strong

coupling constant and quark masses) before being able to make

predictions at any scale. In order to utilize this vast predictive

power of QCD however we must be able to evaluate correlation

functions of observables from their defining equations in terms of

Feynman’s path integral

〈O t1( ) ~O t2( )〉 � 1
Z
∫D Aμ

a,ψ
a
f, �ψ

a
f[ ] O t1( ) ~O t2( )

exp iSQCD Aμ
a,ψ

a
f, �ψ

a
f[ ][ ], (1)

where Aμ
a denotes the gluon fields and ψa

f the color charged

quarks of flavor f. The path integral weight is given by the
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exponentiated QCD action denoted by SQCD (for more details see

[31]) and the normalization Z refers to the path integral

evaluated in the absence of observables in the integrand.

Computing the dynamical properties of quarks and gluons

both inside nucleons as well as in the experimentally accessible

QGP requires us to evaluate the above path integral in the

presence of strong fluctuations, which invalidate commonly

used weak-coupling expansions of the path integral weight.

Instead a non-perturbative evaluation of observables is called

for. While progress has been made in non-perturbative analytic

approaches to QCD, such as the functional renormalization

group [32, 33] or Dyson-Schwinger equations [34, 35], I focus

here on the most prominent numerical approach: lattice QCD

(for textbooks see e.g., [36, 37]).

In lattice QCD four-dimensional spacetime is discretized on

a hypercube with N4 grid points n, separated by a lattice spacing

a. In order to maintain the central defining property of QCD, the

invariance of observables under local SU(3) rotations of quark

and gluon degrees of freedom, in such a discrete setting, one

introduces gauge link variables

Uμ(x) � exp[−igAa
μ(x + 1

2 aμ̂)Ta], which connect the nodes of

the grid in direction μ̂. Here g denotes the strong coupling

constant and Ta refers to the Gell-Mann matrices defining the

gauge group SU(3). From the closed products of four or more link

variables, as well as the quark fermion fields, discrete but fully

gauge invariant actions can be constructed (the simplest one

called the Wilson action). This action allows to formulate a

discretized version of Feynman’s path integral.

It is the next and final step in the formulation of lattice QCD,

which is crucial to understand the challenge we face in extracting

dynamical properties from its simulations. The path integral of

QCD, while already formulated in a discrete fashion, still

contains the canonical complex Feynman weight

exp[−iSQCD[U,ψ, �ψ]]. So far, even though progress is being

made, no universal numerical method to evaluate such highly

dimensional oscillatory integrals has been developed, a challenge

often referred to as the sign problem (see e.g., [38, 39]). Instead

one circumvents this difficulty by making use of complex analysis

and analytically continues theMinkowski time variable t onto the

imaginary axis in the lower half complex plane τ = it. The

additional factors of the imaginary unit, which arise from this

manipulation can be conveniently combined to cancel the

prefactor of i in the Feynman weight leading to

〈On1
~On2〉 � 1

Z
∫∏

n

∏
μ

dUμ,nd ψf,n, �ψf,n[ ] On1
~On2

exp SE U,ψ, �ψ[ ][ ]. (2)

The action SE ∈ R one obtains after analytic continuation is

referred to as Euclidean action. As a curiosity of quantum field

theory one should note that due to a subtle relation between the

Boltzmann factor, which describes thermal systems and time

evolution in imaginary time, the extent of the imaginary time axis

is directly linked to the inverse temperature β = 1/T of the system

[40]. By varying the length of the imaginary time axis it is

therefore possible to change between a scenario at T ≈ 0

relevant for nucleon structure and T > 0 relevant for the

study of the QGP.

Besides allowing us to incorporate the concept of

temperature in a straight forward manner, this Euclidean path

integral is now amenable to standard methods of stochastic

integration, since the Euclidean Feynman weight is real and

bounded from below. Using established Markov-Chain Monte

Carlo techniques one generates ensembles of gauge field

configurations distributed according to 1
Z exp[−SE[U,ψ, �ψ]].

Evaluating (measuring) correlation functions D(τ = τ2−τ1) =

〈O(τ1)O(τ2)〉 on Nconf statistically independent field realizations

U(k) and computing the mean, systematically estimates the

quantum statistical expectation value

D τ( ) � 〈O τ1( )O τ2( )〉

� 1
Nconf

∑Nconf

k�1
O τ1;U

k( )( )O τ2;U
k( )( ) +O 1/ �����

Nconf

√( ).
(3)

here the error decreases with the number of generated

configurations independent of the dimensionality of the

underlying integral.

To avoid misunderstandings, let me emphasize that results

obtained from lattice QCD at finite lattice spacing may not be

directly compared to physical measurements. A valid

comparison requires that the so-called continuum limit is

taken a → 0, while remaining close to the thermodynamic

limit V → ∞. Different lattice discretizations may yield

deviating results, as long as this limit has not been adequately

performed. For precision lattice QCD computations a

community quality control has been established through the

FLAG working group [17] to catalog different simulation results

including information on the limits taken.

2 The inverse problem

The technical challenge we face is now laid bare: in order to

make progress in the study of the dynamics of the strong

interactions we need to evaluate Minkowski time correlation

functions in QCD, related to parton distribution functions in

nucleons or the dynamical properties of partons in the QGP. The

lattice QCD simulations we are able to carry out however are

restricted to imaginary time. Reverting back to the real-time

domain as it turns out presents an ill-posed inverse problem.

The key to attacking this challenge is provided by the spectral

representation of correlation functions [40]. It tells us that

different incarnations of relevant correlation functions (e.g.

the retarded or Euclidean correlators) share common

information content in the form of a so-called spectral
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function [41]. The Källén–Lehmann representation reveals that

the retarded correlator of fields in momentum space may be

written as

DR p0, p( ) � i

π
∫ dμ 1

p0 − μ + iϵ ρ μ, p( ), (4)

while the same correlator in Euclidean time is given as

DE τ, p( ) � ∫dμ e−τμ

1 ∓ e−βμ
ρ μ, p( ), (5)

where the sign in the denominator differs between bosonic (−)

and fermionic (+) correlators. Both real-time and Euclidean

correlator therefore can be expressed by the same spectral

function, integrated over different analytically known kernel

functions.

As we do have access to the Euclidean correlator, extracting

the spectral function from it in principle gives us direct access to

its Minkowski counterpart. It is important to note that often

phenomenologically relevant physics is encoded directly and

intuitively in the structures of the spectral function, making

an evaluation of the real-time correlator superfluous.

Transport coefficients e.g., can be read off from the low

frequency behavior of the zero-momentum spectral function

of an appropriate correlation function [42].

For the extraction of parton distribution functions similar

challenges ensue. PDFs can be computed from a quantity

christened the hadronic tensor WM(t) [30], a four-point

correlation function of quark fields in Minkowski time. The

Euclidean hadronic tensor on the lattice is related to its real-time

counterpart via a Laplace transform

WE τ( ) � ∫ dμ e−μτ WM μ( ) (6)

that needs to be inverted. Recently the pseudo PDF approach [29]

has shown how a less numerically costly three-point correlation

functionMIoffe can be used to extract similar information on e.g.,

quark distributions q(x). It too is hidden behind an inverse

problem of the form

MIoffe ]( ) � ∫ dx cos ]x( ) q x( ), (7)

where the Ioffe-time matrix elementsMIoffe(]) are accessible on
the lattice.

All the above examples of inverse problems share that they

are in fact ill-posed. The concept of well- and conversely ill-

posedness has been studied in detail and was first formalized by

Hadamard [43]. Three conditions characterize a well posed

problem: its solution exists, the solution is unique and the

solution changes continuously with given initial conditions

(which in our case refers to the supplied input data for the

reconstruction task).

In the context of spectral function reconstruction, the latter

two criteria present central challenges. Not only is the

Euclidean correlator from the lattice Di known only at Nτ

discrete points τi, but in addition, as it arises from Monte-

Carlo simulations, it also carries a finite error ΔD/D ≠ 0. This

entails that in practice an infinite number of spectral functions

exist, which all reproduce the input data within their statistical

uncertainties.

Even in the case that one could simulate a continuous

correlator, the stability of the inversion remains an issue. The

reason is that as one simulates on limited domains, be it limited

in Euclidean time due to a finite temperature (transport

coefficients) or limited in Ioffe time (PDFs) the inversion

exhibits strong sensitivity on uncertainties in the input data.

The presence of exponentially small eigenvalues in the kernel K

renders the inversion task in general ill-conditioned.

To be more concrete, let us write down the discretized

spectral representation in terms of a spectral function ρl
discretized at frequencies μl along Nμ equidistant frequency

bins of with Δμl and the discretized kernel matrix Kil

Dρ
i � 1

2
Δμ1Ki1 ρ1 + ∑Nμ−1

l�2
ΔμlKil ρl +

1
2
ΔμNμ

KiNμ ρNμ
. (8)

The task at hand is to solve the inverse problem of

determining the parameters ρl from the sparse and noisy Di’s.

The ill-posedness of this inverse problem is manifest in Eq. 8 in

two aspects:

State-of-the-art lattice QCD simulations provide only around

O(10 − 100) points along imaginary time τ. From it we must

reconstruct the function ρ, which often contains intricate

patterns at different scales. The fact that Nμ ≫ Nτ entails that

many degenerate sets of ρl exist, which all reproduce the input

dataDiwithin their statistical uncertainty. The inverse problem is

thus highly degenerate.

In addition many of the kernel functions we have to deal with

are of exponential form. This entails a strong loss of information

between the spectral function and the Euclidean correlator. In

other words, large changes in the spectral function translate into

minute changes in the Euclidean correlator. Indeed, each of the

tiny eigenvalues of the kernel is associated with a mode along

frequencies, which can be added to the spectral function without

significantly changing the correlator. Reference [44] has recently

investigated this fact in detail analytically for the bosonic finite

temperature kernel relevant in transport coefficient

computations.

Even the at first sight benign cos kernel matrix arising in the

pseudo PDF approach turns out to feature exponentially

diminishing eigenvalues [45] as the lattice simulation cannot

access the full Brillouin zone in ]. I.e., the matrix Kil is in general

ill-conditioned, making its inversion unstable even if no noise is

present. In the presence of noise the exponentially small

eigenvalues lead to a strong enhancement of even minute

uncertainties in the correlation functions rendering the

inversion meaningless without further regularization.
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We will see in the next section how Bayesian inference and in

particular the inclusion of prior knowledge can be used to

mitigate the ill-posed (and ill-conditioned) nature of the

inversion task and give meaning to the spectral function

reconstruction necessary for extracting real-time dynamics

from lattice QCD.

3 Bayesian inference of spectral
functions

The use of Bayesian inference to extract spectral functions

from lattice QCD simulations was pioneered by a team of

researchers from Japan in two seminal papers [46, 47].

Inspired by prior work in condensed matter physics [48] and

image reconstruction [49], the team successfully transferred the

approach to the extraction of QCD real-time information. The

work sparked a wealth of subsequent studies, which have applied

and further developed Bayesian techniques to the extraction of

real-time information from lattice QCD in various contexts, zero

temperature hadron spectra and excited states [50–52], parton-

distribution functions [45, 53], in-medium hadrons [54–67], sum

rules [68, 69], transport coefficients [42, 70–76, 76], the complex

in-medium heavy quark potential [77–80] and parton spectral

properties [81–83].

The following discussion focuses on the Bayesian extraction

of spectral functions that does not rely on a fixed parametrization

of the functional form of ρ. If strong prior information exists, e.g.

if vacuum hadronic spectral functions consist of well separated

delta peaks, direct Bayesian parameter fitting methods are

applicable [84] and may be advantageous. Similarly, some

studies of in-medium spectra and transport phenomena

deploy explicit parametrization of the spectral function

derived from model input, whose parameters can be fitted in

a Bayesian fashion (see Ref. [85] for a recent example). Our goal

here is to extract spectral features for systems in which no such

apriori parametrization is known.

3.1 Bayesian inference

Bayesian inference is a sub-field of statistical data analysis

(for an excellent introduction see e.g., [86, 87]), which focuses on

the estimation of unobserved quantities, based on incomplete

and uncertain observed data (see Figure 1). The term unobserved

is used to refer to the unknown parameters governing the

process, which generates the observed data or to as of yet

unobserved future data. In the context of the inverse problem

in lattice QCD, the Euclidean correlation functions produced by

a Monte-Carlo simulation take on the role of the observed data

while the unobserved parameters are the values of the discretized

spectral function ρl. Future observations can be understood as

further realizations of the Euclidean correlator along the

Markov-Chain of the simulation.

Whatmakes Bayesian inference particularly well suited to attack

the inverse problem is that it offers an explicit and well controlled

strategy to incorporate information (I) beyond the measured data

(D) into the reconstruction of spectral functions (ρ). It does so by

using a more flexible concept of probability, which does not

necessarily rely on the outcome of a large number of repeatable

trials but instead assigns a general degree of uncertainty.

To be more concrete, Bayesian inference asks us to

acknowledge that any model of a physical process is

constructed within the context of its specific domain, in our

case strong interaction physics. I.e., the structure of the model

and its parameters are chosen according to prior information

FIGURE 1
Statistical inference attempts to estimate from observed dataD(k) the unknown process parameters ρl and as of yet unobserved data ~D. Bayesian
inference exploits the fact that in many instances our model of the unknown process is embedded in a domain from which prior knowledge can be
derived.
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obtained within its domain. Bayesian inference then requires us to

explicitly assign degrees of uncertainty to all these choices and

propagate this uncertainty into a generalized probability

distribution called the posterior P[ρ|D, I]. Intuitively it describes

how probable it is that a test function ρ is the correct spectral

function, given simulated data D and prior knowledge I.1

The starting point of any inference task is the joint

probability distribution P[ρ, D, I]. As it refers to the

parameters ρ, data D and prior information I it combines

information about the specific process generating the data as

well as the domain it is embedded in. After applying the rules of

conditional probability one obtains the work-horse of Bayesian

inference, the eponymous Bayes theorem

P ρ|D, I[ ]
|

posterior

� P D|I, ρ[ ]
|

likelihood

P ρ|I[ ]
|

prior

/ P D|I[ ]
|
evidence

. (9)

It tells us how the posterior P[ρ|D, I] can be efficiently

computed. The likelihood denotes the probability for the data

D to be generated from QCD given a fixed spectral function ρ.

The prior probability quantifies how compatible ρ is compared to

our domain knowledge. Historically the ρ independent

normalization has been called the evidence. Let us construct

the different ingredients to Bayes theorem in the following.

What is the likelihood in the case of spectral function

reconstruction? In Monte-Carlo simulations one usually

computes sub-averages of correlation functions on each of the

Nconf generated gauge field configurations. For many commonly

studied correlation functions, thanks to the central limit theorem,

such data already approximate a normal distribution to a good

degree. It is prudent to check the approach to Gaussianity for

individual correlation functions, as it has been revealed in Refs.

[88, 89] that some actually exhibit a log-normal distribution

which converges only very slowly.

In case that the input data is approximately normal

distributed, the corresponding likelihood probability P[D|ρ, I]

∝ exp[−L], written in terms of the likelihood function L, too is a

multidimensional Gaussian

P D|ρ, I[ ] � N Dρ, C[ ]∝ exp −∑
ij

1
2

Di −Dρ
i( )C−1

ij Dj −Dρ
j( )⎡⎢⎢⎣ ⎤⎥⎥⎦,
(10)

where Di denotes the mean of the simulated data at the ith

Euclidean time step and Dρ
i the corresponding Euclidean

datapoint, arising from inserting the parameters ρl into the

spectral representation Eq. 8. Cij refers to the covariance

matrix of the mean

Cij � 1
Nconf Nconf − 1( ) ∑Nconf

k�1
D k( )

i −Di( ) D k( )
j −Dj( ), (11)

where the individual measurements enter as D(k). Note that in

order to obtain an accurate estimate of Cij, the number of samples

Nconf must be significantly larger than the number of data along

imaginary time. In particular Cij develops exact zero eigenvalues

if the number of configurations is less than that of the datapoints.

In lattice QCD simulations, which are based on Monte-Carlo

sampling, correlators computed on subsequent lattices are often

not statistically independent. At the same time Eq. 11 assumes

that all samples are uncorrelated. Several strategies are deployed

in the literature to address this discrepancy. One common

approach is to rely on resampling methods, such as the

(blocked) Jackknife (for an introduction see Ref. [90]) or

similar bootstrap methods in order to estimate the true

covariance matrix. Alternatively one may compute the

exponential autocorrelation time τDi for each correlator data

Di along Monte-Carlo time (see e.g., Chapter 7 of [36]). This

quantity encodes how many subsequent lattices remain

statistically correlated. To account for finite autocorrelation in

Eq. 11, one multiplies Cij with the prefactor τDiτDj.

A speedup in the computation of the likelihood can be achieved

in practice if, following Ref. [46], one computes the eigenvalues σi
and eigenvectors of C and changes both the kernel and the input

data into the coordinate system where StCS = diag[σi] becomes

diagonal. Then the two sums in Eq. 10 collapse onto a single one

L � ∑i
1
2( ~Di − ~D

ρ
i )2/σ2i with ~D

ρ
i � StijKjlρl and ~Di � StijDj.

Since the likelihood is a central ingredient in the posterior, all

Bayesian reconstruction methods ensure that the reconstructed

spectral function, when inserted into the spectral representation

will reproduce the input data within their uncertainty. I.e., they

will always produce a valid statistical hypothesis for the

simulation data. This crucial property distinguishes the

Bayesian approach from competing non-Bayesian methods,

such as the Backus-Gilbert method and the Padé

reconstruction (see examples in e.g., [91, 92]), in which the

reconstructed spectral function does not necessarily reproduce

the input data.

In case that we do not possess any prior information we have

P[ρ|I] = 1 and Bayes theorem only contains the likelihood. Since

the functional L is highly degenerate in terms of ρl’s, the question

of what is the most probable spectral function, i.e., the maximum

likelihood estimate of ρ, does not make sense at this point. Only

by supplying meaningful prior information can we regularize and

thus give meaning to the inverse problem.

3.2 Bayesian spectral function
reconstruction

Different Bayesian strategies to attack the ill-posed spectral

function inverse problem differ by the type of domain
1 This prior knowledge may be supplied by a quantum field theory such

as QCD and QED but also from experiment.
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information they incorporate in the prior probability P[ρ|I] ∝
exp[S], where S is called the regulator functional. Once the prior

probability is constructed, the spectral reconstruction consists of

evaluating the posterior probability P[ρ|D, I], which informs us of

the distribution of the values of ρl in each frequency bin μl.

The versatility of the Bayesian approach actually allows us to

reinterpret several classic regularization prescriptions in the

language of Bayes theorem, providing a unifying language to

seemingly different strategies.

When surveying approaches to inverse problems in other

fields, Tikhonov regularization [93] is by far the most popular

regularization prescription. It amounts to choosing an

independent Gaussian prior probability for each parameter

P ρ|I[ ] �∏Nμ

l�1
N ml, 1/ ��αl√[ ]∝ exp −∑Nμ

l�1
αl

1
2

ρl −ml( )2⎡⎢⎣ ⎤⎥⎦. (12)

Each normal distribution is characterized by its maximum

(mean) denoted here byml and width (uncertainty) 1/
��
αl

√
. In the

literature ml is usually referred to as the default model and αl
simply as hyperparameter. The significance of the two quantities

is that in the absence of simulation data, ml denotes the most

probable apriori value of ρl with intrinsic uncertainty 1/
��
αl

√
.

Since these parameters, even though they are constrained by

QCD, will be known only up to a some uncertainty, the Bayesian

strategy requires us to assign distributions P[m] and P[α] to these

model parameters. This is a first example of a so-called

hierarchical model, where each level of the model encodes the

uncertainties and correlations among model (hyper-)parameters

in the subsequent layer. It then remains the task of the user to

extract from QCD domain knowledge appropriate uncertainty

budgets for m and α.

Another regularization deployed in the field of image

reconstruction is the so-called total variation approach [94].

Here the difference between neighboring parameters ρl and

ρl+1, i.e., Δρl, is modelled [95] as a Laplace distribution

P Δρ|I[ ] � ∏Nμ−1

l�1
Laplace ml, αl[ ]∝ exp − ∑Nμ−1

l�1
αl | ρl+1 − ρl( ) −ml|⎡⎢⎣ ⎤⎥⎦.

(13)
Since Δρl is related to the first derivative of the spectral

function this regulator incorporates knowledge about rapid

changes, such as kinks, in spectral features. Choosing αl and

ml appropriately one may e.g., prevent the occurrence of kink

features in the reconstructed spectral function, if it is known that

the underlying true QCD spectral function is smooth.

In Ref. [96] I proposed a regulator related to the derivative of

ρ, with a different physical meaning

P Δρ|I[ ] � ∏Nμ−1

l�1
N ml, αl[ ]∝ exp − ∑Nμ−1

l�1
αl ρl+1 − ρl( ) −ml( )2⎡⎢⎣ ⎤⎥⎦.

(14)

Often spectral reconstructions, which are based on a

relatively small number of input data, suffer from ringing

artifacts, similar to the Gibbs ringing arising in the inverse

problem of the Fourier series. These artifacts lead to a

reconstructed spectral function with a similar area as the true

spectral function but with a much larger arc length due to the

presence of unphysical wiggles. Since such ringing is not present

in the true QCD spectral function we may apriori suppress it by

penalizing arc length ℓ � ∫dμ �����������
1 + (dρ/dμ)2
√

. And since the

square root is monotonic, we may remove it for our purposes,

as well as discard the addition of unity, as it is absorbed into the

normalization of the corresponding prior distribution. The

hyperparameters of such a prior must be chosen

appropriately, since the remedy to one artifact, ringing, can

lead to the introduction of a different artifact, which is over-

damping of reconstructed spectral features. The relevant ranges

for α and m, as e.g., in Ref. [67], can be established using mock

data tests.

If our prior domain knowledge contains information about

the smoothness and the absence of ringing then it is of course

possible to combine different regulators by multiplying the prior

probabilities. The reconstruction of the first picture of a black

hole e.g., combined the Tikhonov and total variation

regularization [97]. In the presence of multiple regulators, the

hyperparameters α and m of each of these distributions need to

be assigned an (independent) uncertainty distribution.

One may ask, whether a proliferation of such parameters

spoils the benefit of the Bayesian approach? The answer is that in

practice one can estimate the probable ranges of these parameters

by use of mock data. One carries out the spectral function

reconstruction, i.e., the estimation of the posterior probability

P[ρ|D, I], using data, which has been constructed from known

spectral functions with realistic features and which has been

distorted with noise similar to those occurring in Monte-Carlo

simulations (see e.g., [67]). One may then observe from such test

data sets, what the most probable values of the hyperparameters

are and in what interval they vary, depending on different

spectral features present in the input data.

The three priors discussed so far are not commonly used as

stand-alone regulators in the reconstruction of hadron spectral

functions from lattice QCD in practice. The reason is that neither

of them can exploit a central prior information available in the

lattice context, which is the positivity [36] of the most relevant

hadronic spectral functions. I.e., in most of the relevant

reconstruction tasks from lattice QCD, the problem can be

formulated in terms of a positive definite spectral function,

which significantly limits the function space of potential

solutions. Methods that are unable to exploit this prior

information, such as the Backus-Gilbert method have

therefore been shown to perform poorly relative to the

Bayesian approaches, when it comes to the reconstruction of

well-defined spectral features (see e.g., [53]).
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In the following let us focus on two prominent Bayesian

methods, which have been deployed in the reconstruction of

positive spectral functions from lattice QCD, the Maximum

Entropy Method (MEM) and the Bayesian Reconstruction

(BR) method.

The MEM [47–49, 98] has originally been constructed to

attack image reconstruction problems in astronomy. It therefore

focuses on two-dimensional input data and deploys the

Shannon-Jaynes entropy SSJ as regulator:

P ρ|I[ ]∝ exp ∑Nμ

l�1
αl Δμ ρl −ml − ρl log

ρl
ml
[ ]( )⎡⎢⎣ ⎤⎥⎦. (15)

Its regulator is based on four axioms [49], which specify

the prior information the method exploits. They are subset

independence, which states that prior information on ρl’s at

different discrete frequency bins l can be combined in a linear

fashion within SSJ. The second axiom enforces that SSJ has its

maximum at the default model, which establishes the meaning

of ml as the apriori most probable value of ρl in the absence of

data. These two axioms are not specific to the MEM and find

use in different Bayesian methods. It is the third and fourth

axiom that distinguish the MEM from other approaches:

coordinate invariance requires that ρ itself should

transform as a dimensionless probability distribution. To

be more concrete, as MEM was constructed with image

reconstruction in mind, this axiom requires that the

reconstructed image (in our case the spectral function)

should be invariant under a common coordinate

transformation of the two-dimensional input data and the

prior. The last axiom is system independence and requires that

in a two-dimensional reconstructed image no additional

correlations between the two dimensions of the image are

introduced, beyond those that are already contained in the

data (for more details see Ref. [99]).

From the appearance of the logarithm in SSJ it is clear that the

MEM can exploit the positivity of the spectral function. Due to

the fact that the logarithm is multiplied by ρ, SSJ is actually able to

accommodate exact zero values of a spectral function. Since the

reconstruction task in lattice QCD is one-dimensional, it is not

obvious how to directly translate system independence. An

intuitive way of interpreting this axiom using e.g. the

kangaroos example of Ref. [48] is that the MEM shall not

introduce correlations among ρl’s where the data does not

require it. This is a quite restrictive property, as it is exactly

prior information, which should help us to limit the potential

solutions space by providing as much information about the

structure of ρ as possible. Similarly, the assumption that ρ must

transform as a probability distribution, while appropriate for a

distribution of dimensionless pixel values in an image, does not

necessarily apply to spectral functions. These are in general

dimensionful quantities and may even contain UV

divergences when evaluated naively.

To overcome these conceptual difficulties the BR method was

developed in Ref. [100] with the one-dimensional reconstruction

problem of lattice QCD real-time dynamics in mind. The BR

method features a regulator SBR related to the Gamma distribution

P ρ|I[ ] � ∏Nμ

l�1
Gamma 1 + Δμαl,Δμαl/ml[ ],

∝ exp ∑Nμ

l�1
αl Δμ 1 − ρl

ml
+ log

ρl
ml
[ ]( )⎡⎢⎣ ⎤⎥⎦, (16)

which looks similar to the Shannon-Jaynes entropy but differs in

crucial ways. Its construction shares the first two axioms of the

MEM but replaces the third and fourth axiom with the following:

scale invariance enforces that the posterior may not depend on

the units of the spectral function, leading to only ratios between ρl
and the default model ml, which by definition must share the

same units. The use of ratios also requires that neither ρ nor m

vanishes. SBR differs therefore from the Shannon-Jaynes

regulator where the integrand of SSJ is dimensionful. The

units of Δμ enter as multiplicative scale and can be absorbed

FIGURE 2
Comparison of the regulators of the Tikhonov approach
(green), the MEM (red) and the BR method (blue) in linear scale (A)
and double logarithmic scale (B) for the choice of m = 1. The
Shannon-Jaynes regulator accommodates ρ = 0 but appears
flat for spectral functions with values close to zero. The BR prior
shows the weakest curvature for ρ > m among all regulators.
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into a redefinition of α (and which will be marginalized over as

described in Section 3.3). Furthermore, one introduces a

smoothness axiom, which requires the spectral function to be

twice differentiable. While it may appear that the latter axiom is

at odds with the potential presence of delta-function like

structures in spectral functions, it ensures that one smoothly

approximates such well defined peaks as the input data improves.

Let us compare the regulators of the Tikhonov approach, the

MEM and the BR method in Figure 2, which plots the negative of

the integrand for the choice of m = 1. The top panel shows a

linear plot, the bottom panel a double logarithmic plot. By

construction, all feature an extremum at ρ = m.

The functional form of the BR regulator turns out to be the one

with the weakest curvature among all three for ρ > m, while it still

manages to regularize the inverse problem. Note that the weaker

the regulator, the more efficiently it allows information in the data

to manifest itself (it is actually the weakest on the market). At the

same time a weaker regulator is less potent in suppressing artifacts,

such as ringing, which may affect spectral function reconstruction

based on very small number of datapoints.2

Note that the BR regulator requires ρ to be positive definite,

whereas the MEM accommodates spectral functions and default

models that vanish identically over a range of frequencies. In

hadronic spectra, e.g., it is known that the spectral function can

vanish in regions below threshold. While in the MEM this fact can

be incorporated naturally, in the BR method a small but finite value

must be supplied in the default model everywhere. In practice this is

most often not a problem, since it is below threshold where the non-

perturbative bound state structures lie that onewishes to reconstruct.

Hence reliable prior information is in general not available and one

chooses an uninformative finite, i.e. constant default model there.

Having focused primarily on positive spectral functions so far, let

us briefly discuss some of the Bayesian approaches used in the

literature to study non-positive spectral functions. This task may

arise in the context of hadron spectral functions if correlators with

different source and sink operators are investigated (see e.g.,

Discussion in [101]) or if the underlying lattice simulation deploys

a Szymanzik improved action (see e.g., [102]). The quasiparticle

spectral functions of quarks and gluons are known to exhibit

positivity violation, their study from lattice QCD therefore apriori

requires methods that can accommodate spectral functions with both

positive and negative values. We already saw that the Tikhonov

approachwithGaussian prior does not place restrictions on the values

of the spectral function and has therefore been deployed in the study

of gluon spectral functions in the past [81, 83]. After the development

of the MEM, Hobson and Lasenby [103] extended the method by

decomposing general spectral functions into a positive (semi-)definite

and negative (semi-)definite part. To each of these a Shannon-Jaynes

prior is assigned. The third approach on themarket is an extension of

the BR method [104], which relaxes the scale invariance axiom and

proposes a regulator that is symmetric around ρ=m. Thismethodhas

been deployed in the study of gluon spectral functions [82] and in the

extraction of parton distribution functions [45].

An alternative that is independent of the underlying Bayesian

approach (see e.g., [105]) is to add to the input data that of a

known, large and positive mock-spectral function, which will

compensate for any negative values in the original spectral

function. After using a Bayesian method for the reconstruction

of positive ρs from the modified data, one can subtract from the

result the knownmock spectral function. In practice this strategy is

found to require very high quality input data to succeed.

The challenge one faces in the reconstruction of non-positive

spectral functions is that the inversion task becomes significantly

more ill-posed in the sense of non-uniqueness. Positivity is a

powerful constraint that limits admissible functions that are able

to reproduce the input data. In its absence, many of the functions

associated with small and even vanishing singular values of the

kernel K can contaminate the reconstruction. Often these

spurious functions exhibit oscillatory behavior which

interferes with the identification of genuine physical peak

structures encoded in the data (see also discussion in [91]).

Having surveyed different regulator choices, we are ready to

carry out the Bayesian spectral reconstruction. I.e. after choosing

according to one’s domain knowledge a prior distribution P[ρ|I(m,

α)] and assigning appropriate uncertainty intervals to their

hyperparameters P[α] and P[m] via mock-data studies, we can

proceed to evaluate the posterior distribution P[ρ|D, I]. If we can

access this highly dimensional object through a Monte-Carlo

simulation (see e.g., Section 4.3) it provides us not only with the

information of what the most probable spectral function is, given

our simulation data, but also contains the complete uncertainty

budget, including both statistical (data related) and systematic errors

(hyperparameter related). The maximum of the prior defines the

most probable value for each ρl and its spread allows a robust

uncertainty quantification beyond a simple Gaussian approximation

(i.e., standard deviation) as it may contain tails that lead to a

deviation of the mean from the most probable value.

3.3 Uncertainty quantification for point
estimates

While access to the posterior allows for a comprehensive

uncertainty analysis, a full evaluation of P[ρ|D, I] historically

remained computationally prohibitive. Thus the community

focused predominantly3 on determining a point estimate of

2 To avoid this complication, the BR regulator has been successfully
combined with the arc-length penalty regulator in Ref. [67].

3 A few works have explored stochastic strategies for the evaluation of
the posterior in the context of the SOM [106] or the stochastic analytic
continuation (SAI) method [107, 108], of which the MEM is a special
limit [109].
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the most probable spectral function from the posterior P[ρ|D, I],

also called MAP, the maximum aposteriori estimate

δ

δρ
P ρ|D, I[ ]∣∣∣∣∣∣∣∣

ρ�ρMAP

� 0 OR
δ

δρ
Q ρ|D, I[ ]∣∣∣∣∣∣∣∣

ρ�ρMAP

� 0,

(17)
where in practice often the logarithm of the posterior is used in

the actual optimization Q � log[P[ρ|D, I]].
While estimating the MAP, i.e., carrying out a numerical

optimization, is much simpler than sampling the full posterior,

only a fraction of the information contained in P[ρ|D, I] is made

accessible. In particular most information related to uncertainty

remains unknown and thus needs to be approximated separately.

The above optimization problem in general can be very

demanding as the posterior may contain local extrema in

addition to the global one that defines ρMAP (see sketch in Figure

3). At least in the case of the Tikhonov, MEM and BR method it is

possible to prove that if an extremum for Eq. 17 exists it must be

unique. The reason is that all three regulators are convex. The proof

of this statement does not rely on a specific parametrization of the

spectral function and therefore promises that standard (quasi)

Newton methods, such as Levenberg-Marquardt or LBFGS (see

e.g., Ref. [110]) can be used to locate this unique global extremum in

the Nμ dimensional search space.

Also from an information point of view it is fathomable that

at this point a unique solution to the former ill-posed inverse

problem can be found. We need to estimate the most probable

values of Nμ parameters ρl and have now provided Nτ simulation

dataDi, as well as Nμ pieces of information in the form of theml’s

and αl’s each. I.e., the number of knowns 2Nμ+Nτ > Nμ is larger

than the number of unknowns, making a unique determination

possible. The proof presented in Ref. [47] formalizes this intuitive

statement.

In practice it turns out that the finite intercept of the Shannon-

Jaynes entropy for ρ = 0 can lead to slow convergence if spectral

functions with wide ranges of values close to zero are

reconstructed. In lattice QCD this occurs regularly when e.g.

hadronic spectral functions contain sharp and well separated

peak structures. SSJ for very small values (see Figure 2) is

effectively flat and thus unable to efficiently guide the optimizer

toward the unique minimum and convergence slows down.

It is therefore that one finds in the literature that the

extremum Eq. 17 in the MEM is accepted for tolerances

around Δ ≈ 10−7, which is much larger than zero in machine

(double-)precision. Such a large tolerance does not guarantee

bitwise identical results when starting the optimization from

different initial conditions. Note that the definition of Δ varies in

the literature and we here define it via the relative step size in the

minimization of the optimization functional Q.

The BR prior on the other hand does not exhibit a finite

intercept at ρ = 0 and therefore avoids this slow convergence

problem. It has been found to be capable of locating the unique

extremum ρMAP in real-world settings down to machine precision,

which guarantees that the reconstruction result is independent of the

starting point of the optimizer.

Bayesian inference, through the dependencies of the posterior

P[ρ|D, I], forces us to acknowledge that the result of the

reconstruction is affected by two sources of uncertainty:

statistical uncertainty in the data and systematic uncertainty

associated with the choice and parameters of the prior probability.

Before continuing to the technical details of how to estimate

uncertainty, let us focus on the role of prior information first. It

enters both through the selection of a prior probability and the

choice of the distributions P[m] and P[α]. It is important to

recognize that already from an information theory viewpoint,

one needs to supply prior information if the goal is to give

meaning to an ill-posed inverse problem: originally we started

out to estimateNμ≫Nτ parameters ρl fromNτ noisy input dataDi.

I.e., in order to select among the infinitely many degenerate

parameter sets ρl a single one as the most probable, we need

information beyond the likelihood. Conversely any method that

offers a unique answer to the inverse problem utilizes some form of

prior information, whether it acknowledges it or not. Bayesian

inference, by making the role of prior knowledge explicit in

Bayes theorem, allows us to straight forwardly explore the

dependence of the result on our choices related to domain

information. It is therefore ideally suited to assess the influence

of prior knowledge on reconstructed spectral functions. This

distinguishes it from other approaches, such as the Backus

Gilbert method, where a similarly clear distinction of likelihood

and prior is absent. The Tikhonov method is another example.

Originally formulated with a vanishing default model, one can find

statements in the literature that it is default model independent.

Reformulated in the Bayesian language, we however understand that

its original formulation just referred to one specific choice of model,

which made the presence of prior knowledge hard to spot.

The presence of the prior as regulator also entails that among

the structures in a reconstructed spectral function only some are

constrained by the simulation data and others are solely

constrained by prior information. It is only in the Bayesian

continuum limit, which refers to taking simultaneously the

error on the input data to zero while increasing the number of

available datapoints toward infinity, that the whole of the spectral

function is fixed by input data alone. Our choice of regulator

determines how efficiently we converge to this limit and which

type of artifacts (e.g., ringing or over-damping) one will encounter

on the way. One important element of uncertainty analysis in

Bayesian spectral reconstruction therefore amounts to exploring

how reconstructed spectra improve as the data improves.4 This is a

well-established practice in the community.

4 In lattice QCD it is often easier to collect more samples than to
simulate on grids with more points along Euclidean time. Then at
least the improvement of the reconstruction with increasing statistics
needs to be considered.
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When reconstructing the spectral function according to a given

set of Monte–Carlo estimates Dk
i of a lattice QCD correlator Di, we

need to reliably estimate the statistical and systematic uncertainty

budget. It is important to recognize that these may be related, e.g.,

increasing the precision of input data often makes the reconstructed

spectrum less susceptible to changes in m or α. An often deployed

strategy is to nevertheless estimate the effects separately: In order to

assess statistical uncertainty we may use established bootstrap

methods or the (blocked) Jackknife (see Ref. [90]), where the

reconstruction is performed repeatedly on subensembles of the

input data Dk
i and the variance among the reconstructed spectra

provides a direct estimate of their statistical uncertainty.

In the case of point estimates, one usually decides apriori on a

regulator and fixes to a certain value of the default model m and

of the hyperparameter α, before carrying out the reconstruction.

The freedom in all these choices enters the systematic uncertainty

budget.

Often the user has access to a reliable default model m(ω) only

along a limited range of frequencies μ. In lattice QCD such

information is often obtained from perturbative computations

describing the large frequency and momentum behavior of the

spectral function (see e.g. [111–114]).When considering continuum

perturbative results as default model one must account for the finite

lattice spacing by introducing a cutoff by hand. In addition the

different (re-)normalization schemes in perturbation theory and on

the lattice often require an appropriate rescaling. Subsequently,

perturbative default models can reproduce input datapoints

dominated by the spectrum at large frequencies (e.g., small

Euclidean times). One additional practical challenge lies in the

functional form of spectral functions obtained from (lattice)

perturbation theory, since they may exhibit kink structures. If

supplied as default model, as is, such structures may induce

ringing artifacts in the reconstructed result. In practice one

therefore smooths out kink structures when constructing m(ω).

In the low frequency part of the spectrum, where non-

perturbative physics dominates, we often do not possess

relevant information about the functional form of ρ. It is then

customary to extend the default model into the non-perturbative

regime using simple and smooth functional forms that join up in

the perturbative regime.

In practice the user repeats the reconstruction using different

choices for the unknown parts of m, e.g., different polynomial

dependencies on the frequency and subsequently uses the

variation in the end result as indicator of the systematic

uncertainty. It is important to note that if there exist different

regulators that encode compatible and complementary prior

information that one should also consider repeating the

reconstruction based on different choices of P[ρ|I] itself.

Since we have access to the likelihood and prior, we may ask

whether a combined estimation of the statistical and systematic

uncertainty can be carried out even in the case of a point estimate.

Since the reconstructed spectrum ρMAP denotes a minimum of the

posterior, one may try to compute the curvature of the (log)

posterior L−S around that minimum, which would indicate how

steep or shallow that minimum actually is. This is the strategy

laid out e.g., in Ref. [47]. In practice it relies on a saddle point

approximation of the posterior and therefore can lead to an

underestimation of the uncertainty. Many recent studies thus

deploy a combination of the Jackknife and a manual variation of

the default model.

Since the treatment of hyperparameters differs among the

various Bayesian methods, let me discuss it here in more detail.

Appropriate ranges for the values of m can often be estimated

from mock data studies and since the functional dependence of

the default model is varied as part of the uncertainty estimation

discussed above, we focus here on the treatment of α. I.e., we will

treat the values of m as fixed and consider the effect of P[α]. If

alpha is taken to be small, a large uncertainty in the value m

ensues, which leads to a weak regularization and therefore to

large uncertainty in the posterior. If α is large it constrains the

posterior to be close to the prior and limits the information that

data can provide to the posterior.

Three popular strategies are found in the literature to treat α.

Note that in the context of the MEM, a common value is assigned

to all hyperparameters αl, i.e., the same uncertainty is assigned to

the default model parameters ml at all frequencies, an ad hoc

choice.

The simplest treatment of α, also referred to as the Morozov

criterion or historic MEM is motivated by the goal to avoid over

fitting of the input data. It argues that if we knew the correct

spectral function and were to compute the corresponding

likelihood function L, it would on average evaluate to 〈L〉 �
1
2Nτ i.e. half the number of datapoints. Therefore one should tune

the value of α such that the likelihood reproduces this value.

The second and third strategy are based directly on Bayes

theorem. The Bayesian way of handling uncertainties in model

parameters is to make their dependence explicit in the joint

probability distribution P[ρ, D, I(m, α)]. Now that the

distribution depends on more than three elements, application

of conditional probabilities leads to

P ρ, D, α, m[ ] � P D|ρ, α, m[ ]P ρ|α, m[ ]P α, m[ ],
� P α|ρ, D,m[ ]P ρ|D,m[ ]P D,m[ ]. (18)

The modernMEM approach solves Eq. 18 for P[α|ρ,D,m]. It

then integrates point estimates ρMAP
α obtained for fixed values of

α over that probability distribution. In order to compute P[α|ρ,D,

m] two ingredients are necessary: the full posterior P[ρ|D, α, m]

and the distribution P[α]. The former is in general not

analytically known and therefore is in practice approximated

by a saddle point approximation. The latter is in the literature

either chosen as constant or as P[α]∝ 1/α, a choice referred to as

Jeffrey’s prior.

Let me briefly clarify the often opaque notion of Jeffrey’s

prior [115]. Given a probability distribution P[x|α, m] and a

choice of parameter, e.g., α, Jeffrey’s prior refers to the

unique distribution PJ[α] �
��������
det[I(α)]√

defined from the
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Fisher information matrix I(α). This definition is considered

to be uninformative, as it remains invariant under a change

of coordinates of α. Using the one-dimensional Gaussian

distribution as example, we can obtain an intuitive

understanding of its role. Let P[x|σ, m] � N [x|σ, m], then

PJ m[ ] �

����������������������������∫ dxN x|σ, m[ ] d

dm
N x|σ, m[ ]( )2

√√
�
��
1
σ2

√
� const.,

(19)

PJ σ[ ] �

���������������������������∫ dxN x|σ, m[ ] d

dσ
N x|σ, m[ ]( )2

√√
�
��
2
σ2

√
� �

2
√ 1

σ
.

(20)
Jeffrey’s prior for m is independent of m and thus refer to

the unique translation invariant distribution on the real values

(Haar-measure for addition). It therefore does not impart any

information on the location of the peak of the normal

distribution. Similarly PJ[σ] is a scale invariant distribution

on the positive real values (Haar-measure for multiplication).

Since the uncertainty parameter σ enters as a multiplicative

scale in the normal distribution its Jeffrey’s prior also does not

introduce any additional information. Both priors

investigated here are improper distributions, i.e., they are

well-defined only in products with proper probability

distributions.

The third strategy to treat the parameters αl has been put

forward in the context of the BR method. It sets out to overcome

the two main limitations of the MEM approach: the need for

saddle point approximations in the handling of α and the overly

restrictive treatment of assigning a common uncertainty to all

ml’s. The BR method succeeds in doing so, by using Bayes

theorem to marginalize the parameters αl apriori, making the

(highly conservative) assumption that no information about αl is

known, i.e., P[αl] = 1. It benefits from the fact that in contrast to

the Shannon-Jaynes prior, the BR-prior is analytically tractable

and its normalization can be expressed in closed form.

We start from Eq. 18 and assume that the parameters α

and m are independent, so that their distributions

factorize. Marginalizing a parameter simply means

integrating the posterior over the probability

distribution of that parameter. Via application of

conditional probabilities it is possible to arrive at the

corresponding expression

∏
l
∫ dαlP α|ρ, D,m[ ]P ρ|D,m[ ] � P D|ρ, I[ ]

P D|m[ ]P m[ ]∏
l
∫ dαlP ρ|α, m[ ]P α[ ]P m[ ],

P ρ|D,m[ ] � P D|ρ, I[ ]
P D|m[ ]∏

l

∫ dαlP ρ|α, m[ ]P α[ ], (21)

where P[ρ|D, m] does not depend on α anymore and by

definition of probabilities ∫dαP[α|ρ, D, m] = 1. The

posterior P[ρ|D, m] now includes all effects arising from

the uncertainty of α without referring to that variable

anymore. Due to the form of the BR prior P[ρ|α, m], the

integral over αl is well defined, even though we used the

improper distribution P[α] = 1. One may wonder whether

integrating over αl impacts the convexity of the prior. While

not proven rigorously, in practice it turns out that the

optimization of the marginalized posterior P[ρ|D, m] in the

BR method does not suffer from local extrema.

A user of the BRmethod therefore only needs to provide a set

of values for the default model ml to compute the most probable

spectral function

δ

δρ
P ρ|D,m[ ]∣∣∣∣∣∣∣∣

ρ�ρMAP
BR

� 0. (22)

By carrying out several reconstructions and varying the

functional form of m within reasonable bounds, established by

mock-data tests, the residual dependence on the default model

can be quantified.

So far we have discussed the inherent uncertainties from the

use of Bayesian inference and how to assess them. Another

source of uncertainty in spectral reconstructions arises from

specific implementation choices. Let me give an example

based on the Maximum Entropy Method. In order to save

computational cost, the MEM historically is combined with a

singular value decomposition to limit the dimensionality of the

solution space. The argument by Bryan [116] suggests that

instead of having to locate the unique extremum of P[ρ|D, I]

in the full Nμ dimensional search space of parameters ρl, it is

sufficient to use a certain parametrization of ρ(μ) in terms of Nτ

parameters, the number of input data points. The basis functions

are obtained from a singular value decomposition (SVD) of the

transpose of the kernel matrix Kt. Bryan’s argument only refers to

the functional form of the Kernel K and the number of data

points Nτ in specifying the parametrization of ρ(μ). If true in

general, this would lead to an enormous reduction in

computational complexity. However, I have put forward a

counter example to Bryan’s argument (originally in [117])

including numerical evidence, which shows that in general the

extremum of the prior is not part of Bryan’s reduced search

space.

One manifestation of the artificial limitation of Bryan’s search

space is a dependence of the MEM resolution on the position of a

spectral feature along the frequency axis. As shown in Figure 3 of

Ref. [118], if one reconstructs a single delta peak located at different

positions μ0 with theMEM, one finds that the reconstructed spectral

functions show a different width, depending on the value of μ0. This

can be understood by inspecting the SVD basis functions, which are

highly oscillatory close to μmin the smallest frequency chosen to

discretize the μ range. At larger values of μ these functions however
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damp towards zero. I.e. if the relevant spectral feature is

located in the μ range where the basis functions have

structure, it is possible to reconstruct a sharp peak

reasonable well, while if it is located at larger μ the

resolution of the MEM decreases rapidly. The true Bayesian

ρMAP, i.e. the global extremum of the MEM posterior, however

does not exhibit such a resolution restriction, as one can see

when changing the parametrization of the spectral function to

a different basis, e.g., the Fourier basis consisting of cos and

sin functions. In addition Ref. [57] in its Figure 28 showed that

using a different parametrization of the spectral function,

which restricts ρ to a space that is equivalent to the SVD

subspace from a linear algebra point of view, one obtains a

different result. This, too, emphasizes that the unique global

extremum of the posterior is not accessible within these

restricted search spaces. Note that one possible explanation

for the occurrence of the extremum of P[ρ|D, I] outside of the

SVD space lies the fact that in constrained optimization

problems (here the constraint is positivity), the extremum

can either be given by the stationarity condition of the

optimization functional in the interior of the search space

or it can lie on the boundary of the search space restricted by

the constraint.

I.e., in addition to artifacts introduced into the

reconstructed spectrum via a particular choice of prior

distribution and handling of its hyperparameters (e.g.,

ringing or over-damping), one also must be aware of

additional artifacts arising from choices in the

implementation of each method.

The dependence of Bryan’s MEM on the limited search space

was among the central reasons for the development of the BR

method. The advantageous form of the BR prior, which does not

suffer from slow convergence in finding ρMAP in practice, allows

one to carry out the needed optimization in the full Nμ

dimensional solution space to P[ρ|D, I] with reasonable

computational cost. The proof from Ref. [47] which also

applies to the convex BR prior, guarantees that in the full

search space a single unique Bayesian solution can be located

if it exists.

In Section 4 we will take a look at hands-on examples of using

the BR method to extract spectral functions and estimating their

reliability.

3.4 Two lattice QCD uncertainty
challenges

Spectral function reconstruction studies from lattice QCD

have encountered two major challenges in the past.

The first one is related to the number of available input

data points, which, compared to simulations in e.g. condensed

matter physics is relatively small, of the order O(10−100).

Especially when analyzing datasets at the lower end of this

range, the sparsity of the Di’s along Euclidean time τ often

translates into ringing artifacts. Due to the restricted search

space of Bryan’s MEM, this phenomenon may be hidden,

while the global extremum of the MEM posterior ρMAP
MEM, as well

as the BR method MAP estimate ρMAP
BR do show ringing. Since

ringing leads to spectral functions with a too large arc length

compared to the true spectral function one can treat this

artifact by combining either the MEM or the BR prior with the

arc-length penalty regulator discussed in Section 3.2. The

additional hyperparameters associated with this penalty

term can be estimated using realistic mock data, as shown

e.g., in Ref. [67]. The benefit of this genuine Bayesian

approach is that the mechanism by which ringing is

suppressed is made explicit and is not hidden in a

particular choice of basis function.

The second challenge affects predominantly spectral

reconstructions at finite temperature, in particular their

comparability at different temperatures. In lattice QCD,

temperature is encoded in the length of the imaginary time

axis. I.e., simulations at lower temperature have access to a

larger τ regime, as those at higher temperature. Since the

FIGURE 3
Sketch of how the confluence of (A) likelihood (red) and (a convex) prior (blue) in the posterior [orange, (B)] leads to a regularization of the
inverse problem. Instead of multiple degenerate minima in the likelihood (gray circles) only a single unique one remains in the posterior.
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available Euclidean time range affects the resolution capabilities

of any spectral reconstruction it is important to calibrate one’s

results to a common baseline. I.e., one needs to establish how

the accuracy of the reconstruction method changes as one

increases temperature. Otherwise changes in the

reconstructed spectral functions are attributed to physics,

while they actually represent simply a degradation of the

method’s resolution. The concept of the reconstructed

correlator [55] is an important tool in this regard. Assume

we have a correlator encoding a certain spectral function at

temperature T1 with NT_1
τ points. We can now ask: how would

the correlator look like where the same spectral function is

encoded at a higher temperature T2, i.e., within a smaller

Euclidean time window of NT_2
τ points. Since the underlying

kernel relating spectral function and correlator is often

temperature dependent, this question is not easily answered

by just discarding imaginary time datapoints from the large τ

region of the original correlator.5 Instead if one wishes to

evaluate the corresponding higher temperature correlator

Ref. [60] showed that for the bosonic finite temperature

kernel KT>0(μ, τ) = cosh[μ(τ−β/2)]/sinh[μβ/2], relevant for

studies of relativistic bosonic spectral functions, one has to

form the following quantity

Drec τ, T2|T1( ) � ∑NT1
τ −NT2

τ +τ/a
τ′/a�τ/a,Δτ′/a�NT1

τ

Dlattice τ′|T1( ). (23)

By carrying out a reconstruction based on two correlators

at different Euclidean extent Dlattice(τ|T1) and Dlattice(τ|T2)

one will in general obtain two different spectral functions.

Only when one compares the reconstruction based on Drec(τ,

T2|T1) with that of Dlattice(τ|T2) is it possible to disentangle the

genuine effects of a change in temperature from the one’s

induced by the reduction in access to Euclidean time. This

reconstruction strategy has been first deployed for relativistic

correlators in Ref. [66]. A similar analysis in the context of

non-relativistic spectral functions in Ref. [67] showed that the

temperature effect of a negative mass shift for in-medium

hadrons was only observable, if the changes in resolution of

the reconstruction had been taken into account.

4 Hands-on spectral reconstruction
with the BR method

This publication is accompanied by two open-source

codes. The first [119], written in the C/C++ language,

implements the BR method (and the MEM) in its

traditional form to compute MAP estimates with arbitrary

precision arithmetic. The second [120], written in the Python

language uses standard double precision arithmetic and

utilizes the modern MCStan Monte-Carlo sampler to

evaluate the full BR posterior.

4.1 BR MAP implementation in C/C++

The BR MAP code deploys arbitrary precision arithmetics,

based on the GMP [121] and MPFR [122] libraries, which offers

numerical stability for systems where exponential kernels are

evaluated over large frequency ranges. A run-script called

BAYES.scr is provided in which all parameters of the code

can be specified.

The kernel for a reconstruction task is apriori known and

depends on the system in question. The BR MAP code

implements three common types encountered in the context

of lattice QCD (see parameter KERNELTYPE). Both zero

temperature kernel KT=0(μ, τ) = exp[−μτ], and the naive finite

temperature kernel for bosonic correlators KT>0(μ, τ) = cosh

[μ(τ−β/2)]/sinh[μβ/2] are available. Here β refers to the extend of

the imaginary time axis. The third option is the regularized finite

temperature kernel KT>0
reg (μ, τ) � β

2π atan[μ]KT>0(μ, τ) suggested
in Ref. [60] (see also [72, 123]). It lifts the divergence of the kernel

at μ = 0, which is related to the antisymmetry of bosonic spectral

functions at T > 0. Note that when redefining the kernel, one also

redefines the spectral function to reconstruct and thus an

appropriately modified default model must be supplied.

Next, the discretization of the frequency interval μ needs to

be decided on (see parameters WMIN and WMAX). When

relativistic lattice QCD correlators are investigated, the lattice

cutoff ±
�
3

√
π
a provides a reliable estimate up to where spectral

structures will be present. It is often a good crosscheck to use a

larger range of frequencies beyond where the input data can

provide constraining information, in order to see that the

reconstructed spectral function in that regime is correctly

given by the supplied default model. In case that lattice

effective field theory correlators are investigated, the user has

to keep in mind that their spectra may be populated beyond the

naive lattice cutoff. In some cases the appropriate range can be

estimated from an inspection of semi-analytically tractable free

theory spectral functions. A rough guess for the UV cutoff can be

obtained by fitting an exponential to the first few correlator

points at small imaginary time τ. Depending on the resolution

required for the encoded spectral features, the number of

frequency bins Nμ can be chosen via NOMEGA. If a very sharp

peak feature is present, one can use the parameters HPSTART,

HPEND and HPNUM to define a high resolution window along μ

for which HPNUM of the NOMEGA points are used.

The number of points along the Euclidean time axis of the

lattice simulation is specified by NT and its extend noted by

BETA. Depending on the form of the kernel and the choices for β

5 In cases where the kernel is temperature independent, e.g., for lattice
effective field theory correlators, discarding large τ datapoints is
equivalent to computing the reconstructed kernel.
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and μmax the dynamic range of the kernel matrix may be large

and one has to choose an appropriate precision NUMPREC for the

arithmetic operations used.

For the analysis of lattice QCD correlators FILEFORMAT 4 is

most useful. Each of the total NUMCONF measurements of a

correlator is expected to be placed in individual files with a

common name DATANAME (incl. directory information) and a

counter as extension, which counts upward from FOFFSET. The

format of each file is expected to contain two columns in ASCII

format, the first denoting the Euclidean time step as integer and

the second one the real-valued Euclidean correlator. Via TMIN

and TMAX the user can specify which are the smallest and largest

Euclidean times provided in each input data file, while TUSEMIN

and TUSEMAX define which of these datapoints are used for the

reconstruction.

In order to robustly estimate the statistical uncertainty of the

input data, the code is able to perform an analysis of the

autocorrelation among the different measurements. The value

of ACTHRESH is used to decide to which threshold the

normalized autocorrelation function [36] must have decayed,

for us to consider subsequent measurements as uncorrelated. To

test the quality of the estimated errors one can manually enlarge

or shrink the assigned error values using the parameter

ERRADAPTION.

As discussed in the previous section, a robust estimate of the

statistical uncertainty of the spectral reconstruction can be

obtained from a Jackknife analysis. The code implements this

type of error estimate when the number of Jackknife blocks are

set to a value larger than two in JACKNUM. The NUMCONF

measurements are divided into consecutive blocks and in each

iteration of the Jackknife a single block is remove when

computing the mean of the correlator. If JACKNUM is set to

zero a single reconstruction based on the full available statistics is

carried out.

Once the data is specified, we have to select the default

model. The default model can either be chosen to take on a

simple functional form choosing values 1 or 2 for

PRIORMODEL. The latter corresponds to a constant given

by MFAC. The former leads to m(μ) � m0/(μ − μmin + 1)power,
where the power is set via the parameter PRIORPOWER and

m0 via MFAC. To supply more elaborate default models the

user can set PRIORMODEL to 4 and provide a file prior.0 in

the working directory of the code that contains two columns,

the first with the frequencies μ and the second with the values

of m. Note that we have already marginalized over the

uncertainty of the default model using P[α] = 1 so that

specifying m suffices for the BR method.

In the present implementation of the BR method

(ALGORITHM value 1) the integration over α is

implemented in a semi-analytic fashion, which is based on

a large S expansion. In practice this simply means that one

must avoid to start the minimizer from the default model for

which S = 0.

The original Ref. [100] conservatively stated that it is

advantageous with regards to avoiding overfitting to instruct

the minimizer to keep the values of the likelihood close to the

number of provided datapoints. The codemaintains this condition

within a tolerance that is specified by a combination of the less than

ideal named ALPHAMIN and ANUM parameters. The

reconstruction will be performed ANUM times where in each of

the iterations counted internally by a variable ACNT the likelihood

is constrained to fulfill |L −Ndata| � (1/ALPHAMIN × 10ACNT).

The search for ρMAP
BR is carried out internally using the LBFGS

minimization algorithm [124]. It terminates when the relative

step size of the minimizer falls below the threshold MINTOL.

Note that for high precision arithmetic a correspondingly small

threshold should be specified (e.g., for NUMPREC =

128 MINTOL = 10−30 or for NUMPREC = 256 MINTOL =

10−60). The results of the minimizer are output into the folder

RESULTNAME every 2,000 steps in files called

BAYES_rhovalues_A(ANUM-ACNT).dat and the final

result is found in the file spec_rec.dat. The spectra are

also collected in the file PROB_ESTIMATES_FREQ.dat in

column 6, where the frequencies are listed in column 4. If the

Jackknife analysis is selected then this file contains multiple

spectra for each Jackknife subaverage counted by the value in

column 8.

To speed up the convergence in case that very high precision

data is supplied (i.e. when very sharp valleys exist in the

likelihood) it is advantageous to carry out the reconstruction

first with artificially enlarged errorbars via ERRADAPTION> 1.

The corresponding result in file

BAYES_rhovalues_A(ANUM).dat if copied into the

working directory of the code with the name start.0 can

be used as starting point for the next minimization with the

actual errorbars, by selecting the value 2 for the parameter

RESTARTPREV.

The code, when compiled with the preprocessor macro

VERBOSITY set to value one, will give ample output about

each step of the reconstruction. It will output the frequency

discretization, the values for the Euclidean times used, as well as

show which data from each datafile has been read-in. In addition

it presents the estimated autocorrelation and the eigenvalues of

the covariance matrix, before outputting each step of the

minimizer to the terminal. This comprehensive output allows

the user to spot potential errors during data read-in and allows

easy monitoring whether the minimizer is proceeding normally.

The incorrect estimation of the covariance matrix due to

autocorrelations is a common issue, which can prevent the

minimizer to reach the target of minimizing the likelihood

down to values close to the number of input data. Enlarging

the errorbars until the likelihood reaches small enough values

provides a first indication of how badly the covariance matrix is

affected by autocorrelations. Another diagnosis step is to only

consider the diagonal entries of the covariance matrix, which can

be selected using the preprocessor macro DIAGCORR set to 1.
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4.2 MEM MAP implementation in C/C++

The provided C/C++ code also allows to perform the MAP

estimation based on the MEM prior using arbitrary precision

arithmetic. By setting the parameter ALGORITHM to value 2 one

can choose Bryan’s implementation, where the spectral function

is parametrized via the SVD of the kernel matrix. The standard

implementation uses as many SVD basis functions as input

datapoints are provided. By varying the SVDEXT parameter

the user may choose to include more or reduce the number of

SVD basis function deployed. Alternatively by using the value

3 the user can deploy the Fourier basis functions introduced in

Ref. [118] and for value 4 ρMAP
MEM is searched for in the full Nμ

dimensional search space. Due to the proof of uniqueness of the

extremum, even searching in the full space is supposed to locate a

single Bayesian answer ρMAP
MEM to the inverse problem.

In the MEM, the common uncertainty parameter α for the

default model ml is still part of the posterior and needs to be

treated explicitly. To this end the MEM reconstruction is

repeated ANUM times, scanning a range of α values between

ALPHAMIN and ALPHAMAX. Since apriori the appropriate range

of values is not known, the user is recommended to carry out

reconstructions with artificially enlarged errorbars via

ERRADAPTION that converge quickly and which allow to

scan a large range between usually α ∈ [0; 100].

The LBFGSminimizer will be used to find the point estimates

ρMAP
α for each fixed value of the hyperparameter and then

according to Ref. [47] estimate the probability distribution P

[α|D, I] over which a weighted average is computed. The values of

α and the probabilities are output to the 4th and 6th column of

the file Probabilities.dat respectively. The final result is

then outputted in the file spec_rec.dat in column 4 with the

frequencies located in column 3. Intermediate steps of the

minimizer are output to files

MEM_rhovalues_A(ACNT).dat, where ACNT refers to

the step along the alpha interval. In case of a Jackknife

analysis all reconstructed spectra can be found in

PROB_ESTIMATES_FREQ.dat in column 6, where the

frequencies are listed in column 4.

Note that due to the functional form of the Shannon-Jaynes

prior the convergence for spectral functions with large regions of

vanishing values is often slow, which is why in practice the

tolerance for convergence is chosen by MINTOL around 10−7.

Note that the estimation of the α probabilities involves the

computation of eigenvalues of a product of the kernel with itself.

In turn this step may require additional numerical precision via

NUMPREC if an exponential kernel is used. If the precision is

insufficient, the determination of the eigenvalues might fail and

the final integrated spectral function will show NAN values, while

intermediate results in MEM_rhovalues_A(ACNT).dat are

well behaved. In that case rerunning the reconstruction with

higher precision will remedy the issue.

4.3 Full Monte-Carlo based BR method in
python

In many circumstances the MAP point estimate of spectral

functions already provides relevant information to answer

questions about real-time physics from lattice QCD.

However, as discussed in the previous section Section 3.3, its

full uncertainty budget may be challenging to estimate. It is

therefore that I here discuss a modern implementation of the

BR method, allowing for access to the posterior distribution via

Monte-Carlo sampling.

The second code provided with this publication is a Python script

based on theMCStanMonte-Carlo sampler library [125, 126]. It uses

the same parameters for the description of frequency and imaginary

time as the C/C++ code but works solely with double precision

arithmetic. Since different kernels are easily re-implemented, the script

contains as single example the zero temperature kernel KT=0(τ, μ).

In order to sample from the posterior, we must define all the

ingredients of our Bayesian model in the MCStan language. A

simple model consists of three sections, data, parameters and

the actualmodel. Indata the different variables and vectors used

in the evaluation of the model are specified. It contains e.g. the

number of datapoints sNt and the number of frequency binssNw.

The decorrelated kernel is provided in a two-dimensional matrix

datatype Kernel, while the decorrelated simulation data come in

the form of a vector D. The eigenvalues of the covariance matrix

enter via the vector Uncertainty. The values of the default

model are stored in the vector DefMod. In the original BRmethod

we would assume full ignorance of the uncertainty parameters αl
with P[α] = 1. Such improper priors may lead to inefficient

sampling in MCStan, which is why in this example script a

lognormal distribution is used. It draws α values from a range

considered relevant in mock data tests. The user can always check

self consistently whether the sampling range of α′s was chosen

appropriately by interrogating the marginalized posterior for α

itself, making sure that its maximum lies well within the sampling

range.

After selecting how many Markov-chains to initialize via

NChain and howmany steps inMonte Carlo time to proceed via

NSamples the Monte-Carlo sampler of MCStan is executed

using the sample command. MCStan automatically adds

additional steps for thermalization of the Markov chain.

Depending on how well localized the histrograms for each ρl
are, the number of samples must be adjusted. Since the BR prior

is convex, initializing different chains in different regions of

parameter space does not affect the outcome as long as enough

samples are drawn.

We may then subsequently estimate the spectral function

reconstruction from the posterior by inspecting the histograms

for each parameter. Since in this case we have access to the full

posterior distribution we can now answer not only what the most

probable value for ρl is but also compute its mean and median,
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giving us relevant insight about the skewness of the distribution

of values.

4.4 Mock data

Both code packages contain two realistic mock-data test sets,

which have been used in the past to benchmark the performance

of Bayesian methods. They are based on the Euclidean Wilson

loop computed in first order hard-thermal-loop perturbation

theory, for which the temperature independent kernel K(τ, μ) =

exp[−τμ] is appropriate. The correlator included here

corresponds to the one computed at T = 631 MeV in Ref.

[127] and which is evaluated at r = 0.066 fm, as well as r =

0.264 fm spatial extend. The continuum correlator is discretized

with 32 steps in Euclidean time. The underlying spectral

functions are provided in the folder MockSpectra in

separate files for comparison.

To stay as close to the scenario of a lattice simulation, based

on the ideal correlator data, a set of 1,000 individual datafiles is

generated in the folder MockData in which the imaginary time

data is distorted with Gaussian noise. The noise strength is set to

give a constant ΔD/D = 10−4 relative error on the mean when all

samples are combined. The user is advised to skip both the first

D(0) and last datapoint D(τmax) in the dataset, which are

contaminated by unphysical artifacts related to the

regularization of the Wilson loop computation.

The reader will find that this mock data provides a challenging

setting for any reconstruction method, as it requires the

reconstruction both of a well defined peak, as well as of a broad

background structure. It therefore is well suited to test the resolution

capabilities of reconstructionmethods, as well as their propensity for

ringing and over-damping artifacts.

For the C/C++ implementation of the BR MAP estimation a set

of example scripts are provided. The user can first execute e.g.

BAYESMOCK066_precon.scr to carry out a preconditioning

run with enlarged errorbars. In a second step one provides the

outcome of the preconditioning run as file start.0 and executes

BAYESMOCK066.scr to locate the global extremum of the BR

posterior. The outcome of these sample scripts is given for reference in

Figure 4 compared to the semi-analytically computed HTL spectral

functions in SpectrumWilsonLoopHTLR066.dat.

5 New insight from machine learning

Over the past years interest in machine learning approaches to

spectral function reconstruction has increased markedly (see also

[128]). Several groups have put forward pioneering studies that

explore how established machine learning strategies, such as

supervised kernel ridge regression [129, 130], artificial neural

networks [44, 45, 131–135] or Gaussian processes [136, 137] can

be used to tackle the inverse problem in the context of extracting

spectral functions from Euclidean lattice correlators. The machine

learningmindset has already lead to new developments in the spectral

reconstruction community, by providing new impulses to

regularization of the ill-posed problem.

As a first step let us take a look at howmachine learning strategies

incorporate the necessary prior knowledge to obtain a unique answer

to the reconstruction task. While in the Bayesian approach this

information enters explicitly through the prior probability and its

hyperparameters, it does so in the machine-learning context in three

separate ways: To train supervised reconstruction algorithms a training

dataset needs to be provided, often consisting of pairs of correlators and

information on the encoded spectral functions. Usually a limited

FIGURE 4
BR MAP reconstructions of the HTL Wilson loop spectral
function (gray points) evaluated at T = 631 MeV and spatial
separation distance r = 0.066 fm (A) and r = 0.264 fm (B). The
reconstruction based on Nτ = 32 Euclidean data and a
frequency range between μa ∈ [−5, 25] with Nω = 1,000 are shown
as colored open symbols. The red data denotes the reconstruction
based on the preconditioning ERRADAPTION = 50 while the final
result exploting the full ΔD/D = 10−4 is given in blue.
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selection of relevant structures is included in this training data set,

which amounts to prior knowledge on the spectrum. Both supervised

and unsupervised machine learning is build around the concept of a

cost- or optimization functional, which contains information on the

provided data. It most often also features regulator terms, which can be

of similar form as those discussed in Section 3.2. This in particular

means that these regulators define the most probable values for the ρl’s

in the absence of data and therefor take on a similar role as a Bayesian

default model. The third entry point for prior knowledge lies in the

choice of structures used to compose the machine learning model. In

case that e.g. Gaussian processes are used, the choice of kernel of the

common normal distribution for observed and unobserved data is

based on prior knowledge, as is the selection of its hyperparameters. In

case that neural networks are used, the number and structure of the

deployed layers and activation functions similarly imprint additional

prior information on the reconstructed spectral function, such as e.g.,

their positivity.

Direct applications of machine learning approaches

developed in the context of image reconstruction to positive

spectral function reconstruction have shown good performance

on-par with Bayesian algorithms, such as the BR method or

the MEM.

Canwe understandwhymachine learning so far has not outpaced

Bayesian approaches? One potential answer lies in the information

scarcity of the input correlators themselves. If there is no unused

information present in the correlator also sophisticated machine

learning cannot go beyond what Bayesian approaches utilize. As

shown in recent mock-data tests in the context of finite

temperature hadron spectral functions in Ref. [67], increasing the

number of available datapoints in imaginary time (i.e., going closer to

the continuum limit) does not necessarily improve the reconstruction

outcome significantly. One can see what is happening, when

investigating the Matsubara frequency correlator, obtained from

Euclidean input data via Fourier transform. As one decreases the

temporal lattice spacing, the range of accessible high lying Matsubara

frequencies increases but their coarseness, given by the inverse

temperature of the system, remains the same. Of course formally

all thermal real-time information can be reconstructed from access to

the exact values of the (discrete) Matsubara frequency correlator. In

practice, in the presence of finite errors, one finds that the in-medium

correlator only at the lowest Matsubara frequencies shows significant

changes compared to the T = 0 correlator and agrees with it within

uncertainties at higher lying Matsubara frequencies. I.e. the

contribution of thermal physics diminishes rapidly at higher

Matsubara frequencies, which may in practice require increasingly

smaller uncertainties on the input data for successful reconstruction at

higher temperatures.

This information scarcity dilemma asks us to provide our

reconstruction algorithms with more QCD specific prior

information. So far the Bayesian priors have focused on very

generic properties, such as positivity and smoothness. It is here

that machine learning can and already has provided new impulses

to the community.

One promising approach is to use neural networks as

parametrization of spectral functions or parton distribution functions.

First introduced in the context of PDFs in Ref. [45] and recently applied

to the study of finite temperature spectra in Ref. [44] this approach

allows to infuse the reconstructionwith additional information about the

analytic properties of ρ. Traditionally one would choose a specific

parametrization apriori such as rational functions (Padé) or SVD

basis functions (Bryan) and vary their parameters. The more versatile

NNapproach, thanks to the universal approximation theorem, allows us

instead to explore different types of basis functions and assign an

uncertainty to each choice.

The concept of learning can also be brought to the prior

probability or regulator itself. Instead of constructing a regulator

based on generic axioms, one may consider it as a neural network

mapping the parameters ρl to a single penalty valueP[ρ|I]. Training an

optimal regulator within a Bayesian setting, based e.g., on realistic

mock data, promises to capture more QCD specific properties than

what is currently encoded in the BR or MEM. Exploring this path is

work in progress.

6 Summary and conclusion

Progress inmodern high-energy nuclear physics depends on first-

principle knowledge of QCD dynamics, be it in the form of transport

properties of quarks and gluons at high temperatures or the phase-

space distributions of partons inside nucleons at low temperatures.

Lattice QCD offers non-perturbative access to these quantities but due

to its formulation in imaginary time, hides them behind an ill-posed

inverse problem. The inverse problem is most succinctly stated in

terms of a spectral decomposition, where the Euclidean correlator

accessible on the lattice is expressed as integral over a spectral function

multiplied by an analytic kernel. The real-time information of interest

can often be read-off directly from the structures occurring in the

spectral function. The determination of PDFs from the hadronic tensor

and via pseudo PDFs can be formulated in terms of a similar inversion

problem.

Bayesian inference provides a versatile tool set for the

reconstruction of spectral functions. It gives meaning to the ill-

posed inverse problem by incorporating relevant domain

knowledge with an associated uncertainty budget through the prior

probability distribution. Evaluating the posterior distribution, defined

through Bayes theorem, gives access to themost probable values of the

spectral function based on simulation data and prior knowledge. In

addition it also encodes the full uncertainty budget through its spread.

Traditionally predominantlyMAPpoint estimates were computed due

to lower computational cost of the corresponding optimization

problem, compared to full Monte-Carlo sampling of the posterior.

In that case information about the uncertainty budget is hidden from

the user and it must be estimatedmanually. Several relevant challenges

for uncertainty estimation in the lattice QCD context were discussed,

including the problem of ringing and those related to comparing

reconstructions based on different Euclidean time extents.
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A brief user guide described how to run two open access

codes accompanying this publication. One focuses on the

determination of MAP point estimates based on the BR and

MEM prior. The other utilizes a modern Monte-Carlo library to

sample from the full BR posterior.

Last but not least a brief look is taken at machine learning

approaches to spectral function reconstruction. The need for

providing prior information is discussed and a common challenge

among all reconstruction approaches, information scarcity in the

input data, is pointed out. Two venues for combining the machine-

learning viewpoint with the Bayesian strategy are touched upon.

With the concrete conceptual and technical discussions

contained in this publication, the reader is equipped with a

solid basis to carry out Bayesian spectral reconstructions. The

provided open-access source codes offer a quick entry into the

research field and can be modified according to different needs in

regards to kernels arising in different lattice QCD studies.
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