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Netted melons are welcomed for their soft and sweet pulp and strong aroma

during the best-tasting period. The best-tasting period was highly correlated

with its soluble solid content (SSC). However, the SSC of the intact melon was

difficult to determine due to the low relationship between the hardness, color,

or appearance of fruit peel and its SSC. Consequently, a rapid, accurate, and

non-destructive method to determine the SSC of netted melons was the key to

determining the best-tasting period. A hyperspectral model was constructed to

estimate the SSC of intact netted melons. The combination of continuous

wavelet transform and partial least squares or random forest algorithm was

employed to improve the estimation accuracy of the hyperspectral model.

Specifically, the hyperspectra of the diffuse reflection and SSC of 261 fruit

samples were collected. The sensitivity band was screened based on the

correlation analysis and continuous wavelet transform decomposition. The

correlation coefficient and RMSE of the random forest regression model

decomposed by the continuous wavelet transform were 0.72 and 0.98%,

respectively. The decomposition of the continuous wavelet transform

improved the correlation coefficient by 5 and 1.178 times at 754 and

880 nm, respectively. The random forest regression model enhanced the

determination coefficient by at least 56.5% than the partial least squares

regression model, and the continuous wavelet transform decomposition

further enhanced the determination coefficient of the random forest

regression model by 4.34%. Meanwhile, the RMSE of the random forest

regression model was reduced. Therefore, the decomposition of the

continuous wavelet transform improved the stability and prediction ability of

the random forest regression model.
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1 Introduction

Netted melon (Cucumis melo L. var. reticulatus Naud.) is a

member of the genus Cucumis, subtribe Cucumerinae. Netted

melon shows soft and sweet pulp and strong aroma for only

3–5 days which is known as the best-tasting period [1, 2]. The

best-tasting period of netted melons is highly correlated with

their soluble solid content (SSC). Specifically, the SSC increased

slowly when the pulp of fruit was hard with low sweetness and

weak aroma in the expansion stage of the fruit. The SSC reached a

certain threshold which remained for about 3–5 days when the

fruit showed a soft and sweet pulp and strong aroma. After the

best-tasting period, the SSC increased quickly with the obvious

drip loss and fibrosis of the pulp. Consequently, the SSC showed a

plateau for about 3–5 days during the whole growth period [3].

However, the plateau of the SSC was not related to the hardness,

color, or appearance of the fruit peel [1]. Therefore, the SSC was

the key to determining the best-tasting period of netted melons.

Hyperspectra was a non-destructive method for the internal

quality of intact fruit, which had determined the SSC of apple,

pear, pineapple, and jujube successfully based on the spectral

responses of the reflectance, transmission, or diffuse reflection of

fruit [4–10]. The peel of the netted melon was about 1.0 cm

which was thicker than that of apple, pear, pineapple, and jujube,

which was an obstacle to the acquisition of the transmission of

spectral [11]. Moreover, the chemical ingredient of the peel was

not related to the variation of the SSC. Consequently, the

reflectance of the peel would not reflect the variation of the

SSC. The diffuse reflection came from the muti-reflection in the

peel and edge pulp of the fruit. Therefore, the spectra of the

diffuse reflection showed the potential to include the SSC

information of fruit. However, the diffuse reflection had not

been used to construct the estimation model of intact netted

melons.

The diffuse reflection collected information on each ingredient

of the fruit, including the moisture, SSC, pectin, cellulose, and even

pollutants on the surface of the peel [12]. The SSC was relatively

low which led to a relatively weak spectral response [5]. Therefore,

an effective decomposition of the spectrum could improve the

estimation accuracy of the SSC. Spectral analysis techniques such

as mathematical transformation, principal component analysis,

and spectral absorption characteristic analysis had been used to

decompose the spectra to explore the SSC of fruit and enhance its

spectral sensitivity. Moreover, partial least squares (PLS), neural

networks, random forest (RF), and deep learning methods have

been used to acquire higher precision regressionmodels of the SSC

[8–10, 13, 14]. However, recent studies focused on the

enhancement of the sensitivity of spectral information of the

SSC, rather than finding the directions of different spectral

information in depth. Exploring an efficient spectrum

transformation to decompose the weak sensitive information

would improve the estimation accuracy of the SSC of the intact

netted melon.

A hyperspectral regression model was constructed to

estimate the SSC of intact netted melons in the current study.

The combination of continuous wavelet transform (CWT) and

PLS or RF was used to extract weak useful information and

improve the estimation accuracy of the SSC of intact netted

melon. Specifically, the spectra of the diffuse reflection and SSC

of 261 fruit samples were collected. The diffuse reflection was

collected based on the optimization of the incidence angle and

intensity of the light source, and acquisition times of the

spectrometer. The CWT algorithm was used to extract high-

and low-frequency detailed information at multiple

decompositional scales. Sensitive wavelet coefficients with the

SSC of the fruit were selected. Finally, an estimation model was

constructed to predict the SSC of the intact netted melon by the

PLS or RF.

2 Materials and methods

2.1 Sample preparation

A total of 261 netted melons (Cucumis melo L. var. reticulatus

Naud.) were harvested in June and July 2021 in Beijing Tongzhou

District International Seed Industry Science and Technology

Park (Tongzhou District, Beijing). During the best-tasting

period, the fruit was nearly round and light green with a light

yellow net. The fruit was around 1.50 kg per fruit with an SSC of 6

%–11%. Specifically, the melon was colonized on 5 February

2021 and pollinated on 2 April 2021. The random fruit was

harvested on June 2, June 12, June 22, and 2 July 2021,

FIGURE 1
Sketch of the spectrometer. 1: bracket; 2: LED-mounting
groove; 3: light source; 4: annular silicone buffer washer; and 5:
integrating sphere mounting hole.
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respectively. The harvested fruit was transported to the

laboratory immediately. The SSC and hyperspectra of the

diffuse reflection of the fruit were recorded.

2.2 Measurement of the hyperspectra of
the diffuse reflection

The hyperspectra of the diffuse reflection of fruit samples

were collected by a self-made spectrometer whose sketch was

shown in Figure 1. The sketch was 3D printed by the

Acrylonitrile Butadiene Styrene resin. The LED lights and

integrating spheres were mounted in a hemispherical frame. A

total of four LED lights with a color temperature of 6,500 K, light

flus of 210 Lux, and power of 3 W were mounted in the frame as

the light source (Guanghong HG-SG1XHH-F-3W, Guangzhou

Hengguang Light Co. Ltd., Guangzhou, China). The integrating

sphere was mounted on the bottom of the hemispherical frame

and connected to a spectral sensor. The spectral sensor collected

the spectrum ranging from 650 to 950 nm with a resolution of

2.5 nm based on the previous studies [7, 11]. The annular silicone

buffer washer was mounted on the grooves of the LED lights and

integrating sphere, which ensured the well fit of the fruit and

hemispherical frame. Specifically, the netted melon was placed on

the frame and ensured the well contact between the fruit surface

and the buffer washers. The LED light sent the light signal when

the spectral sensor collected the spectrum of the diffuse reflection

of fruit for 60 ms. A total of 30 hyperspectral were collected and

averaged as the sample spectrum. The surface of the fruit

contacted with the buffer washer on the integrating sphere

was marked for the SSC analysis.

2.3 Measurement of the soluble solid
content

After the measurement of the hyperspectra, a circle with a

radius of 1.0 cm was drawn with a marked point as the center on

the fruit surface. The cylinder of the fruit was cut. The edge pulp

with 1.0–2.0 cm from the exocarp of the cylinder was used for the

measurement of the SSC. The SSC of samples was measured by a

digital refractometer (PAL-α, ATAGO Company Ltd., Japan) at

room temperature with water as blank.

2.4 Screening of the sensitivity band

The sensitivity band was screened based on the correlation

analysis and CWT decomposition. The CWT is a signal

processing technology derived from the fourier transform. It

analyzes in the field of time and frequency at the same time,

which is helpful to extract the effective information in the signal

[15]. Specifically, the spectrum of the fruit was processed based

on the mexh wavelet base written in MATLAB language. The

original spectrum was decomposed by 10 layers of wavelet to

generate a series of wavelet coefficients (Eq. 1 and Eq. 2).

Ψa,b � 1��
a

√ Ψ(λ − b

a
), (1)

where a is the expansion factor, b is the translation factor and λ Is

the number of bands of spectral data.

Wf (a, b) � (f,Ψa,b) � ∫+∞

−∞
f(λ)Ψa,b (λ)dy, (2)

where f(λ) is the spectral reflectance, and the wavelet

coefficients include two dimensions, including wavelength

(650–950 nm) and decomposition scale (1, 2, 3,..., and 10).

The wavelet coefficient is the number of scales, and the list is

the matrix of the number of wavelengths.

2.5 Establishment and validation of the
regression model

The spectral estimationmodels were prepared by the PLS and

RF, respectively. Specifically, the sensitivity bands based on the

correlation analysis and CWT were used as the independent

variables with the SSC as the dependent variables.

A training set and testing set were prepared with a sample

number of 3:1. In order to ensure the uniform distribution of

each set, all samples were sorted from large to small according to

the SSC of the fruit. The samples with the number of multiples of

four were nominated as the testing set (66 samples), and the

others were nominated as the training set (195 samples). The

testing set of 66 samples was used to validate the determination

coefficient (R2) (Eq. 3) and root mean squared error (RMSE) (Eq.

4), and Line y = x of the prediction spectral model, respectively.

R2 �
∑N

i�1(PSSCi − ASSC)2

∑N
i�1(ASSCi − ASSC)2, (3)

RMSE �
������������������∑N

i�1(ASSCi − PSSCi)2
N

√
, (4)

where ASSCi and PSSCi represent the actual and predicted SSC

of fruit i, respectively;N represents the number of validation

samples; and ASSCi represents the average measured value

of SSC.

Specifically, R2 is used to characterize the stability of the

model. The closer it is to 1, the more stable and better fitting the

model is. RMSE is used to detect the prediction ability of the

model. The smaller the RMSE is, the better the prediction ability

of the model is. Line y = x represents the deviation of the point

composed of the measured value and the predicted value from in

the Line y = x.
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3 Results and discussion

3.1 Hyperspectra and SSC of netted
melons

The hyperspectra and SSC of 261 fruit were collected. The

SSC covered a relatively wide range from 3.8% to 9.6% with the

average value and standard deviation of 6.93% and 1.60%,

respectively. The samples were divided into high-SSC, middle-

SSC, and low-SSC groups based on the SSC. Specifically, the

SSC of the high-SSC, middle-SSC, and low-SSC groups was

6.9%–9.6%, 5.8%–6.9%, and 3.8%–5.8%, respectively. The

hyperspectra of the three groups were averaged and shown

in Figure 2. The relative intensity of the hyperspectra

decreased sharply at 690–750 nm, remained relatively

constant at 770–830 nm, and increased at 850–950 nm. The

relative intensity of the hyperspectra was negatively related to

the SSC. The fruit of the high SSC group showed the weakest

relative intensity, while that of the low SSC group showed the

strongest relative intensity. Being different from our results,

the spectra with the wavelength of 750–950 nm were used to

estimate the SSC of melon [11]. The narrow range of the

spectra possibly missed the sensitivity band of the SSC

information.

3.2 Screening the sensitivity band of the
hyperspectra

The sensitivity band was screened based on the correlation

analysis and CWT decomposition, respectively. The profile of the

correlation coefficient between the SSC and relative intensity of

the hyperspectra of netted melons is shown in Figure 3, which is

based on 301 points due to the resolution of 2.5 nm of the

spectrometer. A positive correlation was shown in 724–739 and

800–810 nm, while a negative correlation was shown in the other

bands. The correlation coefficient ranged from -0.49 to 0.08. The

absolute value of the correlation coefficient reached the highest at

826 nm with a correlation coefficient of −0.49. Therefore, the

band of 826 nm was the sensitivity band based on the correlation

analysis.

CWT served as a time-frequency window with shorter time-

window width for higher frequencies and wider time-window

width for lower frequencies. Consequently, CWT possibly raised

the spectral response of useful information and removed the

noise of the spectra [15, 16]. Figure 4 showed the spectra

decomposed by the CWT on a 10 scale. The decomposed

spectra of Scale 1-6 showed a large variety smoothly, while

FIGURE 2
Spectral profiles of netted melons.

FIGURE 3
Correlation coefficient between the SSC and relative intensity
of the hyperspectra of netted melons.

FIGURE 4
Decomposed spectra of netted melons by CWT.

FIGURE 5
Correlation coefficient matrix between the relative intensity
of CWT decomposed spectra and SSC of netted melons.
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those of Scale 7–10 were relatively flat but jagged. The CWT

decomposition amplified and highlighted the features of the

original spectra. Consequently, the spectra decomposed by

CWT provided more efficient information on the feature band.

The correlation coefficient between the relative intensity of

CWT decomposed spectra and SSC of netted melons was shown

in Figure 5. The red represented the high correlation band, while

the blue represented the low correlation band. The spectral

effective information is mainly presented in the 700–800 nm

of the scale 1–6, while no spectral effective information is

presented in the scale 7–10. The correlation coefficient

reached the highest at 754 nm of scale 5 with a correlation

coefficient of 0.60.

The red light band (670–760 nm) and near-infrared band

(761–950 nm) represent the sample feathers in a different

dimension [17]. Consequently, the sensitivity band was

selected in the red light band and near-infrared band based

on the correlation coefficient respectively. The correlation

coefficient matrix reached the highest in the 754 nm of scale

5 with the correlation coefficient of 0.60 in the red light band,

while that in the 880 nm of the scale 5 with the correlation

coefficient of -0.53 in the near-infrared band. Therefore, the

bands of 754 and 880 nm were the sensitivity bands based on the

CWT decomposition.

The absolute value of the correlation coefficient of 754 and

880 nm in the CWT decomposition was 5 and 1.178 times that

without CWT decomposition. The CWT decomposition

improved the correlation coefficient of the selected sensitivity

bands. Therefore, the bands of 754 and 880 nm were selected as

the sensitivity bands for the estimation model. Similar to our

results, the CWT decomposition significantly improved the

estimation accuracy of chicory leaf Cu content when the best

decomposition scales were Scale 3, 4, and 5 [18].

3.3 Modeling and validation of the
regression models

PLS and RF were employed to construct the estimation

model of the SSC of intact netted melons. The PLS regression

model has related the independent variables (e.g., spectra) to an

integer that designates the class of the sample [19], while RF is

integrated several classifiers to achieve better performance than a

single classifier and is especially good for resolving two-class

problems based on a bootstrap aggregating algorithm [14]. PLS

has been used to construct the estimation model of the SSC

successfully [6, 12, 20, 21]. Specifically, the relative intensities of

sensitivity bands (754 and 880 nm) with or without CWT

decomposition were employed to construct the estimation

model by the PLS and RF regression respectively. The R2 and

RMSE of the models were measured respectively (Table 1). The

R2 of the training set of the RF regression model was raised by

64.3% without CWT decomposition and 56.5% with CWT

decomposition than that of the PLS regression model,

respectively. The R2 of the testing set of the RF regression

model was raised by −4.87% without CWT decomposition

and 9.30% with the CWT decomposition than that of the PLS

regressionmodel, respectively. The R2 of the training set of the RF

regression model was 50% higher than that of the PLS regression

model. Being different from our results, the PLS and lambda-

lambda r2 regression models were used to analyze the

relationships between leaf Cu content and the hyperspectral

reflectance. They demonstrated the better feasibility of the

CWT and PLS algorithms for estimating the Cu status of

chicory [18]. This phenomenon resulted from the different

hyperspectral reflectance data and different estimating objects.

Moreover, the RF constructed many classification and regression

trees, which integrated several classifiers to achieve better

performance than a single classifier. The hyperspectra

provided more classifiers rather than a single one [14].

Therefore, the RF regression model showed higher stability

than the PLS regression model.

The R2 of the training set and testing set of the RF regression

model were raised by 4.34% and 20.5% by the CWT

decomposition. The RMSE of the RF regression model

decreased by 6.12% based on the CWT decomposition.

Moreover, the R2 of the training set and testing set of the PLS

model was raised by 9.52% and 4.88% based on the CWT

decomposition. The RMSE of the RF regression model

decreased by 1.37% based on the CWT decomposition.

Consequently, the CWT decomposition raised R2 and

decreased the RMSE of both models. Therefore, the CWT

decomposition improved the stability and estimation ability of

the model. Being consistent with our result, the spectral model

denoised by the CWT decomposition was better to predict the Vc

content of navel orange than that by 11 different decomposition

approaches [22]. The improvement of the predicting capacity

was a possible result of the noise removal ability of CWT

decomposition on the spectra [16]. Remarkably, the R2 and

RMSE of the competitive adaptive reweighted sampling-PLS

model for the SSC of melon were 0.83 and 0.73, respectively

[11]. This difference resulted from the different algorithms and

number of the samples.

Figure 6 compared the estimation profile of the regression

models with Line y = x. The Line y = x reflected the deviation of

TABLE 1Determination coefficient and rootmean squared error of the
estimation models.

Model R2 of the training
set

R2 of the testing
set

RMSE/%

RF 0.69 0.39 1.04

RF/CWT 0.72 0.47 0.98

PLS 0.42 0.41 0.74

PLS/CWT 0.46 0.43 0.73
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the point composed of the measured value and the predicted

value. The points of each model are distributed along the Line y =

x. Remarkably, the points of the training set of the RF/CWT and

PLS models are evenly distributed around the Line y = x, while

that of the RF and PLS/CWT is biased toward the high-value

session of the Line y = x. The points of the testing set of the RF,

RF/CWT, and PLS are evenly distributed around the Line y = x,

while that of the PLS/CWT is biased towards the high-value

session of the Line y = x. These phenomena possibly resulted

from the overestimate of the RF and PLS/CWT models.

The RF regression model enhanced the R2 by at least 56.5%

more than the PLS model, and the CWT decomposition further

enhanced the R2 of the RF regression model by 4.34%.

Meanwhile, the RMSE of the RF/CWT model was reduced.

Consequently, the stability and estimation ability of the RF/

CWT model was significantly improved.

4 Conclusion

The combination of CWT and PLS or RF algorithm was

employed to improve the estimation accuracy of the

hyperspectral model. Specifically, the SSC and hyperspectra of

the diffuse reflection of 261 fruit samples were collected to

construct the hyperspectral estimation model. The SSC covered a

relatively wide range from 3.8% to 9.6% with the average value and

standard deviation of 6.93% and 1.60%, respectively. The relative

intensity of the spectra was negatively related to the SSC. The

sensitivity band was screened based on the correlation analysis

and CWT decomposition. The correlation coefficient reached the

highest in the 754 nm of the scale 5, being 0.60 by the CWT

decomposition, while that was −0.53 in the 880 nm of the scale 5.

The absolute value of the correlation coefficient of 754 and 880 nm

with the CWT decomposition was 5 and 1.178 times of those

without CWT decomposition. The PLS and RF algorithm were

employed to construct the estimation model of the SSC of intact

netted melons. The RF regression model enhanced the R2 by at least

56.5% than the PLS model, and the CWT decomposition further

enhanced the R2 by 4.34%. Meanwhile, the RMSE of the RF/CWT

model was reduced. The points of the testing set of the RF, RF/CWT,

and PLS are evenly distributed around the line y = x, while that of the

PLS/CWT is biased towards the high-value session of the line y = x.

Consequently, the stability and estimation ability of the RF/CWT

regression model were improved significantly. The RF/CWT

regression model had the potential to estimate the SSC of the

intact netted melons in the industry.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Author contributions

All authors agreed to be accountable for the content of the

work. CZ: investigation, formal analysis, and prepare draft; YS:

investigation; ZW: investigation; RW: validation and

methodology; TL: conceptualization, methodology, and

FIGURE 6
Estimation profiles of the RF (A), RF/CWT (B), PLS (C), and PLS/CWT (D) models.

Frontiers in Physics frontiersin.org06

Zhang et al. 10.3389/fphy.2022.1034982

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1034982


funding acquisition; YW: investigation and methodology; XZ:

funding acquisition; and XG: writing, review and editing, project

administration, and funding acquisition.

Funding

The authors are grateful for the financial support of the

National Natural Science Foundation of China (32172237),

Beijing Academy of Agricultural and Forestry Sciences

(KJCX20211004), China Agricultural Research System (CARS-

25), Collaborative Innovation Center of the Beijing Academy of

Agricultural and Forestry Sciences (KJCX201915), and Beijing

Innovation Consortium of Agriculture Research System (BAIC4-

2022).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors, and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

1. Saltveit ME. 2 - melon (Cucumis melo L.). In: EM Yahia, editor. Postharvest
biology and technology of tropical and subtropical fruits. Sawston, United Kingdom:
Woodhead Publishing (2011). p. 31–45e.

2. Schaffer AA, Paris HS.Melons, squashes, and gourds. Reference module in food
science. Amsterdam, Netherlands: Elsevier (2016).

3. Kesh H, Kaushik P. Advances in melon (Cucumis melo L.) breeding: An
update. Scientia Horticulturae (2021) 282:110045. doi:10.1016/j.scienta.2021.
110045

4. Zeb A, Qureshi WS, Ghafoor A, Malik A, Imran M, Iqbal J, et al. Is this melon
sweet? A quantitative classification for near-infrared spectroscopy. Infrared Phys
Tech (2021) 114:103645. doi:10.1016/j.infrared.2021.103645

5. SunM, Zhang D, Liu L, Wang Z. How to predict the sugariness and hardness of
melons: A near-infrared hyperspectral imaging method. Food Chem (2017) 218:
413–21. doi:10.1016/j.foodchem.2016.09.023

6. Wang F, Zhao C, Yang H, Jiang H, Li L, Yang G. Non-destructive and in-
site estimation of apple quality and maturity by hyperspectral imaging.
Comput Electron Agric (2022) 195:106843. doi:10.1016/j.compag.2022.
106843

7. Manthou E, Lago S-L, Dagres E, Lianou A, Tsakanikas P, Panagou EZ, et al.
Application of spectroscopic and multispectral imaging technologies on the
assessment of ready-to-eat pineapple quality: A performance evaluation study
of machine learning models generated from two commercial data analytics
tools. Comput Electron Agric (2020) 175:105529. doi:10.1016/j.compag.2020.
105529

8. Li Y, Ma B, Li C, Yu G. Accurate prediction of soluble solid content in dried
Hami jujube using SWIR hyperspectral imaging with comparative analysis of
models. Comput Electron Agric (2022) 193:106655. doi:10.1016/j.compag.2021.
106655

9. Tian X, Li J, Wang Q, Fan S, HuangW. A bi-layer model for nondestructive
prediction of soluble solids content in apple based on reflectance spectra and
peel pigments. Food Chem (2018) 239:1055–63. doi:10.1016/j.foodchem.2017.
07.045

10. Kusumiyati HY, Putri IE, Munawar AA. Multi-product calibration model for
soluble solids and water content quantification in Cucurbitaceae family, using
visible/near-infrared spectroscopy. Heliyon (2021) 7(8):e07677. doi:10.1016/j.
heliyon.2021.e07677

11. Li M, Han D, Liu W. Non-destructive measurement of soluble solids content
of three melon cultivars using portable visible/near infrared spectroscopy. Biosyst
Eng (2019) 188:31–9. doi:10.1016/j.biosystemseng.2019.10.003

12. Xia Y, Huang W, Fan S, Li J, Chen L. Effect of spectral measurement
orientation on online prediction of soluble solids content of apple using Vis/
NIR diffuse reflectance. Infrared Phys Tech (2019) 97:467–77. doi:10.1016/j.
infrared.2019.01.012

13. Vasques GM, Grunwald S, Sickman JO. Comparison of multivariate methods
for inferential modeling of soil carbon using visible/near-infrared spectra.
Geoderma (2008) 146(1-2):14–25. doi:10.1016/j.geoderma.2008.04.007

14. Hou L, Liu Y, Wei A. Geographical variations in the fatty acids of
zanthoxylum seed oils: A chemometric classification based on the random forest
algorithm. Ind Crops Prod (2019) 134:146–53. doi:10.1016/j.indcrop.2019.03.070

15. Huang S-Y, Wavelets BZ. Advanced. In: RA Meyers, editor. Encyclopedia of
physical science and technology. 3rd ed. New York: Academic Press (2003). p. 753–71.

16. Abasi S, Minaei S, Jamshidi B, Fathi D, Khoshtaghaza MH. Rapid
measurement of apple quality parameters using wavelet de-noising transform
with Vis/NIR analysis. Scientia Horticulturae (2019) 252:7–13. doi:10.1016/j.
scienta.2019.02.085

17. Pan S, Zhang X, Xu W, Yin J, Gu H, Yu X. Rapid On-site identification of
geographical origin and storage age of tangerine peel by Near-infrared
spectroscopy. Spectrochimica Acta A: Mol Biomol Spectrosc (2022) 271:120936.
doi:10.1016/j.saa.2022.120936

18. Lin D, Li G, Zhu Y, Liu H, Li L, Fahad S, et al. Predicting copper content in
chicory leaves using hyperspectral data with continuous wavelet transforms and
partial least squares. Comput Electron Agric (2021) 187:106293. doi:10.1016/j.
compag.2021.106293

19. Luna AS, de Gois JS. Chapter seven - application of chemometric methods
coupled with vibrational spectroscopy for the discrimination of plant cultivars and
to predict physicochemical properties using R. In: J Lopes C Sousa, editors.
Comprehensive analytical chemistry, 80. Amsterdam, Netherlands: Elsevier
(2018). p. 165–94.

20. Li H, Zhu J, Jiao T, Wang B, Wei W, Ali S, et al. Development of a novel
wavelength selection method VCPA-PLS for robust quantification of soluble solids
in tomato by on-line diffuse reflectance NIR. Spectrochimica Acta Part A: Mol
Biomol Spectrosc (2020) 243:118765. doi:10.1016/j.saa.2020.118765

21. Fan S, Wang Q, Tian X, Yang G, Xia Y, Li J, et al. Non-destructive evaluation
of soluble solids content of apples using a developed portable Vis/NIR device.
Biosyst Eng (2020) 193:138–48. doi:10.1016/j.biosystemseng.2020.02.017

22. Xia J-F, Li X-Y, Li P-W, Ma Q, Ding X-X. Application of wavelet transform in
the prediction of navel orange vitamin C content by near-infrared spectroscopy.
Agric Sci China (2007) 6(9):1067–73. doi:10.1016/S1671-2927(07)60148-5

Frontiers in Physics frontiersin.org07

Zhang et al. 10.3389/fphy.2022.1034982

https://doi.org/10.1016/j.scienta.2021.110045
https://doi.org/10.1016/j.scienta.2021.110045
https://doi.org/10.1016/j.infrared.2021.103645
https://doi.org/10.1016/j.foodchem.2016.09.023
https://doi.org/10.1016/j.compag.2022.106843
https://doi.org/10.1016/j.compag.2022.106843
https://doi.org/10.1016/j.compag.2020.105529
https://doi.org/10.1016/j.compag.2020.105529
https://doi.org/10.1016/j.compag.2021.106655
https://doi.org/10.1016/j.compag.2021.106655
https://doi.org/10.1016/j.foodchem.2017.07.045
https://doi.org/10.1016/j.foodchem.2017.07.045
https://doi.org/10.1016/j.heliyon.2021.e07677
https://doi.org/10.1016/j.heliyon.2021.e07677
https://doi.org/10.1016/j.biosystemseng.2019.10.003
https://doi.org/10.1016/j.infrared.2019.01.012
https://doi.org/10.1016/j.infrared.2019.01.012
https://doi.org/10.1016/j.geoderma.2008.04.007
https://doi.org/10.1016/j.indcrop.2019.03.070
https://doi.org/10.1016/j.scienta.2019.02.085
https://doi.org/10.1016/j.scienta.2019.02.085
https://doi.org/10.1016/j.saa.2022.120936
https://doi.org/10.1016/j.compag.2021.106293
https://doi.org/10.1016/j.compag.2021.106293
https://doi.org/10.1016/j.saa.2020.118765
https://doi.org/10.1016/j.biosystemseng.2020.02.017
https://doi.org/10.1016/S1671-2927(07)60148-5
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1034982

	Hyperspectral estimation of the soluble solid content of intact netted melons decomposed by continuous wavelet transform
	1 Introduction
	2 Materials and methods
	2.1 Sample preparation
	2.2 Measurement of the hyperspectra of the diffuse reflection
	2.3 Measurement of the soluble solid content
	2.4 Screening of the sensitivity band
	2.5 Establishment and validation of the regression model

	3 Results and discussion
	3.1 Hyperspectra and SSC of netted melons
	3.2 Screening the sensitivity band of the hyperspectra
	3.3 Modeling and validation of the regression models

	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


