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Ultrasound contrast agents (UCAs) have broadened the scope of ultrasound

imaging and therapeutic applications. One of the parameters of interest when

measuring the response of UCAs to ultrasound is their frequency-dependent

attenuation coefficient. The estimation of this parameter is relevant for sensing

and therapeutic applications, as well as for obtaining the viscoelastic properties

of the UCA’s shell. The current practice to obtain this coefficient relies on

experimental measurements made both in the presence and absence of UCAs

in a target medium. Not only is the microbubble-free reference measurement

time-consuming, but it may also not always be feasible for in vivo applications

due to lack of an appropriate reflector. To overcome these challenges, we

present here a novel approach which estimates the UCA’s attenuation spectra

directly from pulse-echo measurements made in the underlying UCA medium,

without any reference measurement. Furthermore, despite the non-linear

frequency dependency of the UCA’s attenuation profile, our approach can

still benefit from a fast linear least-squares based estimation scheme, providing

attenuation estimates in a single-shot, which is desirable for implementation in

real-time systems. We provide an investigative study, testing the estimator’s

performance on various simulated realistic attenuation profiles obtained by

varying the shell parameters and the UCA’s size distribution. In all cases, the

estimated attenuation profiles were in good agreement with the true ones, with

a relative error < 10%. Evaluation on experimental in vitro data shows a relative

error < 15%, which further highlights the potential of our approach for fast and

accurate UCA’s attenuation estimation.
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1 Introduction

Ultrasound is one of the most widely used imaging

modalities in clinical practice primarily because it is non-

invasive, portable, real time and inexpensive. While

ultrasound can reproduce the soft tissue anatomy with

good contrast, blood, being a far less efficient scatterer than

tissue, is invisible on ultrasound images. Ultrasound contrast

agents (UCAs) provide a means to tackle this issue, by

enhancing the intravascular contrast due to their high

echogenicity and hence improving the quality of ultrasonic

images. Clinically available UCAs essentially consist of coated

microbubbles, administered intravenously to the patient body.

They have uses in many diagnostic as well as therapeutic

applications [1], including imaging blood perfusion in various

organs [2, 3], lesion detection [4], assessing thyroid [5] and

ovaries [6]. Moreover, targeted UCAs [7] can be used for

molecular imaging [8, 9] as well as for drug delivery [10, 11].

Microbubbles have a gas core enclosed by a lipid, polymer or

albumin shell [12]. Their diameter typically lies within the range

of a few micrometers, allowing them to circulate in the

vasculature [13]. As their gaseous core is highly compressible

and leads to a high impedance mismatch with their

surroundings, microbubbles are excellent scatterers [14]. The

shell stabilizes microbubbles against coalescence, slows down the

gas diffusion and protects them against immune clearance [15].

When driven by an ultrasound field, microbubbles undergo

volumetric oscillations, and their behaviour can be assimilated

to that of harmonic oscillators [16]. In practice, the response of

microbubbles to an ultrasound field can be modelled by solving

the differential equation of bubble motion; for free, uncoated

bubbles, this corresponds to the Rayleigh-Plesset equation [16].

The presence of the microbubble shell is typically accounted for

by inserting additional interfacial pressure terms, which

represent the viscoelastic properties of the coating [17]. In

order to accurately predict the microbubble dynamics, various

shell models have been introduced in the literature [18, 19], with

different approaches for thick, polymeric shells, such as the

Church model [20], and for thin monolayers

(i.e., phospholipidic shells), such as the de Jong model [21].

Several modifications of these models have been proposed later

[22–24]. While most of these models consider small

deformations in the oscillating bubble surface, the Marmottant

model [25], proposed for microbubbles coated with a

phospholipid monolayer, is able to mimic multiple non-linear

phenomena observed experimentally, and has gained wide

popularity [26–29]. In particular, when insonated at

sufficiently high acoustic pressures, microbubbles oscillate

non-linearly, and produce acoustic emissions containing

harmonics of the transmitted frequency [15]. Moreover, their

acoustic response can be maximized when driven at the

resonance frequency, which depends on the bubble size [30].

Therefore, microbubbles exhibit a non-linear frequency

dependent attenuation response, with a peak at resonance in

the MHz range [29].

Recently, applications requiring assessment of the frequency

dependency of the attenuation coefficient of microbubbles in vivo

have emerged, such as to relate changes in attenuation to external

factors (as in e.g., radiation dosimetry [31, 32]) or to a therapeutic

payload release [33]. In addition, quantitative ultrasound

applications often require real-time attenuation correction

methods [34, 35]. The knowledge of the attenuation

coefficient is also of relevance in studying the shell

parameters, thereby gaining insights into the microbubbles

dynamics in an ultrasound field. In this context, while direct

methods to measure shell properties exist [36–38], the shell

parameters are most commonly obtained by performing

indirect acoustic or optical measurements of the microbubble

dynamics [15, 30, 39–41]. A widely-used, simple technique to

characterize microbubble populations consists in fitting their

estimated frequency-dependent attenuation spectrum to a

theoretical prediction of the attenuation obtained from the

aforementioned microbubble models to estimate the shell

parameters [23, 42–46]. These applications thus highlight the

importance of estimating the UCA’s attenuation coefficient.

Currently, the frequency-dependency of the attenuation

coefficient of microbubbles is obtained experimentally,

through either a transmission measurement or a pulse-echo

measurement of a reflector located beyond the microbubble

sample [23]. Acquisitions both with and without microbubbles

in the targeted medium have to be performed. However, in in

vivo applications, the reference measurement may not always be

feasible, due to the absence of an appropriate reflector. In

addition, this attenuation estimation method is limited to

shallow depths or cases with low attenuation, to ensure that

the signal reflected by the “reference” structure remains

detectable. An alternative approach could be to estimate the

attenuation curve directly from the pulse-echo data, mimicking

the common practice for attenuation estimation in soft tissues

[47–50]. To date, the non-linear frequency dependence of the

UCA’s attenuation coefficient has hindered such a usage of any of

the existing soft tissue attenuation estimators for UCAs.

In the current work, we take a step forward in this direction

and propose a single-shot attenuation coefficient estimation

technique for UCAs. The novelty of our approach lies in the

following. First, contrarily to the existing method, our approach

is developed to estimate the UCA’s attenuation spectra using only

the pulse-echo measurements made in the UCAs medium,

without requiring any additional reference bubble-free

measurement. Second, we propose to approximate the non-

linear frequency-dependency of the microbubbles by an Nth

order polynomial. This allows to describe the non-linear

behavior with a model that is linear in its parameters,

rendering the possibility to use an efficient solver for

attenuation estimation. Last, motivated by the recent works

for soft tissue attenuation coefficient estimation [49–52], we
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make use of a linear least-squares (LLS) solver aiming to fit the

modelled signal to the measured one. As a result, the attenuation

estimates can be obtained using a closed-form solution, which

can be computed very efficiently and is attractive for real-time

implementations [53]. It is worth highlighting that while the

choice of the adopted LLS solver is the same as in the

aforementioned works, the proposed method differs from

these reported works for soft tissue in terms of the underlying

(non-linear) model and therefore, present a new approach for

UCA’s attenuation coefficient estimation. For performance

assessment, we applied our approach on several different

attenuation spectral shapes, obtained by varying the shell

parameters as well as the size distribution of the microbubbles.

The outline of the manuscript is as follows. We begin by

describing the proposed signal model and our approach in

Section 2.1. Simulation and experimental settings considered

to assess the performance of the method are detailed in

Section 2.2, followed by demonstration of the obtained results

in Section 3. We then discuss the potential advantages,

limitations and future outlook of the proposed approach in

Section 4. The concluding remarks are provided in Section 5.

2 Methods and materials

2.1 Proposed signal model and approach

For an isotropic, homogeneous medium, the ultrasound

backscattered signal at a frequency f from a depth z in the

medium is given by [47, 50].

|S f, z( )| � G |P f( )| e−2 α f( ) z B f( ), (1)

assuming the diffraction effects to be negligible such as for plane

wave propagation. Here, the term |P(f)| corresponds to the pulse-

echo frequency spectrum as obtained by a reflector

measurement1. The calibration factor G accounts for the

uncertainty in the actual energy transmitted to the medium,

the term e−2α(f)z represents the attenuation of the signal on its

forward and backward propagation path through the medium,

and B(f) is the backscatter coefficient of the medium. The terms

α(f) and B(f) are determined by the properties of the medium. For

instance, in the case of soft tissue, α(f) = α0 f is simply a linear

frequency dependence of the attenuation coefficient α0 of the

underlying tissue [54]. In the case of microbubbles, the

dependence of the attenuation (and backscatter) coefficient on

the frequency is highly non-linear, and cannot be described by

analytical models. Without this knowledge, it becomes

challenging to define a physical signal model which can then

be used to solve for the attenuation coefficient. A standard way to

deal with this issue is to perform a pulse-echo measurement

through the bubbly medium, yielding |S(f, D)|, and compare the

reflected spectrum with a reference measurement performed in

the absence of microbubbles, i.e., |S(f, D)|ref , where D is the path

length from the transducer till the reflector, in meters. The

experimental attenuation coefficient αexp(f) of the bubbly

medium, in dB/cm, for a pulse-echo measurement is then

obtained as

αexp f( ) � 20
100 × ln 10 × 2 × D

ln
|S f,D( )|ref
|S f,D( )| , (2)

with ln denoting the natural logarithm. As opposed to this

approach, our aim here is to develop an estimator which can

provide attenuation estimates without relying on time-

consuming and sometimes infeasible reference measurements.

Based on the fast attenuation coefficient estimation technique for

soft tissues [49–52], we consider a log transformation of the

signal model (1), obtaining

ln |S f, z( )| − ln |P f( )| � ln G − 2 α f( ) z + ln B f( ). (3)

Here, the left-hand side, denoted byQ(f, z) = ln |S(f, z)| − ln |P(f)|,

contains the measured quantities, whereas the terms on the right-

hand side are unknown and need to be estimated. Further, in the

absence of an analytical expression for α(f) and B(f), we propose

to approximate the non-linear attenuation-frequency

dependence by an Nth- order polynomial model, i.e.,

α f( ) � α0 + α1 f + α2 f
2 +/ + αN fN, (4)

where, for i ∈ {0, N}, αi’s are the polynomial coefficients2.

Similarly, the backscatter coefficient is approximated by a

polynomial model, such that

ln B f( ) � �β0 + β1 f + β2 f
2 +/ + βN fN, (5)

where, for i ∈ {0, N}, βi’s are the corresponding polynomial

coefficients. Our goal is then to estimate the coefficients of these

polynomials and plug them into (4) and (5) to estimate α(f) and

B(f), respectively.

Unlike the other terms in (3) and (5), ln G and �β0 are scalar

quantities without any frequency or depth-dependence. These

two terms cannot be separated from each other and therefore are

integrated into a single term, which we hereafter refer to as β0 (=

ln G + �β0). Since the value of G is not known in practice, the

absolute value of B(f) cannot be estimated, i.e., we can only

estimate the shape of B(f) up to an unknown scaling3.

1 The shape of |P(f)| is only required up to a scaling factor, as the latter is
accounted for by the generic scaling parameter G. A simple reflector
measurement in water is sufficient.

2 α(f) needs to be converted to dB/cm in order to compare it with the
experimentally obtained αexp(f) in (2).

3 If an extra calibration is performed to measure G, we would be able to
also estimate the scale of B(f) by subtracting ln G from the estimated
β0. However, this is beyond the scope of this paper, as we are here only
interested in the attenuation coefficient α(f).
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A f( ) �
−2z1 −2z1f −2z1f2 . . . −2z1fN 1 f f2 . . . fN

−2z2 −2z2f −2z2f2 . . . −2z2fN 1 f f2 . . . fN

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

−2zM −2zMf −2zMf2 . . . −2zMfN 1 f f2 . . . fN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
M× 2N+2( )

(6)

With these propositions, the log-transformed signal model (3)

can be written as a matrix equation for each frequency f, q(f) =
A(f) θ, where q(f) corresponds to the measurements Q(f, z)

stacked over all M depth points in the medium. The matrix

A(f), given in (6), relates these measurements to the vector of

unknowns: θ � [α0, α1, . . . , αN, β0, β1, . . . , βN]T, where the

notation (.)T denotes the transpose operation of its argument.

Stacking these measurements further over F probed frequency

points within the usable bandwidth of the transducer provides

the net matrix equation as

q � A θ, (7)

where the number of rows ofA and the number of entries of q are
both equal to M × F. The proposed polynomial approximations

(4) and (5) thus allow the description of the measurement

process as a set of linear equations (7). This offers the

advantage of solving this problem efficiently, in a linear least-

squares sense. This provides the main motivation behind using

polynomial approximations: more specialized functions could

provide more accurate approximations, but they cannot be easily

integrated within the current model while keeping it linear in

terms of its parameters.

The unknown vector θ in (7) can be estimated from the

measured data by solving the minimization problem of the form

minimize
θ

‖q − Aθ‖22, (8)

where the operator ‖.‖22 corresponds to the squared ℓ2 norm4 of its

argument. This is a standard problem in literature and has a

closed form solution [55] given by

θ̂ � AT A( )−1 ATq. (9)

We refer to our estimator as LLS (Linear Least-Squares). The

estimated attenuation spectra (obtained by using the estimated

polynomial coefficients from θ̂ in (4)) is referred to as αLLS(f). At

this point, the differences between our proposed approach and the

existing UCAs attenuation estimation technique become quite

evident. The LLS estimator relies on pulse-echo measurements

made in the UCAs medium only and is able to exploit the

measurements made at each frequency and depth point jointly in

a single estimation problem. On the other hand, the existing UCAs

attenuation estimation technique (2) not only requires a reference

measurement, but also only estimates the attenuation coefficient of

UCAs integrated across the whole depth of interest D.

In terms of computational complexity of the developed

estimator, two important computations can be highlighted from

(9). First is the computation of the matrix A (and thus

(AT A)−1 AT), which can be pre-computed since A is data-

independent. Second is the computation of the measurement

vector q, which requires the frequency spectra computation at M

depth points, which can benefit from efficient fast Fourier transform

based routines [56]. The solver (9) then needs to compute a single

matrix-vector product. This renders a real-time attenuation

estimation capability to our solver [53].

2.2 Materials

2.2.1 Simulated data
In order to assess I) the validity of the proposed Nth order

polynomial approximation of the frequency-dependent attenuation

profiles of realistic UCA distributions, and II) the ability of the

proposed approach to estimate these attenuation profiles, the

theoretical attenuation characteristics of a variety of UCA

populations were evaluated using the Marmottant model [25].

Their acoustic response was subsequently simulated and fed to the

LLS solver. The theoretical frequency-dependent attenuation profile

was then compared to the estimations obtained with the LLS solver.

2.2.1.1 Microbubble size distributions and shell

parameters

To obtain the attenuation and backscatter spectra for a range

of cases, two different types of microbubble size distributions were

considered: polydisperse and monodisperse, as shown in Figure 1.

For the polydisperse case, we used the size distribution of SonoVue

microbubbles (Bracco Imaging S. p.A., Colleretto Giacosa, Italy),

which are commercially available and used in the clinic [57]. The

size distribution of SonoVue microbubbles was measured

experimentally, with a Coulter Counter Multisizer 3 (Beckman

Coulter, Mijdrecht, the Netherlands, 50 μm aperture tube). In the

absence of a commercially available monodisperse microbubble

formulation,microbubbles mimicking the properties of a research-

grade monodisperse contrast agent, MSB4 (Bracco Suisse S.A.,

Plan-les-Ouates, Switzerland) were simulated, with a mean radius

of 2.5 μm [58]. To evaluate the performance of the proposed

approach on different attenuation profiles, we varied the shell

parameters, namely the elastic modulus χ, in N/m, the surface

dilatational viscosity κs, in kg/s, and the initial surface tension

σ(R0), in N/m, of the polydisperse microbubble population. This

involved considering I) κs as [5, 10] × 10−9 kg/s, II) χ at steps of

0.1 within the range 0.1–1.5 N/m, III) σ(R0) as [0, 0.01, 0.02, 0.05,

and 0.07] N/m, at two different acoustic pressures: [10, 20] kPa.

The chosen values were in line with other investigation studies [29,

30, 42, 44, 59], and are of interest to the clinical community. For

the monodisperse microbubble population, χ = 0.6 N/m and κs =

5.8 × 10−9 kg/s were used, as reported in [58]. For performance

assessment purpose, we considered the bubbles at three different
4 For a vector x ∈ CN , the squared ℓ2 norm is given by: ‖x‖22 � ∑N

k�1|xk|2,
where |xk| denotes the complexmodulus of the kth element of vector x.
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σ(R0) values ([0, 0.01 and 0.05] N/m) and at two different acoustic

pressures (10 and 100 kPa).

2.2.1.2 Forward modelling of the microbubble

attenuation response

The theoretical attenuation coefficient of the simulated

UCA distributions was derived following the approach

described in [29], using the Marmottant model, which is a

modification of the Rayleigh-Plesset equation for bubble

motion. Briefly, the ordinary differential equation of bubble

motion was solved for the radial excursion, R(t), using the shell

parameters χ, κ and σ(R0), bubble initial radii R, and acoustic

pressures defined above. The acoustic excitation was modelled

as a 1.2 mm long Gaussian pulse, with a center frequency of

2.25 MHz. From the obtained microbubble displacement R(t),

speed _R(t), and acceleration €R(t), the scattered acoustic

pressure Ps(t) and scattering cross section σs were computed,

together with the damping coefficients. Finally, the frequency-

dependent theoretical attenuation coefficient αth(f), in dB/cm,

for a given microbubble population was obtained by [29,

43, 44]:

αth f( ) � 1
10 ln 10

∑
R

n R( )σs R( ) δtot R( )
δrad R( ), (10)

with n(R) the number of bubbles with radius R per unit volume,

δtot(R) the total damping and δrad(R) the radiation damping, whose

full expressions can be found in [29]. The frequency-dependent

theoretical backscatter coefficient Bth(f), in cm−1ster−1, was given by:

Bth f( ) � ∑Rn R( )σs R( )
100 × 4π

. (11)

2.2.1.3 Simulations of the backscattered RF signals

For every combination of the bubble parameters and the

acoustic pressure, the pulse-echo radiofrequency (RF) data was

simulated in MATLAB from a 60 mm deep medium, consisting

of a one-dimensional uniform distribution of point scatterers,

and having a sound speed of 1480 m/s. The considered scatterers

density was roughly 100 scatterers per mm, in accordance with

the Rayleigh scattering condition [60]. Each scatterer was

representative of the underlying microbubble population,

associated with the ground-truth attenuation, αth(f) and

backscatter, Bth(f) characteristics as obtained by solving the

Marmottant model (10 and 11). The excitation pulse was set

to be identical to the one used in the forward model (see above),

transmitted by a single element 2.25 MHz flat transducer, with a

relative bandwidth of 110%. The spectrum of the pulse, P(f) was

obtained by computing its Fourier transform and it was then used

along with the respective αth(f) and Bth(f) spectra to simulate the

frequency domain representation of the backscattered signal as

per the signal model (1). The frequency domain signal

representations were transformed to the time domain by

means of an inverse Fourier transform. Finally, the computed

time-domain signal for all the point scatterers in the medium

were coherently summed up to generate the RF lines, as reported

in [50]. In total, 500 RF lines were simulated by considering

different realizations of the random scatterers locations in the

medium. Further, Gaussian noise was added to the simulated

signals to obtain a signal-to-noise ratio of 24 dB.

For evaluation purpose, the generated data was divided into

10 batches, such that each dataset included 50 RF lines - used for

a single run of the algorithm. For each RF line, the time-domain

signal was partitioned into several overlapping windows (window

length of 6 mm, with 75% overlap) and the Fourier spectrum was

computed for each of these windows after correcting for spectral

leakage using a Hanning window. The magnitude of the Fourier

spectrum was averaged over the considered 50 RF lines. The

obtained spectra within a usable frequency range ( ~ 15 dB below

the peak of the spectrum) was then used as the measurements to

be fed to the approach, thereby providing the attenuation

estimates, αLLS, by solving 9. The same process was followed

for each of the 10 generated datasets (i.e., with 50 RF lines each)

FIGURE 1
Size distribution of the UCAs used in the current work: (left) commercially available polydisperse agent, SonoVue and (right) research-grade
monodisperse agent, MSB4.
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and in turn, for each of the generated datasets with varying

underlying shell parameters, bubble size, and acoustic pressure.

Finally, for the implementation of the proposed LLS

estimator on these datasets, we chose N = 10, i.e., tenth-order

polynomial approximations for the attenuation (4) and

backscatter (5) spectra. This choice of the order of polynomial

was empirically found to provide enough modelling freedom to

approximate the attenuation spectra for many different bubble

parameters and for both the polydisperse and monodisperse case

(we refer to Section 4 for a more detailed discussion on this

aspect).

2.2.2 In vitro experimental data
In order to validate the proposed approach on experimental

data, we performed pulse-echo measurements on dispersions of

SonoVue microbubbles in water. First, the SonoVue vial was

activated by following the guidelines of the manufacturer

(Bracco, Switzerland): after injecting 5 ml of a saline NaCl

(0.9%) solution, the vial was shaken manually for 20 s. Next,

the size distribution and concentration of SonoVuemicrobubbles

was measured with a Coulter Counter Multisizer 3 (Beckman

Coulter, Mijdrecht, the Netherlands), using a 50 μm aperture

tube. The obtained size distribution was averaged from three

measurements and used as an input for the forward modelling of

the attenuation coefficient (Figure 1 (a)). Finally, the frequency-

dependent attenuation of SonoVue microbubbles was

determined acoustically I) by means of the reference phantom

approach [29], and II) using the LLS approach developed in

section 2.1. A phased array with a center frequency of 2.5 MHz

(Philips ATL P4-1, 96 channels, 28.3 mm aperture) was

positioned at the surface of a PMMA tank filled with water,

and driven by a Verasonics Vantage research platform (Figure 2).

A single ultrasound pulse (diverging wave, focused at

z = −57 mm) at different pressures, with peak negative

pressure values of 14, 93, and 222 kPa (measured by a

hydrophone having an uncertainty of 17%), was transmitted

to the medium. The backscattered RF signals were recorded in

the absence (reference measurements, Figure 2 (left)) and in the

presence of SonoVue microbubbles (diluted to reach a

concentration of 2.1 × 105 microbubbles/ml), Figure 2 (right).

Using the reference phantom approach, the attenuation

coefficient, in dB/cm, was computed as per 2, i.e., by

comparing the power spectra in the frequency domain of the

backscattered signals from the bottom wall of the PMMA tank, in

the absence and presence of microbubbles.

For the implementation of the proposed LLS approach on

this data, a similar RF data processing approach as followed for

the simulated data was adopted. More precisely, the Fourier

spectra was computed for overlapping time-gated windows

(window length = 6 mm, window overlap = 50%) and

averaged over 1000 time frames for which the data was

collected for each channel. The usable bandwidth in this case

was set to be 10 dB below the pulse spectrum’s peak. The pulse

spectrum P(f) was computed by taking the Fourier transform of a

pulse-echo reflector measurement in water. Concerning the

polynomial approximation of the attenuation and backscatter

spectra, N = 10 was chosen in line with the simulated data.

2.2.3 Comparison study
To assess the performance of the LLS estimator on the considered

datasets, the attenuation spectra estimated by the proposed approach,

αLLS(f) was compared with the benchmark spectra, αbench(f). In the

case of simulated data, αbench(f) = αth(f), i.e., the ground-truth spectra

obtained theoretically by solving the Marmottant model (10). In the

FIGURE 2
Experimental setup used to acquire the in vitro data with SonoVuemicrobubbles. The backscattered signals from awater phantom containing a
dispersion of microbubbles were recorded using a P4-1 probe and Verasonics Vantage system. The attenuation coefficient was obtained both using
the reference phantom method and using the proposed LLS approach. For the reference phantom method, the signal backscattered from the
bottomwall of thewater tank in the absence ofmicrobubbles was used as a reference (left) and compared to the signal acquired in the presence
of microbubbles (right). In contrast, the LLS approach only made use of the signal backscatted by the microbubble dispersion (right).
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absence of knowledge of the ground-truth spectra for in vitro data,

αbench(f) = αexp(f), i.e., the experimentally obtained spectra (2).

Moreover, for the simulated case, αLLS(f) was averaged over the

estimates obtained with 10 datasets (each with 50 RF lines Section

2.2.1), whereas the averaging for αLLS(f) for the experimental case was

done over the estimates obtained from 96 channels of the array, as the

medium was homogeneous.

For a quantitative comparison, the relative error between the

estimated and the reference spectra for each dataset/channel was

computed as: Relative error � ‖αbench − αLLS‖2/‖αbench‖2, where

the norm is taken over the different frequency points f.

3 Results

This section provides the results obtained by applying the

proposed LLS estimator on the considered datasets.

3.1 Simulated data

3.1.1 Polydisperse bubbles
The results on the simulated data for SonoVue with one set of

shell parameters are presented in Figure 3. The attenuation and

backscatter coefficients are shown in the left and right plots,

respectively, with their ground-truth (i.e., obtained from the

forward theoretical model), estimations by the proposed LLS

approach, as well as the tenth-order polynomial best-fit to the

true curve. On the one hand, accurate modelling of the true

attenuation (and backscatter) profile with a polynomial

approximation model can be observed from the polynomial-

fitted curve overlapping the true curve. On the other hand, the

LLS-estimated curves matching the true ones indicate the good

estimation performance of the proposed approach. For the

backscatter curve, we highlight that since its absolute value

cannot be estimated (as discussed in Section 2.1), the

estimated curve was scaled down to optimize the visual

comparison between the spectral shapes of the true and

estimated coefficient. Further, hereafter, only the results for

the attenuation estimates are provided, as it is the focus of the

current work.

3.1.1.1 Attenuation spectra as a function of shell elasticity

Figure 4 and Figure 5 display the true (top row) and LLS

estimated attenuation spectra (bottom row) for different values

of the shell elasticity. These two figures differ in the shell viscosity

value, and each column represents a different initial surface

tension value. For all cases, even small changes in the

attenuation profiles induced by a change in the shell elasticity

could be detected accurately by our proposed approach.

Moreover, by varying the initial surface tension values,

pronounced differences in the underlying attenuation profiles,

both in terms of the attenuation values and spectral shape, were

observed and recovered accurately by the LLS estimator.

3.1.1.2 Attenuation spectra as a function of initial surface

tension

Figure 6 presents the true (solid lines) and estimated (dashed

lines) attenuation spectra obtained by varying the initial surface

tension values at a fixed shell elasticity χ = 1 N/m. Each plot

FIGURE 3
Attenuation, α (left) and backscatter, B (right) spectra for SonoVue with κs = 5 × 10−9 kg/s, χ = 0.5 N/m, σ(R0) = 0.02 N/m, at an acoustic pressure
of 10 kPa. In each plot, the true curve (solid blue), LLS estimated curve (dashed red) and the tenth-order polynomial fitting to the true curve (dotted
green) are displayed. The estimated curve is the mean computed over the estimator’s results on 10 different datasets, with errorbars denoting the
standard deviation.
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corresponds to a specific set of the shell viscosity and acoustic

pressure values. The attenuation profiles varied considerably as a

function of the initial surface tension, particularly from the

lowest to the highest value. Despite this, our estimator was

able to accurately recover the profiles.

3.1.1.3 Quantitative comparison

The relative errors in the attenuation estimates as a function

of the shell elasticity are provided in Figure 7, for different initial

surface tension values and for two shell viscosity values. The

errors were found to increase with the shell elasticity values, in

particular for intermediate initial surface tension values (between

σ(R0) = 0 N/m and the initial surface tension of water, σ(R0) =

0.073 N/m). Overall, in all cases, the relative error of estimation

was below 8%, with a mean of ~ 4% computed over all cases.

3.1.2 Monodisperse bubbles
Figure 8 shows the true and estimated attenuation curves for

the monodisperse bubbles for various cases (column-wise:

varying initial surface tension; row-wise: varying acoustic

pressure). While the attenuation profiles had a more

pronounced peak compared to the polydisperse case, the

estimated attenuation curves were still in good agreement

with the true profiles, which further highlights the accurate

recovery of varying spectral shapes by our LLS estimator.

Quantitatively, the relative error of attenuation estimation was

found to be below 10% in all the cases.

3.2 In vitro data

Figure 9 presents the results obtained by the benchmark

reference phantom method (solid blue curves) and the proposed

LLS estimator (dashed red curves) on the experimentally

acquired SonoVue data at three different acoustic pressures.

The resonance peak of the attenuation spectra of the

underlying UCA was outside the usable bandwidth of the

array and thus cannot be observed in these plots. Overall, the

attenuation spectra from both methods had a similar shape, with

a relative error < 15% in all the cases.

4 Discussion

In this contribution, we developed and presented a physical

attenuation model which enables a single-shot estimation of the

attenuation spectra of UCAs. By approximating the UCA’s

attenuation spectra with an Nth order polynomial, we were able

FIGURE 4
True (top row) and LLS estimated (bottom row) attenuation spectra for SonoVue with κs = 5 × 10−9 kg/s at an acoustic pressure of 10 kPa, as a
function of the shell elasticity (values shown in the colorbar). Column-wise, the plots are for three different initial surface tension values: (A) σ(R0) =
0 N/m, (B) σ(R0) = 0.01 N/m, and (C) σ(R0) = 0.05 N/m. The estimated spectrum is the mean computed over the estimator’s results on 10 different
datasets.
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to obtain a model that is linear in its parameters. We observed that

the non-linear frequency response of the UCA’s attenuation profile

can be approximatedwell by a tenth-order polynomial in a variety of

situations. This allowed to estimate the attenuation spectra directly

from pulse-echo measurements made in the UCAs medium,

removing the need for a reference measurement in a bubble-free

medium. Using the proposed polynomial approximation, the

developed estimator’s performance was assessed on a variety of

attenuation profiles, with different shapes and absolute values. These

profiles were obtained by considering different size distributions of

the microbubbles (polydisperse and monodisperse), and also by

varying the shell parameters. More precisely, for the polydisperse

case, varying the shell elasticity while keeping the other shell

parameters fixed resulted in a shift in the resonance frequency

and in the peak attenuation amplitude. These changes were even

more pronounced when the initial surface tension was varied. As a

matter of fact, by reducing the initial surface tension value down to

0 N/m, the resonance peak was shifted towards the lower frequency

to an extent that it was out of the usable bandwidth of the probe.

This led to a strikingly different profile for this surface tension value

when compared to those obtained with higher surface tension

values. Further, compared to the polydisperse case, the

monodisperse bubbles had attenuation profiles with a sharply

decreasing amplitude after the resonance peak. By increasing the

pressure from 10 kPa to 100 kPa, a non-linear pressure-dependent

shift in resonance frequency towards lower frequency values was

observed [26].While these observations are in line with the reported

works in the literature [15, 17, 27, 29], it was interesting to see that

the changes in the attenuation spectra, both minor and major ones,

were accurately recovered by our estimator, with a relative error of

estimation < 10% in all the considered cases.

The estimator’s performance was also assessed on in vitro data. In

this case, the LLS estimated attenuation spectra were overall found to

bematching the experimentally obtained attenuation spectra with less

than 15% relative error. However, the low resonance frequency of the

UCAs implied that the resonance peak could not be detected, as it laid

outside of the -10 dB bandwidth of the array. To analyse whether the

resonance peak could be recovered, the frequency bounds were

further increased (outside of the transducer’s usable bandwidth),

but at the cost of probing frequencies with poor SNR. In this case,

a relative error of < 15% was still observed between the estimations

obtained by the benchmark and the LLSmethod.While the resonance

peak was observed in both LLS estimated and experimentally

obtained attenuation spectra (results shown in the supplementary

material), there were slight deviations in the overall shape, especially

for higher acoustic pressures. These discrepancies could be due to

FIGURE 5
True (top row) and LLS estimated (bottom row) attenuation spectra for SonoVue with κs = 10 × 10−9 kg/s at an acoustic pressure of 10 kPa, as a
function of the shell elasticity (values shown in the colorbar). Column-wise, the plots are for three different initial surface tension values: (A) σ(R0) =
0 N/m, (B) σ(R0) = 0.01 N/m, and (C) σ(R0) = 0.05 N/m. The estimated spectrum is the mean computed over the estimator’s results on 10 different
datasets.
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different factors, one of which being the reduced SNR at frequencies

outside of the usable bandwidth. More importantly, the benchmark

spectra in this case is not the actual ground-truth profile, but an

experimental estimation, using a method which also suffers from

limitations. Indeed, given the relatively large path length (D = 9 cm)

chosen to maximize the RF sample length, the reliability of the

benchmark method was reduced due to the low SNR of the signal

reflected from the water tank bottom wall. Overall, these results then

only provide a qualitative picture, indicating the potential of the

proposed approach to estimate the UCAs attenuation spectra even in

experimental settings.

Some interesting points pertain to the impact of the bubble

concentration and the acoustic pressure on the performance of the

proposed method. At sufficiently high bubble concentration and

hence, more scattered energy, the excitation of the distal bubbles will

be reduced. This would not only impact the frequency-dependent

attenuation of these bubbles, but also the backscattered signal from

these distal regions will have a lower power (and hence, a lower

signal-to-noise ratio (SNR)). This presents a trade-off between the

bubble concentration and the depth of interest with reasonable SNR

over which to apply the attenuation estimator. Further, the bubble

concentrations used in the presented study were sufficiently low to

neglect multiple scattering effects. By increasing the concentration to

the extent that multiple scattering occurs, our approach could still

retrieve the attenuation coefficient. However, in this case, the

estimated attenuation profile can no longer be used to estimate

the bubble shell parameters as 10 and 11 are no longer valid.

Concerning the acoustic pressure, the non-linearity of the

microbubble response to the ultrasound field increases with

pressure. Nonetheless, as long as the attenuation-frequency

response has a resonant behaviour and can be fit by a

polynomial approximation, our approach could work and is

expected to provide attenuation estimates with reasonable

accuracy (eg., the results in Figure 9C). Sufficiently high

pressures can actually lead to bubble disruption [61]. Disruption

will result in a decrease of the bubble concentration, which will

ultimately decrease the acoustic attenuation of subsequent pulses.

While our method is expected to work in this scenario, these

remarks need to be experimentally tested in future studies.

As indicated earlier, the attenuation spectra obtained by

acoustic measurements only provide a cumulative value over

the whole acoustic path. This approach thus could not be used for

FIGURE 6
Attenuation spectra for SonoVue with χ = 1 N/m, as a function of the initial surface tension (values shown in the colorbar). In each plot, the true
(solid lines) and LLS estimated (dashed lines) profiles are displayed. The shown plots are for varying shell viscosities (row-wise) and acoustic pressures
(column-wise). The estimated spectra is the mean computed over the estimator’s results on 10 different datasets.
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the case of a heterogeneous medium (for instance, a mediumwith

varying microbubble concentrations), where obtaining the

spatial variations of the attenuation is of interest. In contrast,

the proposed LLS method can be generalized to the

heterogeneous case to estimate the attenuation values at each

frequency and depth point [52]. This is, however, beyond the

scope of this manuscript. In addition, from a computational

perspective, the LLS estimator is fast (Section 2.1): for each

situation, the estimation was performed in the order of few

seconds with a MATLAB implementation on a personal

computer with i7 processor and 8 GB RAM. To translate the

estimator into clinical practice, faster implementations can be

further obtained by using C/C++.

Another important discussion point is the polynomial order

to be used for approximating the underlying attenuation spectra.

The results presented in the current work used a tenth-order

polynomial approximation for all the attenuation profiles

obtained by considering different agents and varying the shell

parameters. On the one hand, this polynomial approximation

was found to be particularly suited to the monodisperse bubbles,

giving more accurate results than smaller order polynomial

approximations. On the other hand, we observed that even a

fifth-order polynomial approximation for the polydisperse case

was giving results similar to higher order approximation.

Therefore, while the exact choice of the order of polynomial

approximation depends upon the UCA under use, higher order

polynomials might perform well in general for all cases, as they

are able to mimic more complicated variations in the

underlying profile. The increase in the polynomial order,

however, comes at the cost of increased degrees of freedom,

i.e., the number of polynomial coefficients to be estimated,

which incurs a risk of overfitting. No appreciable overfitting

behavior was observed though in the cases where a tenth-order

polynomial was used. Further, a piece-wise (low-order)

polynomial fitting over different segments in the spectrum

can be used to get a more accurate approximation rather

than a fit with a single tenth-order polynomial over the

entire usable bandwidth as used currently. It would however

increase the computational burden.

While giving promising results, this study has a few

limitations, which are indicated below along with potential

future research directions.

1) In the current work, the Marmottant model was used to

obtain the theoretical attenuation spectra for UCAs. While it

provided a variety of realistic attenuation profiles for

validation of the proposed approach, the scope of

investigation was limited. More complex shell models can

FIGURE 7
Plots for the relative error of the attenuation estimates as obtained by applying the proposed approach on the simulated SonoVue data, as a
function of the shell elasticity. In each plot, the relative error curves for different initial surface tension values are displayed (values shown in the
colorbar). The shown plots are for varying shell viscosity (row-wise) and acoustic pressure (column-wise), and represent the mean error values,
computed over the estimator’s results on 10 different datasets, along with the associated standard deviation in the form of error bars.
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further be explored to generate the attenuation profiles on

which our approach can be tested.

2) The experimental data used in the current study for validation

of the proposed approach could not capture the attenuation

resonance peak due to the limited array bandwidth. A more

extensive validation campaign of the approach on a variety of

datasets would thus be desirable, including transducers with

varying bandwidths as well as UCAs with different resonance

FIGURE 8
True (solid lines) and LLS estimated (dashed lines) attenuation spectra for the monodisperse bubbles, for varying acoustic pressure (row-wise)
Column-wise, the plots are for three different initial surface tension values: (A) σ(R0) = 0 N/m, (B) σ(R0) = 0.01 N/m, and (C) σ(R0) = 0.05 N/m. The
estimated curve is the mean computed over the estimator’s results on 10 different datasets, with errorbars denoting the standard deviation.

FIGURE 9
Experimentally obtained benchmark (blue curves) and LLS estimated (red curves) attenuation spectra for the SonoVue bubbles, at varying
acoustic pressures (column-wise): (A) Pressure = 14 kPa, (B) Pressure = 93 kPa, and (C) Pressure = 222 kPa. For both benchmark and LLS estimated
curves, the shown curves are the mean results computed across all the channels in the array, with errorbars denoting the standard deviation.
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frequencies. This, however, is beyond the scope of this

manuscript.

3) The proposed method relies on the assumption that the

diffraction effects are negligible. This hypothesis can be

satisfied using plane wave propagation or imaging in the

far-field of the transducer. However, even though plane wave

transmissions are being increasingly implemented for

ultrafast imaging applications [62], this might not be

possible for all the clinically-relevant scenarios, and the

presented approach cannot efficiently deal with such

diffraction-affected data. In practice, a reference phantom

measurement could be performed and the ratio of the power

spectrum of the sample and that of the reference phantom can

be taken to cancel out the diffraction effects. The proposed

LLS estimator can then be used on the obtained data [50].

Another possibility is to leverage recent advances in the field

of deep learning and devise an approach to correct for the

diffraction effects. The work done in [63] to develop a neural

network approach for attenuation estimation of soft tissue

could be generalized to use the UCA’s signal model.

4) Finally, the current work considers the underlying medium to

be consisting of UCAs only. While this work presents the first

step towards estimating the attenuation spectra of the UCAs

accurately in real time without any reference measurement,

future research directions should further incorporate the

attenuation characteristics jointly from a medium

consisting of both UCAs and soft tissue, which is more

commonly encountered. Since soft tissue exhibit linear

attenuation-frequency dependence, it should be

straightforward to combine their attenuation model with

the proposed linearized UCAs attenuation model.

5 Conclusion

In this work, we have presented a new, fast and accurate

attenuation estimation technique for ultrasound contrast agents

(UCAs). One of the key points of our technique is approximating

the non-linear frequency dependence of the UCAs attenuation and

backscatter spectra by a polynomial model of suitable order. Thanks

to this proposition, we obtained a physical signal model, which is

linear in its parameters, allowing to use it in a linear least-squares

(LLS) approach for the attenuation and backscatter estimation. Our

approach provided the estimates in a single-shot, whichwere found to

be in good agreement with the true ones.Moreover, as opposed to the

common practice, the estimates were obtained directly from pulse-

echo measurements made in the UCA’s medium, without relying on

any additional reference measurements. The results obtained by the

LLS estimator on both simulated data, with agents having different

size distributions and shell parameters, and experimental data are

promising.
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