
Design of quasi-phase-matching
nonlinear crystals based on
quantum computing

Zihua Zheng1, Sijie Yang2, Derryck T. Reid3, Zhiyi Wei4,5 and
Jinghua Sun1*
1School of Electrical Engineering and Intelligentization, Dongguan University of Technology,
Dongguan, Guangdong, China, 2School of Computer and Communication Engineering, Changsha
University of Science and Technology, Changsha, Hunan, China, 3Scottish Universities Physics Alliance
(SUPA), Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh,
United Kingdom, 4Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing, China, 5Songshan Lake Materials Laboratory, Dongguan, China

Quasi-phase-matching (QPM) makes it possible to design domain engineered

nonlinear crystals for highly efficient and multitasking nonlinear frequency

conversion. However, finding the optimal crystal domain arrangement in a

meaningful time is very challenging sometimes impossible by classical

computing. In this paper, we proposed a quantum annealing computing

method and used D-Wave superconducting quantum computer to design

aperiodically poled lithium niobate (APPLN) for coupled third harmonic

generation (CTHG). We converted the optical transformation efficiency

function to an Ising model which can be solved by D-Wave quantum

computer. The crystal design results were simulated by using nonlinear

envelope equation (NEE), which showed very similar conversion efficiencies

to the crystals designed by using simulated annealing (SA) method,

demonstrating that quantum annealing computing is a powerful method for

QPM crystal design.
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Introduction

The wavelength generated from a laser depends on the energy level structure of the

activated ions and is often limited in a small tuning range. A well-known Ti:sapphire laser

has a tuning range of 650–1100 nm, but this is almost the widest span we can obtained in

near infrared [1]. However, research in fields such as spectroscopy often requires

wavelengths from the deep ultraviolet to the mid-infrared from a laser system as

simple and efficient as possible. For example, currently there is no mature technology

to obtain ultrashort 234 nm optical pulses directly from a laser for Al+ cooling in an

optical clock [2]. Therefore, nonlinear frequency conversion is an important technique to

obtain lights at various wavelengths flexibly.
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Quasi-phase matching is a very popular second-order

nonlinear frequency transformation technology. It avoids

critical phase matching in a nonlinear crystal with a specific

orientation and a specific polarization state. By artificially

modulating the direction of each optical superlattice in a

QPM crystal periodically or quasi-periodically, the nonlinear

interaction can satisfy the phase matching condition where the

crystal has the highest coefficient [3]. Periodically polarized

nonlinear crystals, such as periodically polarized lithium

niobate (PPLN), and periodically polarized potassium titanyl

phosphate (PPKTP), are commonly used in quasi-phase

matching second-order harmonic generation (SHG), sum-

frequency generation (SFG), differential-frequency generation

(DFG), and so on. However, a periodically polarized crystal

normally only satisfies a specific frequency conversion with

single process and narrow bandwidth. For nonlinear

conversion of femtosecond laser pulse, especially when

multiple nonlinear processes are expected in a single system, a

more sophisticated design of QPM crystal should be employed.

In order to achieve CTHG from a single gain medium, Gu

et al. demonstrated APPLN as a frequency conversion crystal,

and used SA algorithm to realize the design of the APPLN [4].

The idea of this method is to set a small calculation step (a

domain) in which the optical property is unified, select an

appropriate objective function, and search the optimal domain

orientations by using the SA algorithm. Since each crystal

domain can take positive or negative polarization direction,

the calculation may result in a crystal with different numbers

of positively orientated domains adjacent and different numbers

of negatively orientated domains adjacent, formed an APPLN

with different lengths of positive and negative superlattices. For

an APPLN with N domains, there are 2N types of crystal domain

arrangements, so increasing the number of calculation domains

to obtain finer optical superlattice design and higher conversion

efficiency is generally not practical by using SA algorithm.

Some other algorithms were also presented for APPLN

design, including genetic algorithm [5], Lagrange multiplier

method [6] and so on. These algorithms do not essentially

solve the complexity problem, and can only obtain an

approximate optimization result. Searching for optimal crystal

domain orientations is essentially a combinatorial optimization

problem. To solve this problem, it is necessary to improve the

computing hardware essentially. Quantum computers are

designed to solve such complex combinatorial optimization

problems. Recent studies have shown that a large number of

combinatorial optimization problems in the fields of medicine

design [7], very-large-scale integrated circuit design [8], traffic

planning [9], financial investment [10] can be solved using

quantum computers. We are trying to adopt these methods to

APPLN superlattice design, and to solve such combinatorial

optimization problems in polynomial time.

In this paper, we demonstrated an APPLN design for CTHG

by using the D-Wave superconducting quantum computer,

which can only solve the minimum of the real number Ising

model. We first convert the CTHG efficiency function into a

complex Ising model, and then use the rotation-projection

method to convert it into a series of real Ising models for

D-Wave. The results show that with superconducting

quantum computers, we can find fairly good solutions in a

relatively short time. The method provides new ideas for the

design of APPLN by using quantum computing.

Theoretical analysis

The quasi-phase matching technique compensates the phase

mismatch in a nonlinear process by changing the sign of the

nonlinear coefficient of the crystal within a coherent length,

thereby realizing an effective and efficient nonlinear frequency

transformation. As shown in Figure 1, the APPLN crystal is

divided into numbers of domains of the same size, and each

domain can have two polarization directions, either “up” or

“down”.

The CTHG process includes two nonlinear processes as SHG

and SFG at the same time, its optical conversion efficiency is [4].

ηTHG ≡
I3ω
Iω

� 144π4|d33|4I2ωL4

c2ε20λ
4n3ωn

2
2ωn3ω

(deff)2 (1)

where d33 is nonlinear coefficient of the lithium niobate crystal in

33 direction, c is the speed of light in vacuum, Iω is pump light

intensity, I3ω is light intensity of the third harmonic, L is the

crystal length, and λ is pump wavelength, n1ω, n2ω, and n3ω are

refractive indices of the fundamental, second-harmonic and

third-harmonic respectively, deff is effective nonlinear

coefficient, which is defined as [4]:

deff �
∣∣∣∣∣∣∣∣ 2L2

∫L

0
dzeiΔk2zd(z) × ∫z

0
dxeiΔk1xd(x)

∣∣∣∣∣∣∣∣, (2)

where i is the imaginary unit, Δk1 and Δk2 are phase mismatches

of the SHG and SFG, respectively, d(z) ∈ {+1,−1} is the reversal
direction of the crystal domain at z position, where +1 represents

FIGURE 1
Schematic diagram of the structure of an APPLN. Lithium
niobate crystals are divided into multiples of the same size of
domains. The polarization direction of each crystal domain can be
either “up” or “down”.
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“up” and -1 represents “down”. For a given pump wavelength

and target signal wavelength, Δk1 and Δk2 can be calculated from

the Sellmeier equation [11]. Eqs 1, 2 show that, to maximize

ηTHG, the task is to find an optimal set of domain arrangements

d(z) such that the effective nonlinear coefficient deff is maximized.

Existing algorithms may fall into a local optimal solution,

which cannot guarantee an optimal or near-optimal crystal

design. Searching for optimal crystal domains is a

combinatorial optimization problem. When N is large, to

solve this problem is highly dependent on computing

hardware. But quantum computers are designed to solve such

complex combinatorial optimization problems. They are suitable

for searching the maximum value of deff and its corresponding

optimal crystal domain arrangement.

There are two main kinds of quantum computing: One is a

general-purpose quantum computer, which requires the

preparation of a large number of entangled quantum pairs for

a long time; The other is to use the quantum annealing principle

to solve Ising model. The low-temperature superconducting

quantum Ising machine has mature technology and has been

commercialized. In 2011, D-Wave company announced the

world’s first commercial quantum computer. But it can only

solve the minima of the Ising model, or equivalently, quadratic

unconstrained binary optimization (QUBO) model. In other

words, a quantum Ising machine can only solve for the

minimum of a function of the form H � −∑
i,j
Jijσ iσj −∑

i
hiσ i,

where σ i, σj ∈ {+1,−1}, and the value and quantity of the

coupling coefficient Jij and hi can be set optionally.

To use D-Wave computer, we need to convert the effective

nonlinear coefficient expressions into the Ising model. Each

crystal domain has two polarization direction options in the

Ising model: |↑〉and |↓〉. Assuming that the crystal of length L is

divided into N equal segments, and the width of each domain is

Δx, i.e. L = NΔx, then the effective nonlinear coefficient can be

written as

dTHG
eff ∝

∣∣∣∣∣∣∣∣ ∫
L

0
dzeiΔk2zd(z) × ∫z

0
dxeiΔk1xd(x)

∣∣∣∣∣∣∣∣
≈
∣∣∣∣∣∣∣∣∣∑
N

m�1
∫mΔx

(m−1)Δx
dzeiΔk2zd(z) × ∑m−1

n�1
∫nΔx

(n−1)Δx
dxeiΔk1xd(x)

∣∣∣∣∣∣∣∣∣
�
∣∣∣∣∣∣∣∣∣∑
N

m�1

1
iΔk2

[eiΔk2mΔx − eiΔk2(m−1)Δx]d(m) × ∑m−1

n�1

1
iΔk1

[eiΔk1nΔx − eiΔk1(n−1)Δx]d(n)
∣∣∣∣∣∣∣∣∣

∝
∣∣∣∣∣∣∣∣∣∑
N

m�1
[eiΔk2mΔx − eiΔk2(m−1)Δx]d(m) × ∑m−1

n�1
[eiΔk1nΔx − eiΔk1(n−1)Δx]d(n)

∣∣∣∣∣∣∣∣∣
�
∣∣∣∣∣∣∣∣∣∑
N

m�1
∑m−1

n�1
J0(m, n)d(m)d(n)

∣∣∣∣∣∣∣∣∣

, (3)

where J0(m, n) is the coupling coefficient and written as:

J0(m, n) � (eiΔk2mΔx − eiΔk2(m−1)Δx) · (eiΔk1nΔx − eiΔk1(n−1)Δx). (4)

So the effective nonlinear coefficients is converted into an

Ising model and a complex objective function is obtained:

f(d1, d2, ..., dN) ≡ ∑N
m�1

∑m−1

n�1
J0(m, n)dmdn. (5)

Now the problem becomes to find the maximum modulus of

the complex objective function f (d1,d2,...dN). But the D-Wave

quantum computer can only solve the Ising model where the

coupling coefficient J0 is real. The real part of Eq. 5 is:

Re[f(d1, d2, ..., dN)] � ∑N
m�1

∑m−1

n�1
Re[J0(m, n)]dmdn. (6)

The maximum of the f (d1,d2,...dN) could not be replaced by

that of Re [f (d1,d2,...dN)] since there may be |f1|>|f2| but |Re [f1]|<|
Re [f2]|. In order to solve this problem, we use rotation-projection

method which projects the original objective function to r

directed lines in 2π space, instead of only to real axis as usual

(Figure 2 shows the case of r = 12). Projecting the objective

function f onto the line Arg z = θj,where θj � 2π
r · j, j = 0,1,2,..., (r-

1), is equivalent to rotating f around the origin by -θj and then

project onto the real axis, i.e. fj � Re(f · e−iθj ). Therefore, the
projection of the function f on the line Arg z = θj is

FIGURE 2
When the number of rotations r = 12, the rotation-projection
method projects the objective function f to 12 directed lines in the
complex plane. 12 Ising models fj are generated, and the optimal
crystal domains of each fj are obtained respectively. Among
these 12 crystal domain designs, the one that have the highest
modulus of f is approximately the globally optimal design.

FIGURE 3
Schematic diagram of the generation of deep UV light at
234 nm using a 1,040 nm fs fiber laser.
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fj(d1, d2, ..., dn) � Re⎡⎣e−iθj ∑N
m�1

∑m−1

n�1
J0(m, n)dmdn

⎤⎦
� ∑N

m�1
∑m−1

n�1
Re[e−iθj J0(m, n)⎤⎦dmdn (7)

It should be noted that Arg z = θj and Arg z = θj+π represent

two different directed lines. Because the projection of the

function f on the line Arg z = θj is Re(f · e−iθ), the projection

on the line Arg z = θj+π is

Re(f · e−i(θj+π)) � Re(f · e−iθj · e−iπ) � Re[(−f) · e−iθj ]. Since

f ≠ − f, the Ising models obtained by projecting the objective

function on the two directed lines Arg z = θj and Arg z = -θj are

not equivalent.

Using the D-Wave quantum computer, we can obtain r

groups of crystal domain arrangement {d}0, {d}1, ...{d}r-1,

corresponding to the maximum modulus of the functions f0,

f1, ...fr-1 on each line, respectively. The maximum value of fj (j =

0~r-1) is approximately equal to the global maximum of the

objective function,

|f|max � max
{dn}

|f| ≈ max{|f({d}0)|, |f({d}1)|, · · ·, |f({d}r−1)|}.

FIGURE 4
The results of the APPLN design. (A) The maximum modulus of the function fi obtained at different rotation angles of θ by using the D-Wave
quantum computer with Δx = 1 μm (A1) and 0.5 μm (A2) respectively. (B) The optimal domain distribution searched by using the D-wave (B1) and the
classical computer (B2) when Δx = 1 μm. (C) The optimal domain distribution searched by using the D-wave (C1) and the classical computer (C2)
when Δx = 0.5 μm.
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It can be proved that the relative error between the maximum

value obtained by the rotation-projection method and the true

maximum value is δd≤ 1 − cos π
r ~

c
r2, where c � π2/2 ≈ 4.93. For

example, if the rotation number r = 12, δd ≤ 3.4%. When r

increases, δd tends to 0, but the computation time increases also.

One must balance the accuracy and computing time when

choosing proper number of r.

After converting the objective function into the Ising

model, we can apply D-Wave’s quantum cloud computing

platform Leap to solve the maximum value of the Ising model.

In 2018, D-Wave System launched the quantum cloud

computing platform Leap, which makes quantum

computers more convenient for users around the world.

First, the program is written in Python language on the

terminal, and the code is sent to the quantum computer of

D-Wave through the cloud for execution. After solving, the

quantum computer returns results to the user through the

control terminal. Users only need to upload the coupling

coefficient J (m,n) of the Ising model to the quantum cloud

server, and specify the type and parameters of the solver to

solve it with a quantum computer.

D-Wave provides three kinds of solvers [12]: Classical Solver,

Quantum Solver, and Hybrid Solver. Generally, the Classical Solver

uses classical computer to solve, which is relatively slow when the

number of variables of problem increase. The Quantum Solver uses

the quantum processing unit (QPU), which is suitable for Ising

model, but can only solve problems with a small number of variables

as limited by the number of qubits currently. The Hybrid Solver

takes advantages of combining a classical computer and a quantum

processor collaboratively. In this article, we used theHybrid Solver to

search the maximum value of the object function f. The pseudocode

of the algorithm can be found in the Supplementary material.

Simulation

We chose CTHG of 1404 nm light to 468 nm as an example to

verify the proposedAPPLNdesignmethod. This CTHGprocess was

proposed to be a part of a scheme of 234 nm deep UV generation

(Figure 3) for Al+ cooling [2].

For the 1404 nm pumped CTHG, we used a 0.66 mm long

crystal, and chose domain lengths of Δx as 1 μm and 0.5μm,

corresponding to 660 (N = 660) and 1,320 (N = 1,320) crystal

domains respectively. 0.66 mm is a fairly reasonable length of

lithium niobate for CTHG when the pulse duration is about

200 fs The shorter the crystal domain (calculation step) is, the

more accurate the design of the crystal will be. But that will

cause dramatic increase in the demand for computing resource.

FIGURE 5
(A) Simulated output spectrum from the APPLN with crystal domains optimized by quantum computing as shown in Figure 4B1. (B) detailed
output spectrum around 468 nm.

TABLE 1 Calculation times and results for different domain lengths.

Length
of each domain/μm

0.5 1

Number of domains 1,320 660

Running time of SA/s 187 108

THG efficiency (SA) 30.70% 28.38%

Running time of D-Wave (In which quantum computation time)/s 860 (2.2) 366 (1.9)

THG efficiency (D-Wave) 30.79% 28.37%
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The first-process was a SHG process of 1404–702 nm, and

the second was a SFG process of 1404 and 702 nm to obtain

468 nm. According to the Sellmeier equation [11] of lithium

niobate crystal, the refractive indices of the interaction

wavelengths are n1404 = 2.1350, n702 = 2.1808, n468 = 2.2574.

Therefore the phase mismatch of the first process isΔk1 � 2πn702
λ702

−
2 · 2πn1404λ1404

� 4.0995 × 105m−1 and the phase mismatch of

the second process is Δk2 � 2πn468
λ468

− 2πn1404
λ1404

− 2πn702
λ702

�
1.2331 × 106m−1. We adopted r = 12 for rotation-projection

method, which makes the rotation angle θ � 2π
r � π

6.

By submitting the Python code to the D-Wave quantum

computing cloud to start quantum computing, when Δx = 1 μm,

we obtained the results in 366 s, in which the time for 12 quantum

annealing calculations was 1.9 s, and the rest of the time was classical

computing. The classical processing mainly included converting the

Ising model to a form that can be solved by the quantum computer,

configuring parameters. Figure 4A1 shows the objective function

values obtained by 12 quantum annealing and post-processing

optimizations. The maximum modulus of fj (j = 0~r-1) at

different directions were various in a small range. The maximum

was 26,041 at the rotation angle of π/3, and the corresponding crystal

domain distribution is shown in Figure 4B1. The x-axis from left to

right is the direction of light travel, and the red and blue means the

“up” and “down” domain polarization, respectively. The y-axis is the

length of the adjacent crystal domains with the same polarization. For

example, the color of the first column is red and the number is 7,

indicating that the polarization direction of the 1-seventh crystal

domains of the APPLN crystal in the laser traveling direction was

“up”, which formed the first optical superlattice of the APPLN crystal

with length of 7 μm.

When Δx = 0.5 μm, the solution time of D-Wave was 860s, in

which the quantum annealing time was 2.2s. The optimized

values of the objective function in 12 directions of the rotation-

projection method was shown in Figure 4A2. The maximum was

27,468, obtained at θ � 7π
6 . The corresponding crystal domains

are shown in Figure 4C1.

In both cases of Figures 4B1, C1, the domain designing results

were close to each other but with finer resolution of the length

superlattice when Δx = 0.5 μm, which is obvious to our intuition. In

the first part of the crystal, optical superlattices was about 7.5~8 μm,

which was approximately equal to the coherence length of SHG

(7.664 μm), and the second part of the domain was about 2~3 μm,

which was approximately equal to the coherence length of SFG

(2.548 μm). This indicates that in order to achieve the maximum

THG efficiency, SHG should happen first. This auto-prioritization of

coupled nonlinear processes demonstrates the power of the

algorithms used for complex crystal design.

As a comparison, we searched for the optimal crystal domains

using the traditional Simulated Annealing (SA) algorithm [4, 13] on a

laptop computer. The initial temperature was T, the cooling

coefficient of each time ΔT, and the minimum temperature Tmin.

In each loop, we randomly change a crystal domain. If the value of | f |

corresponding to new crystal domain increases, then we accept the

new domains; Otherwise accept the new domains with probability p=

exp (-Δf/T), where Δf is the increasement of function | f |. If the

temperature drops to T′ � T ×ΔT, then go to the next loop. The
temperature decreases after each cycle and stops until the

temperature falls below the minimum temperature Tmin.

The initial temperature T was set as 1. In order to avoid falling

into a local optimal solution, we used a lower minimum temperature

Tmin = 10−20 and a slower cooling coefficient ΔT = 0.9995. The

maximumnumber of loops was 100,000. The programwas written in

MATLAB language. The CPU of the computer is 2.7 GHz Intel(R)

Core(TM) i7-7500U with maximum turbo frequency of 3.5GHz, and

the memory is 8 GB. After 108s, the SA algorithm searched for an

optimal crystal domain (Figure 4B2) for the case of Δx = 1 μm. The

maximum value of the corresponding objective function fwas 26,120.

For Δx = 0.5μm, the solution time of SA was 187s, and the optimal

crystal domains are shown in Figure 4C2 with objective function f as

27,456.

Comparing the optimal crystal domain obtained by quantum

computing with SA, we find they are very similar, which proves

the feasibility of using quantum computer to optimize the

APPLN crystal design. For Δx = 1 μm, The maximum value

of the objective function f obtained by the SA and quantum

computing were 26,120 and 26,041 respectively; And for Δx =

0.5 μm, they were 27,456 and 27,468 respectively. Both values

were not perfect solutions as SA gives only local maximum value,

and quantum computing with r = 12 may cause a relative error

within 3.4% as mentioned earlier. The two values we obtained

have only 0.3% relative difference, and will lead to very similar

conversion efficiencies as we will discuss in following text. As for

solution time, the quantum computer used 366s (Δx = 1 μm) and

860s (Δx = 0.5 μm), in which the quantum annealing time was

only 1.9s and 2.2s. The D-Wave quantum computer maps the

Ising model to the Hamiltonian of the low-temperature

superconducting circuit, realizes quantum annealing through

the control of an external magnetic field, and finally stabilizes

at the lowest energy state, obtaining the minimum value of the

Ising model. This process is highly parallel.

We used nonlinear envelope equation (NEE) [14, 15] to

simulate the optical conversion efficiency of the APPLN. The

equation can be written as

zA

zz
+ iD̂A � −i χ

(2)ω2
0

4β0c
2
(1 − i

ω0

z

zτ
)[A2eiω0τ−i(β0−β1ω0)z

+ 2|A|2e−iω0τ+i(β0−β1ω0)z], (8)

where A is the light field envelop in time domain, z is the light

propagation direction, D̂ � ∑∞
m�2

1
m!βm(−i zzt)m and βm � zmk

zωm|ω�ω0

are the dispersion differential operator, τ � t − β1z is group

velocity delay, β0 and β1 are zero-order and first-order

dispersion, and ω0 is reference frequency. Through the step-

Fourier method in the time domain, combined with the Runge-

Kutta method, for a given pump light field and the arrangement

of nonlinear crystal domains, we can simulate the distribution of
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the output field (including pump, signal, idler) through NEE

simulation [14].

Assuming a Gaussian pump pulse with 1404 nm central

wavelength, 200fs pulse duration and 4 × 1010W/cm2 peak

intensity, the NEE simulation gave the output light field as shown

in Figure 5 from the APPLN crystal designed by quantum annealing

when Δx = 1 μm (see Figure 4B1). Simulation results of other crystal

designs were very close so theywere not plotted out. ForΔx= 1μm, the

conversion efficiency of the 468 nm light from 1404 nm pump was

28.37%. That was 28.38% by using the crystal in Figure 4B2 designed

by SAalgorithm.The two conversion efficiencieswere almost the same.

For the optimal domain of 0.5 μm (Figure 4C1), the THG

efficiency calculated by the same method was 30.79%, which is

higher than the case of Δx = 1 μm. This can be understood that

withfiner simulation steps,moreflexible quasi-phasematching can be

achieved, so higher THG efficiency can be expected. Detailed

information can be seen in Table 1.

Conclusion

For an APPLN crystal design discussed in this paper, the number

of crystal domains N corresponds to 2N different possible

arrangements of crystal domains, i.e. the size of the search space

increases exponentially with the number N, leading to a exponential

increase of the classical computation time. But a quantum computer

breaks the limitation of the von Neumann system in terms of

calculation principle, and calculates in a highly parallel manner,

causing only linear increase of computation time. This is the

essential feature that distinguishes quantum computers from

classical computers.

Limited by the number of qubits available currently, we only

adopted up to 1,320 crystal domains in our calculation. If there are

more qubits available in the future, the crystal domain can befiner, say

0.1 μm, and one can naturally expect higher conversion efficiencies

available based on fast parallel quantum computing.

Because of its high flexibility of designing and engineering,

APPLN can also be used for white-light generation [16],

simultaneous phase matching of multi-parameter processes [17],

pulse compression [18], pulse shaping [19, 20] et al. Quantum

computing is highly suitable to optimize the superlattice design for

these purposes in a reasonably short time by converting these

objective functions into Ising models.

In summary, this paper proposed a rotation-projectionmethod to

convert the effective nonlinear coefficients of the second-order

nonlinear frequency transformation into the Ising model, and then

demonstrated optimization of APPLN crystals for CTHG by using

D-Wave superconducting quantum computer to solve the Ising

model, which spent only 366s for Δx = 1μm and 860s for Δx =

0.5 μm respectively. The NEE simulation showed that the optical

conversion efficiency were 28.37% (for Δx = 1 μm) and 30.79% (for

Δx = 0.5 μm) respectively, indicating the validity of this quantum

computation. In the future research, we will improve the models of

APPLN design for situations where pulses have more complicated

time-domain and frequency-domain details.
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