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Low temperature plasmas (LTPs) enable to create a highly reactive environment

at near ambient temperatures due to the energetic electrons with typical kinetic

energies in the range of 1 to 10 eV (1 eV = 11600K), which are being used in

applications ranging from plasma etching of electronic chips and additive

manufacturing to plasma-assisted combustion. LTPs are at the core of many

advanced technologies. Without LTPs, many of the conveniences of modern

society would simply not exist. New applications of LTPs are continuously being

proposed. Researchers are facing many grand challenges before these new

applications can be translated to practice. In this paper, we will discuss the

challenges being faced in the field of LTPs, in particular for atmospheric

pressure plasmas, with a focus on health, energy and sustainability.
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1 Introduction

The definition of low temperature plasmas (LTPs) is primarily related to the

temperatures of its species. High temperature plasmas have electron temperatures on

the order of 108 K (10 keV) or higher. This type of plasma is more relevant to nuclear

fusion for clean energy production. The sun is a natural fusion plasma reactor. Two of the

largest man-made high-temperature plasma devices are the International Thermonuclear

Experimental Reactor (ITER) investigating magnetically confined fusion and the National

Ignition Facility (NIF) investigating inertially confined fusion. In contrast, laboratory
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generated LTPs have an electron temperature on the order of

10 eV (1 eV = 11600K) or lower, with gas temperatures that

range from room temperature to several thousand Kelvin.

Plasmas having the gas temperature, and often the ion

temperature, much lower than the electron temperature are

classified as nonequilibrium LTPs. Plasmas having gas

temperatures close or equal to their electron temperature are

in thermal equilibrium and are referred to as thermal LTPs.

Nonequilibrium LTPs produce greater chemical reactivity

than is possible at the same gas temperature because of their

higher electron temperatures. The higher electron temperature

enables electron impact excitation of atoms and molecules to

higher electronic and vibrational states, while they can also break

chemical bonds to create radicals. In this way, certain chemical

reactions can be enhanced and chemical products can be

produced at relatively low gas temperatures. The essence of

nonequilibrium LTPs is transferring energy from electric fields

to chemical bonds so that new reactive species can be produced.

For a given gas composition, the rate of production of such

chemically active species depends on the electron energy

distribution function (EEDF), which further initially

determines the excitation temperature and vibrational

temperature. Plasma chemical reactions following the initial

electron impact events then determine the reactivity of the

system.

Diverse applications of nonequilibrium LTPs surround us in

our daily life, e.g., computer chips are manufactured by LTPs-

enabled processing (e.g., etching, deposition), high performance

optics used in telescopes and coatings in eyeglasses are produced

by LTPs-enhanced film deposition. Satellites use plasma

thrusters for repositioning and station keeping.

The essence of thermal plasmas is transferring electrical

energy to thermal energy. The concentrations of nearly all

species, including electrons, ions, atoms, molecules and

radicals, are largely given by equilibrium relationships,

including Saha’s equation. That said, there are also non-

equilibrium regions of these plasmas, typically at the

boundaries near walls. The applications of thermal LTPs

include hazard waste treatment, welding, cutting, and spray

coatings.

Research in LTPs is often focused on 1) the development of

new plasma sources for various applications, 2) plasma

diagnostics to characterize and investigate plasma processes,

and 3) plasma simulations to gain insights into the

mechanisms of plasma generation, with the ultimate goal to

achieve predictive capabilities for a variety of applications. In this

article, we discuss many remaining challenges for these research

areas.

All LTPs studies are performed to advance a large range of

applications and develop new applications. In this article we

focus on the challenges related to several emerging

applications, including 1) plasma for energy storage/

conversion, 2) plasma for nanomaterials production and

processing, 3) several fundamental questions of plasma

medicine such as penetration depth of plasma, definition of

plasma dose, the role of electric field, 4) plasma for

decontamination, 5) plasma for cancer treatment, and 6)

plasma technology implementation in cosmetics. For each

topic, one or two experts, as indicated below, have been

asked to write a short perspective. These write ups are the

perspective of these individual authors and can be focused on

the author’s particular interest. A broader more

comprehensive list of challenges and applications can be

found in the 2022 Plasma Roadmap [1].

2 Challenge in LTPs Sources (X. Lu
and D. Liu, HuaZhong University of
Science and Technology, P.R. China)

Plasma sources are the key for the plasma applications. A

typical plasma source includes three parts, i.e., the power supply

used to drive the plasma, the electrode configuration, and the

working gas. Because plasmas generated by different plasma

sources are different, some desirable effects may be achieved

by one plasma source treatment but not by the other. It is thus

crucial to develop several different plasma sources for each

targeted application. This is especially true for understanding

the fundamental mechanism of the plasma effects.

The research community has acknowledged the importance

of such need. The reactive agents (RA) of plasma include 1)

reactive chemical species such as reactive oxygen species (ROS)

and reactive nitrogen species (RNS), and 2) reactive physical

agents including charged particles, UV, and so on [2, 3]. One

plasma source might predominantly generate one type of RA,

while producing only small amounts of other RAs.

From the applications point of view, the preferred RA for

various applications for example in the field of plasma medicine,

such as killing bacteria, inducing cancer cell apoptosis,

promoting stem cell differentiation, and enhancing

transdermal drug delivery, might be also different.

Furthermore, currently most plasma sources used for

plasma medicine use noble working gases, which is

acceptable when they are used in a hospital environment

but might be cost prohibitive for many other applications.

On the other hand, if air can be used as a main working gas,

then the potential plasma applications will be greatly

broadened. Although several plasma jet devices operated in

air have been reported [4–6], new plasma devices using air as a

working gas are still urgently needed.

In addition, currently, many types of plasma sources are

being investigated for applications of renewable energy storage/

gas conversion, including dielectric barrier discharges (DBD),

microwave (MW) and gliding arc (GA) plasmas, ns-pulsed

plasmas, atmospheric pressure glow discharges (APGD) and

spark plasmas. However, the energy efficiency of some of
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these plasma sources is still too low for commercial practice and

thus developing new or improved plasma sources and power

supplies for such applications is also needed [7].

Finally, researchers are pursuing to generate homogeneous

cold atmospheric pressure air plasma at large gap distances,

which is required for diverse applications such as surface

treatment. However, it remains challenging [7–9].

3 Challenge in LTPs Diagnostics
(P. Bruggemann, University of
Minnesota, United States, and S.
Reuter, Polytechnique Montréal,
Canada)

In view of the complexity of LTPs, diagnostic are key enablers

of advances in both science and technology in the LTP field. The

state-of-the-art in plasma diagnostics has made considerable

progress in the last decade not only by the development of

new diagnostics but also through improvements of existing

capabilities by leveraging technological advances. While new

techniques such as EFISH allow spatially and temporally

resolved measurement of electric fields [10], continuous

improvements in detector sensitivity have benefited for

example Thomson scattering [11]. Real time data collection at

increasing frame rate capabilities enable characterizing stochastic

filamentary plasmas [12] but also the use of data science methods

in the analysis of diagnostics [13]. Nonetheless, many challenges

remain, and we highlight a few critical needs in plasma

diagnostics that in our opinion will significantly contribute to

the advancement of our research field, particularly for

atmospheric pressure plasmas.

3.1 Energy deposition, dissipation and
species mapping

Energy deposition in LTPs occurs mainly from electric fields

to electrons on picosecond timescales. However, the energy

dissipation is driven by collisional processes including elastic

and inelastic electron-neutral collisions, relaxation or

recombination of excited states and interactions with surfaces

spanning timescales from nanoseconds to seconds. A solid

understanding of these processes is critical to control the non-

equilibrium energy deposition into beneficial reactions and

species and requires detailed measurements of multiple

plasma parameters and species. Experimental validation of

models with extensive reaction sets of 100s of species,

including excited states, only recently started to emerge and

few studies include more than a handful of different species or

excited states measurements [14]. The analysis of experimental

data often relies on assumptions based on partial equilibrium,

which is not a priori applicable for such conditions. In addition,

several measurement challenges remain, such as the

measurement of 1) the tail of the electron energy distribution

function to include energies enabling electronic excitation and

ionization [15], 2) ultrafast energy transfer involving hot atom

processes and quenching of excited states [16] and 3) high

vibrational levels for example in N2 which are believed to play

a key role in enhancing chemical reaction rates [17].

3.2 Time/spatially resolved measurements

The implementation of diagnostics requires a priori a good

understanding of the relevant time and length scales as

information on transients and gradients could be lost

otherwise. In addition, most diagnostics require signal

averaging/accumulation which requires excellent plasma

stability. Great progress in stabilizing atmospheric pressure

plasmas has been achieved by ensuring discharge

reproducibility [18]. Furthermore, the development of novel

single-shot or real-time diagnostic techniques is particularly

important for stochastic filamentary plasmas. In addition,

spatial gradients in atmospheric pressure plasmas, particularly

near interfaces, can approach length scales similar to the

diffraction limit and while vital for the study of species fluxes

to substrates can be extremely challenging to measure. Most

diagnostics that are able to measure a broad range of species can

only provide line of sight or line integrated densities [19]. Since

most practical plasmas are inhomogeneous, a full spatial analysis

requires additional information about species and temperature

distributions and the research field could benefit from extending

diagnostics with high spatial resolution to a broader range of

species beyond atoms and diatomic molecules.

3.3 Reference sources and model
comparison

The plasma community performs research on a large variety

of homemade plasma sources, and therefore, comparison of data

is often challenging. We strongly support the development of

reference sources such as the GEC-reference cell [20] and the

COST jet [2] that can be implemented in different research

groups to allow faster progress and access to already existing

and complementary diagnostics. To date, the great variability of

atmospheric pressure plasmas is however not represented in the

existing reference sources and reference experiments for example

for plasma filaments in addition to diffuse discharges might be

timely. Furthermore, the detailed description of plasma reactors

and operation conditions is critical to allow for the comparison

with models. It is important to consider when designing plasma

sources for advanced diagnostics that 3D models remain rare

[21] and simplified geometries that can be represented in 2D [22]

or 1D [23] will be easier accessible for modelling.
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3.4 Diagnostics of interfaces and
substrates

While most plasma-based applications rely on the interaction

of plasmas with solids or liquids, material surface

characterization and measurements of reactive species in

liquids are mainly performed ex situ. Many processes

underpinning plasma modification of substrates involve short-

lived species including charged species, hence a more detailed

understanding from plasma-surface interactions might benefit

from the development of in situ diagnostics compatible with the

complex plasma environment and able to diagnose the dynamic

change in plasma-material interactions. Current in situ

diagnostics include various infrared techniques but a broader

range of species-specific techniques with higher sensitivity or

selectivity might benefit our research field [1]. The challenge for

probing liquids is even larger as short-lived reactive species

penetrate a finite distance into the liquid on a nm to µm scale

depending on the lifetime of the radicals [1, 24]. In many cases

the plasma-induced liquid phase chemistry is dominated by this

highly reactive near interfacial layer which remains largely

unexplored with few exceptions [25].

In conclusion, while a broad range of plasma diagnostic

capabilities exists, additional efforts for new diagnostic

development are needed to satisfy the diagnostic needs of new

application developments and fundamental science in our

research field. Many plasma diagnostics are invasive and

indirect measurements often require knowledge of the plasma

processes and models to interpret results. In many cases

complementary diagnostics remain a necessity to accurately

apply diagnostics in complex low temperature plasma

environments. Diagnostic techniques heavily rely on cross-

sectional data and existing gaps in databases need to be filled,

especially so for the increasingly complex gas mixtures used for a

large range of novel applications. Future developments in this

area could highly benefit from collaborations with the Atomic,

Molecular and Optical (AMO) community.

4 Challenge in LTPs Simulation (G.
Naidis, Russian Academy of Sciences,
Russia)

Plasma sources used in various applications produce

equilibrium or non-equilibrium plasmas. Numerical codes for

simulations of equilibrium plasmas are usually based on the fluid

dynamic approach [26, 27]. As input data for these codes,

thermodynamic and transport characteristics versus the gas

temperature and pressure are used. Fluid models are also

widely applied for simulations of non-equilibrium plasmas. In

this case, knowledge of transport and kinetic coefficients for

electrons is required. These coefficients are typically evaluated by

solving the Boltzmann equation for the electron energy

distribution function (EEDF), e.g., using the open-access

platform LXCat [28]. At strong vibrational excitation of gas

molecules, the Boltzmann equation is to be solved together

with the system of balance equations for the densities of

vibrationally excited states [29].

In conditions when non-local effects caused by strong non-

uniformity and/or fast variation of plasma parameters become

important, more sophisticated particle approaches, such as

particle-in-cell/Monte-Carlo models, are applied [30, 31]. One

of the challenges in plasma simulations is the disparity of length

and time scales typical for various physical and chemical

processes. To meet this challenge, hybrid models have been

developed, dividing computations in modules [32, 33]. In

particular, hybrid modelling allows combining particle and

fluid approaches.

In computations of complex plasma systems, global (spatially

averaged) models are often used, working with kinetic schemes

that include up to several hundred species and several thousand

reactions [34]. These models are useful for identifying leading

reactions and species and reducing kinetic schemes, thus making

them applicable for spatially resolved kinetic and fluid

computations. A challenge in modeling complex chemical

transformations in non-equilibrium plasmas is the lack or

insufficient reliability of the data on reaction rate constants,

especially for processes involving vibrationally and

electronically excited species.

For modelling of steady-state discharges, both time-

dependent solvers, attaining steady state by relaxation from an

initial state, and stationary solvers, obtaining solution of steady-

state equations by iterations, are applied. The stationary solvers

are typically less time-consuming and have advantages when

studying stability of different modes of steady-state discharges

and transitions between them [35].

5 Plasma application

5.1 Challenges in plasma for renewable
energy storage/gas conversion (A.
Bogaerts, University of Antwerp, Belgium)

Renewable energy storage is one of the grand challenges of

this century, due to the growing contribution of renewable

electricity from e.g., solar and wind, which produces peak

powers. Plasma reactors are powered by electricity, and

quickly switched on/off, and therefore in principle ideally

suited for renewable energy storage. Moreover, they can

convert greenhouse gases, such as CO2 and CH4, into value-

added chemicals or renewable fuels, and thereby also contribute

to the problem of global warming. In fact, plasma technology can

catch three birds with one stone: 1) by converting the greenhouse

gases, it reduces their concentrations (or their emissions) in the

atmosphere, 2) it produces value-added chemicals or fuels from
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greenhouse gases instead of from fossil fuels, thereby reducing

our dependence on fossil fuels and reducing also CO2 emissions,

and 3) by using renewable electricity, it also avoids CO2

emissions.

Most of the research focuses on CO2 and CH4 conversion

(e.g. [36–39]), but also on N2 fixation into NH3 and NOx (e.g.,

[39–43]), as well as NH3 decomposition for H2 production (e.g.,

[44]). CO2 splitting leads to CO feedstock that can be combined

with H2 into syngas (CO/H2 mixture) for Fischer-Tropsch

synthesis of hydrocarbons. CH4 conversion is of great interest

for H2 synthesis, but also for olefin production (mainly ethylene,

C2H4). The combined CO2 and CH4 conversion, also called dry

reforming of methane (DRM), mainly leads to syngas (CO/H2),

but can also directly form higher hydrocarbons or oxygenates,

like methanol, ethanol, formaldehyde, formic acid, etc, if suitable

catalysts can be designed, but even without catalysts, this might

be possible by careful reactor design and choice of the operating

conditions, as recently demonstrated [45]. N2 fixation is being

studied for both NH3 and NOx production, as alternatives for the

energy-intensive Haber-Bosch and Ostwald processes. Many

types of plasma reactors are being investigated, but most work

is performed with dielectric barrier discharges (DBD),

microwave (MW) and gliding arc (GA) plasmas, ns-pulsed

plasmas, atmospheric pressure glow discharges (APGD) and

spark plasmas (see details in [36–45]).

While the application of plasma for renewable energy storage

and gas conversion is clearly one of the emerging applications of

this century, also due to the urgent need for electrification of the

chemical industry, this application still faces some challenges that

need to be overcome before it can be applied at large scale, e.g., in

the chemical industry. These challenges include the need to

further enhance the 1) conversion, 2) energy efficiency, and 3)

product selectivity.

Conversion and energy efficiency are related to each other, as

the energy efficiency is typically defined based on the conversion

obtained at a certain energy input compared to the reaction

enthalpy (only applicable for endothermic reactions, like CO2

splitting and DRM) [37]. Hence, a high conversion typically gives

rise to a high energy efficiency, although this is not always the

case, i.e., when the conversion rises less than linearly with the

energy input, the energy efficiency will drop. In that case, a

compromise needs to be made whether one prefers a higher

conversion or a higher energy efficiency, depending on the

application. The conversion (and thus also energy efficiency)

is often limited by the limited fraction of gas passing through the

plasma in some reactors (e.g., GA plasmas [46]), and especially

by recombination of the products (back-reactions) when the gas

temperature drops only slowly after the reactor [47]. Major

efforts are therefore needed for reactor design improvements,

focusing on gas flow dynamics, to make sure that all the gas is

treated by the plasma and that reaction products are quickly

removed and/or cooled directly after the reactor (fast quenching)

to avoid back-reactions [48, 49].

In addition, the energy efficiency is determined by how

much energy is needed to reach a certain conversion, and thus

by the reaction mechanisms. The latter are different for the

different plasma types. DBD plasmas typically operate at

higher reduced electric fields (i.e., ratio of electric field over

gas number density) than e.g., MW, GA or APGD plasmas

(i.e., around 200 Td for DBD vs. 50–100 Td for the latter types,

where 1 Td = 10−21 V m2) [50]. These higher reduced electric

fields create electrons with somewhat higher temperatures,

which give rise to electron impact electronic excitation and

ionization, rather than vibrational excitation. The latter is

more common at reduced electric fields of 50–100 Td, and is

known as the most efficient dissociation mechanism [50].

Indeed, vibrational-induced dissociation proceeds by

population of the lower vibrational levels, which gradually

populate the higher levels by vibrational-vibrational

relaxation until the dissociation limit is reached, i.e., so-

called ladder climbing. This vibrational pathway is

theoretically the most common in MW, GA and APGD

plasmas, but in practice, these plasma types are

characterized by relatively high gas temperatures (up to

3000 K and even higher; hence, they are also called warm

plasmas), so that vibrational-translational relaxation becomes

important and causes depopulation of the vibrational levels.

This reduces the importance of this energy-efficient

vibrational dissociation pathway. At the same time, this

process causes further gas heating, making vibrational-

translational relaxation even more important. In practice,

the dissociation of CO2, CH4 and N2 in these warm

plasmas proceeds largely by thermal chemistry [51, 52], but

nevertheless, they are typically characterized by much better

energy efficiency than DBD plasmas, as e.g, demonstrated in

[37, 39]. Nevertheless, further research is needed, to go

beyond the thermal efficiency limit, e.g., by exploiting the

reaction of O atoms with CO2 [53].

The third challenge of plasma technology for renewable

energy storage and gas conversion is product selectivity, which

is related to the high reactivity of plasmas, producing many

different products, and it is known that product separation would

add amajor cost to the overall process. To improve the selectivity,

plasma can be combined with catalysts, in so-called plasma

catalysis [54–56]. This can be performed in one stage, where

the catalysts are directly integrated in the plasma, for which DBD

plasmas are most suitable, due to their lower temperature

(slightly above room temperature). The alternative is two-

stage plasma catalysis, where the catalysts are typically placed

after the plasma. This is a more suitable option for MW, GA and

APGD plasmas, which typically have too high gas temperature

for catalysts to be integrated inside the plasma (although there

are examples where it has been demonstrated to be successful),

but the high temperature at the gas outlet can still be used to

activate (thermal) catalysts placed after the plasma. Plasma

catalysis is very promising, but clearly more research is
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needed, especially to design the most suitable catalysts tailored to

the plasma conditions. This is especially true for one-stage

plasma catalysis, where short-lived plasma species (e.g.,

radicals, vibrationally and electronically excited species) come

in contact with the catalyst, and thus, the mechanisms are

different from thermal catalysis, and hence, other catalysts

must be designed. Studies on simple reactions, such as NH3

synthesis, have revealed novel insights, e.g., on the role of

(vibrationally) excited N2 and plasma-produced radicals,

making other catalysts potentially more interesting than in

thermal catalysis or even showing that the kind of metal is

not so important [57, 58]. In addition, CO2 hydrogenation to

CH3OH or CH4 (methanation) has already demonstrated

promising results (e.g., [59]). However, plasma catalysis is

very complicated and still far from understood. Therefore,

more fundamental research, both computationally and

experimentally (e.g., by in-situ diagnostics) is needed.

In general, it is clear that plasma technology is very

promising for renewable energy storage by gas conversion, but

more fundamental research is needed to exploit the full potential

of this important application. Finally, we will have to

demonstrate that plasma reactors can be sufficiently scaled up,

in order to provide the scale needed to replace processes with a

high CO2 footprint, to find a successful entry in the present

chemical industry.

5.2 Challenge in plasma nanoscience and
nanotechnology (K. Ostrikov, Queensland
University of Technology, Australia)

Over the last decades, nanomaterials and nanoscale materials

processing have emerged among the leading technological

platforms of the century. Diverse forms of nanomaterials

spanning the common states of matter (gas, liquid, solid,

plasma) and extremely wide elemental composition have

firmly become a cornerstone of materials, devices, systems for

applications spanning almost all aspects of human society—from

health and wellbeing to zero-carbon renewable energy, space

exploration, quantum information, and many more. This

explosion of material types, structures and applications

created the strong need for efficient, reliable, and precise

fabrication approaches.

Building upon the truly outstanding decades-long industrial

track record of low-temperature plasma processing in

microelectronics, plasma nanoscience and nanotechnology

have formed a truly unique and competitive niche among the

vast number of existing and emerging materials processing

technologies [60, 61]. Plasmas have been applied for the

synthesis and processing of a broad range of nanomaterials,

with pioneering synthesis of fullerenes and carbon nanotubes.

Since then, nanomaterials of all dimensionalities from zero-

dimensional quantum dots to three-dimensional

nanostructures made of a very broad range of materials

according to their structure (e.g., amorphous, crystalline),

phase (e.g., liquid, colloidal, solid, mixed-phase), state (soft or

hard matter), elemental compositions (e.g., oxides, nitrides,

phosphides, etc.) have been synthesized and applied to

produce functional materials and devices in diverse areas. The

plasma conditions also range from very mild, room-temperature

atmospheric-pressure plasma jets to extreme conditions when

fusion (e.g., plasma focus) or cryogenic plasmas are involved. The

plasma itself has been reduced well into the micrometre domain,

and microplasmas have been successfully utilized to produce

diverse nanomaterials [62]. Under extreme ultra-high-energy-

density conditions, even nanoplasmas can be generated, e.g.,

through the targeted explosion of nanoparticles [63]. The most

common competitive advantages of nanoscale plasma processing

include but by far are not limited to: 1) precision which has been

further advanced through the recent advent of atomic scale

processing including both atomic layer etching and

deposition; 2) energy efficiency achievable through lower-

temperature operation and ability to instantly be switched on

and off, even with nanosecond precision; 3) diverse and unique

plasma-specific effects such as induced by ion energies and fluxes,

electric charging of the surfaces, selective processing of few

atomic layers near the surface, etc. These and many other

benefits of sole or hybrid use of plasmas with other processing

techniques are presented in a very large body of literature over

the last couple of decades.

Looking into the future, plasma nanoscience and

nanotechnology face very important challenges which present

unprecedented opportunities for further advances and even

closer collaborations across diverse fields of research and

applications. These challenges and opportunities are numerous

and span all the areas where traditional nanotechnology

commonly contributes, perhaps too many to even list them in

the available space. Only one set of challenges and opportunities

related to the global effort to achieve zero-carbon-emissions

world is highlighted here. Recently, plasma-enabled scalable

roll-to-roll process of functional nanocarbon production maps

the way to contribute to the re-carbon (e.g., re-use of greenhouse

gas emissions such as CO2 and CH4 gases)—up-carbon (e.g.,

convert greenhouse gas emissions into high-value carbon

nanomaterials)—de-carbon (e.g., reduce carbon footprint of

plasma processing and utilizing the carbon nanomaterials in

clean energy technologies) sustainable and circular-economy

inspired concept [64]. Further insights into the application of

plasma-electrified and plasma-nanoscience-enabled up-

carbonization for low-carbon clean energy applications have

recently been summarized [65]. Overall, the outlook for

plasma nanotechnology is optimistic and the extent of its

broad adoption will depend on the ability of the plasma

community to keep the ever-accelerating pace and

diversification of nanomaterials-related opportunities

presented by our rapidly changing world.

Frontiers in Physics frontiersin.org06

Lu et al. 10.3389/fphy.2022.1040658

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1040658


5.3 Challenges in plasma medicine

5.3.1 Several fundamental questions of plasma
medicine (X. Lu, Huazhong University of Science
and Technology, China)

The research scope of plasma medicine entails the biological

effect of plasma on organisms, which include bacteria, viruses,

tissues, and the human body. The applications of plasma

medicine include cleaning and disinfecting of medical

apparatus and instruments, root canal treatment, promoting

wound healing, cancer treatment, promoting stem cell

differentiation, enhancing transdermal drug delivery, and so

on. However, there are several key questions that need to be

answered before the plasma can be used in clinics. In the

following, some of these questions are discussed.

5.3.1.1 The penetration depth of plasmas in tissue

When a plasma is used for the applications mentioned above,

one key question arises, i.e., how deep can the reactive agents

(RAs) generated by the plasma penetrate into tissue? If the

plasma-induced effects can only penetrate tens of nanometer

thickness like that in common materials processing applications

(e.g., plastics and polymers) where plasmas can only directly

modify the uppermost surface layers, then the applications of

plasma medicine would be very limited.

Fortunately, studies on the penetration depth by using

different models, including water-based models, biological

media models, gel-based models, animal skin models, 3D cell

models, and living tissue models, show that plasma can

effectively deliver H2O2 and nitric oxide derivatives (NOD)

NO2
− and NO3

− into models from tens of micrometers to

millimeters range [3, 66–74].

In addition, the concept of plasma RAs penetration is a

combination of the two major local effects: 1) direct penetration

of plasma-generated RAs, and 2) relay of the effects, cells directly

stimulated by the plasma treatment can also produce RAs, which

may amplify the original RAs effects. The original RAs are

transmitted in tissue by cell-to-cell communication via

paracrine and direct contact signaling. In this way, plasma-

generated RAs indeed cause and relay significant biological

effects within and even beyond the tissues directly exposed to

the plasma. This way, cells not directly exposed to the plasma

could be affected by the plasma treatment through the cell-to-cell

communication; often referred to as the “bystander effect”

[75–79]. The role of cell-to-cell communication in plasma

health care and medicine remains to be elucidated.

Bystander effects originating from the initial cutaneous

plasma RA signals can lead to systemic responses such as

induction of the immune response. RONS and other less-

reactive molecules, are the key plasma RAs involved in the

immune response. RONS are important regulatory molecules

of the immune response. For example, NO can affect the

production of more than 20 cytokines from various cells

involved in the immune system and its responses. RONS also

influence the migration of immune cells and regulate the

expression of chemokine receptors. However, this knowledge

is presently at the infancy stage and coordinated cross-

disciplinary efforts are therefore warranted to advance this

critical area.

5.3.1.2 Effect of electric field

It is widely accepted that biological effects of direct plasma

treatment are due to the combination of both physical and

chemical reactive agents. Lots of work has been devoted to the

roles of chemical reactive agents. The biological effects of

chemical reactive agents, such as O, O (1D), O2
−, O2 (

1Δg), O3,

OH, NO, NO2
−, NO3

−, ONOO−, etc. have been investigated.

On the other hand, there are only very limit studies on the

biological effect of the physical reactive agents of plasma, such as

the effect of electric field. Kushner’s group simulated the electric

field distribution of cells when a plasma jet is used to treat cells

covered by thin layer of liquid [80]. It is found that when the

luminous plasma is in contact with the water layer, electric fields

exceeding tens of kV/cm are induced in cell membranes and up

to 10 kV/cm in the cell nucleus and cytoplasm. The high electric

fields may induce pores within the cell membranes in a process

which is similar to electroporation that increases the permeability

of the barrier to the reactive species, this is actually confirmed by

molecular dynamic simulation from Bogaert’s group [81].

However, to the best of our knowledge, no measurement of

plasma-induced electric fields in tissue has been reported.

Furthermore, when plasma is used to treat intact skin, the

outside stratum corneum layer of the skin, which is made of

“dead” cells and has much different conductivity compared with

the corium layer, will play an important role in the distribution of

the electric field. All these important points need further

investigations.

5.3.1.3 Definition of plasma dose

Different plasma treatment doses are responsible for

different cellular effects, including lethal influences (higher

doses) and non-lethal influences (low doses) on cell behavior.

Unfortunately, there is no clear definition of plasma dose so far.

Some groups refer to the plasma treatment duration as dose [82,

83]. However, the treatment duration is not the essence of the

plasma dose. Besides, the energy deposited into the plasma per

area has been proposed by other researchers [84, 85]. However,

different plasma biological effects have been obtained by using

different plasma sources while under the same power and

treatment time.

Recently, Lu’s group proposed a definition of equivalent total

oxidation potential (ETOP) as a possible plasma dose concept

[86]. The ETOP concept involves three key points, i.e., 1) H: the

equivalent total oxidation potential of the RONS, 2) T: the

equivalent total oxidation potential associated with the

reactive agents unrelated to RONS, such as electric field and
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UV/VUV, and 3) the equivalent total oxidation potential related

synergistic effects between the H and T factors. Due to lack of

mechanistic insights and limited data, significant additional work

is needed and alternative more clinical applied approaches to

determine a dose concept are being explored.

5.3.2 Challenge of low temperature plasma for
decontamination (M. Laroussi, Old Dominion
University, United States)

With the rise in antibiotic resistance and viral-driven

pandemics, biological decontamination has become a

crucial issue affecting public health and safety. Since the

mid-1990s atmospheric pressure LTPs has been proposed

as a technology that can meet the above challenges.

However, the interaction of LTPs with microorganisms

(bacteria, biofilms, viruses, fungi, etc.) is multiphase,

making the process very complex. This is especially the

case for biofilms (bacteria community embedded within an

extracellular polymeric matrix) and in the case of viruses

encased in liquid droplets and aerosols. Because of the

complexity of this interaction a number of scientific

challenges remain unresolved [87]. The main challenges

include the understanding and controlling the various LTPs

physical/chemical processes and elucidating the biological

effects on the target at the subcellular and molecular levels

(effects on lipids, proteins, DNA, etc.). In addition, the

interaction of LTPs with targets gives rise to unpredictable

behaviour that may be difficult to control. This is because the

target itself influences the plasma characteristics depending

on its surface morphology, conductivity, the medium

supporting it (e.g., dry target vs. wet target, tissue, wound,

etc.) [88]. As is the case for other medical applications of LTPs

two of the key challenges that need to be overcome soon are

the evaluation of the dose and the scalability of the process.

There have been many definitions of the plasma dose

(exposure time, power), but a more appropriate definition

would be related to biochemical mechanisms, such as the

ETOP, as mentioned in previous section [86]. The scalability

challenge becomes especially crucial for industrial and

environmental applications such as the decontamination of

crops, food, food packages, water, etc. To conclude, although

our understanding of the plasma-cell interactions has come a

long way in the past few years, a deeper understanding is still

needed if LTPs is to become a widely used technology in the

healthcare arena, including the fight against pathogenic

microorganisms that have been acquiring more and more

resistance against the best available antibiotics [89].

5.3.3 Challenge of plasma for cancer therapy (M.
Keidar, George Washington University,
United States)

Nowadays, cold atmospheric plasma (CAP) application in

cancer therapy consists of two methods: direct killing of cancer

cells by CAP and stimulation of immune responses by inducing

controlled oxidative stress in cancer cells. To this end, the novelty

of CAP lies in its multi-factorial effects that include reactive

oxygen and nitrogen species (ROS/RNS) produced in the plasma,

physical factors like emitted electromagnetic waves and the

electric fields that are formed when plasma impinges on tissue

[2, 90, 91]. One of the unique features of plasmas compared to

other sources of reactivity is the ability to rapidly change the

reactive species production pathways in the CAP, thereby

enabling feedback systems that customize in real time the

reactivity delivered to cancer cells [92]. Plasmas can also self-

organize to form coherent structures that modulate the electric

field, along with the production and delivery of RONS and

charged particles [93]. An intelligent CAP system [94] might

be capable to scan the cellular responses to CAP and modify

discharge conditions in real-time via a feedback mechanism

based on machine learning [95, 96]. A real-time control of

CAP is capable of optimizing the killing effect on cancer cells

or tissues while protecting normal cells or tissues. The adaptive

plasma approach may ultimately lead to a personalized CAP-

based cancer therapeutic that could be adapted for treatment of

other diseases.

CAP treatment of cancer cells and tissuemight be stimulating

or toxic, depending on the treatment conditions. For instance,

both chemical and physical stimuli can lead to sensitization of

cancer cells to chemotherapy [97, 98]. Moreover, a recent study

demonstrated that glioblastoma cell lines U87MG and

A172 could be sensitized to cytotoxicity of temozolomide

(TMZ), a drug used for treatment of brain tumors, by the

electromagnetic emission from a helium discharge tube [99].

To date, numerous studies of CAP in vitro, 2D cell culture

models, and the use of 3D, in-ovo, and animal models that are

very much in alignment with the cutting-edge approaches in

oncology therapeutics are increasingly being reported [86].

Moreover, an initial proof-of-concept clinical case study has

already been performed [100] demonstrating the great

potential of CAP for cancer therapy. CAP may also be used as

an adjunct therapy to standard of care surgery by treating

exposed tumor tissues or the remnants of tumor tissue during

surgery. CAP as an adjunct therapy was tested clinically for the

first time in a patient with stage 4 colon cancer at Baton Rouge

General Medical Center in Baton Rouge, Louisiana, immediately

after surgery to remove the tumor [90]. A phase I safety clinical

trial was completed in 2021 that involved 20 patients to evaluate

the safety of the procedure [101].

Important development in CAP cancer therapy is associated

with increasing evidence that CAP can trigger unique immune

responses and immunogenic cell death [102]. Immunogenic

cancer cell death (ICD) might be elicited in response to

various stimuli including the ones associated with CAP [103].

The importance of various aspects such as immunity,

immunogenicity and antigen presentation, ICD, and

vaccination for CAP cancer treatment has been extensively
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reviewed recently [104]. Understanding of the mechanism

associated with plasma-induced oxidative stress that elicits

ICD is still largely lacking thus warranting further investigation.

A key challenge remains in identification of CAP mechanism

of action on cancer cells. While many papers reported the cause-

and-effect relationship between various individual chemical

species and tumor toxicity, it is still unclear how much the

physical factors might contribute to the cellular responses

[105]. Recall that when cancer cells or tissues are directly

exposed to plasma, they experience both physical and

chemical effectors simultaneously and as such, the observed

biological response could be attributed to the synergistic effect

of the physical and chemical factors.

5.4 Opportunities and challenges for
plasma technology implementation in
cosmetics (E. Robert and J.M. Pouvesle,
University of Orléans, France)

Inherent with a large number of plasmamedicine therapeutic

approaches, the study and applications of the interaction of

plasma with skin tissue is of key importance [106] for safety

reasons, and is timely for the cosmetic technology. This latter

sector is indeed demanding on new physical tools, besides

microneedles, LED light, iontophoresis based devices, likely to

promote cosmetic formula topical application, to control skin

penetration and skin cell stimulation, to reduce the use of

chemical compounds, to implement active substance from

bio-sourced plants or ingredients, for smart packaging, and

much more.

Today, DBD-based devices, e.g., Plabeau G4+ Plasma Skin

Rejuvenation Device [107], have been manufactured for cosmetic

care but, to the best of our knowledge, their mode of action and

safety (e.g., in term of ozone generation) have not been fully

documented in the literature. Nevertheless, cold plasmas can play

a major role associated with their well-known on-demand

delivery of reactive species and transient electric fields, their

impact in pH modulation and their disinfecting properties. A

first critical challenge to implement plasma technology in

cosmetics is to achieve safe, tissue tolerable, user friendly and

pleasant plasma delivery. As everyone’s skin is different,

depending on ethnic origin, age, body area, . . ., a second

challenge is to target personalized cosmetic care. The latter

need might represent an opportunity for plasma technology,

especially when associated with the actual huge effort focused on

plasma-target interaction study and control, and the today’s

development of non-invasive skin characterization based on

optical spectroscopies and imaging which might be coupled

with plasma diagnostics [108].

A unique opportunity for plasma skin treatment is the

transient modulation of skin cutaneous barrier characteristics.

It has been recently demonstrated that plasma can transiently

modulate skin hydrophilicity, skin pH and trans-epidermal water

loss during periods of a few minutes and simultaneously trigger a

critical enhancement of skin cell permeabilization and speed up

cosmetic molecule penetration kinetics in human explants [109,

110]. All these demonstrations open great opportunities for

cosmetic ingredients safe and controlled penetration, and may

allow for the use of lower amount or at least for a more efficient

delivery of chemical substance in skin tissue while keeping their

same benefits for cosmetic care. Direct plasma application has

also been shown to allow for skin cell stimulation, collagen

secretion increase and for its potent disinfecting features.

There the challenge is to determine the right plasma

composition and application time to achieve controlled

stimulation and to preserve skin integrity and skin

microbiome at the base of the skin barrier function.

All these opportunities still require a very demanding

development, as one should consider home cosmetic care as a

daily and combined “treatment”. The daily application of plasma

for any therapeutic application has so far not been so much

investigated as well as combined action of plasma with chemical

ingredients (solution, cream, gel), while combined action of

plasma with chemotherapeutic drug, and with disinfecting

solution is already documented.

Besides skin treatment, plasma can also be envisioned for the

functionalization of cosmetic ingredients, for the efficient and

selective extraction of cosmetic active ingredients from bio

sourced resources, and for innovative packaging development.

While numerous challenges have to be faced, plasma technology

may be in-line with today’s consumer demand for cosmetics

including naturalness, green technology, limitation of the use of

chemicals, and personalized care.

6 Conclusion

Collectively, the individual contributions of this editorial

suggest that LTPs science and technology represents a fertile

and fast developing field of research. LTPs research has

rapidly responded, and continues to respond, to grand

challenges facing humankind such as health and wellbeing,

food and water, energy, resources, sustainability, and climate

change. LTPs are the basis of applications in all of these, and

several other areas, of the world’s economy and society. Each

application contains specific processes that are either enabled

or enhanced by plasma, which in turn requires the

development of the relevant plasma sources and processes

by translating fundamental research to practice. The LTPs

research community is engaging in multidisciplinary research

to speed the rate of translation. The examples of key

application areas of LTPs discussed in this article provide

guidance for the community in how fundamental insights into

the plasma chemistry and physics can be translated to society

benefiting applications. The increasing number, diversity, and
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scale of societal grand challenges emphasize the need for both

fundamental and applied research. There are needs for

advances at both ends of the collaborative spectrum.

Startling advances, even multidisciplinary advances, have

resulted from the efforts of single researchers (and their

research groups). Many of these advances have produced

the foundational knowledge of the field. At the same time,

besting societal grand challenges through translational

research will require the collective and collaborative efforts

of the international multidisciplinary community involved in

fundamental research and applied development.
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