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Non-degenerate rogue waves (RWs) and multiple transitions between RWs and

solitons arising from vector three-wave resonant interaction are studied

analytically and numerically. In contrast to the conventional degenerate

RWs, such non-degenerate RWs consist of two fundamental RWs each with

individual Lax spectral parameter. We show distinctive continuous transitions

from bright (dark) RWs to four-petal RWs to dark (bright) solitons as the relative

frequency between the wave components increases. The underlying

mechanism of such processes is the non-monotonic variation of the energy

exchanges between different components of the waves. We further reveal the

transition dynamics of non-degenerate RWs. Finally, we confirm numerically

the robustness of the transition dynamics in the presence of spontaneous

modulation instability induced by white noise. Our results provide insights into

the RW formation and the multiple transitions in systems with three-wave

resonant interaction, and may offer the possibility of experimental observations

in multi-component resonant processes.
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1 Introduction

Three-wave resonant interaction (3WRI) enjoys a prominent status in various

branches of nonlinear science [1–7]. It involves the simplest and lowest-order wave-

wave coupling in weakly nonlinear and dispersive media [8–15]. The 3WRI has been

extensively studied alongside with the development of nonlinear optics, since it applies to

laser-plasma interaction [2], group-velocity pulse control [14, 16–19], ultrashort pulse

train generation [7, 20], and frequency conversion [21].

The mathematical model that describes such interaction is commonly based on a

coupled set of evolution equations [1, 22]. An integrable version of the latter was

established in the early 1970s [1]. Just as the celebrated nonlinear Schrödinger

equation (NLSE), an important point is that the integrable 3WRI system admits

OPEN ACCESS

EDITED BY

Yiqi Zhang,
Xi’an Jiaotong University, China

REVIEWED BY

Dumitru Mihalache,
Horia Hulubei National Institute for
Research and Development in Physics
and Nuclear Engineering (IFIN-HH),
Romania
Juanfen Wang,
Taiyuan University of Technology, China

*CORRESPONDENCE

Chong Liu,
chongliu@nwu.edu.cn

SPECIALTY SECTION

This article was submitted to Optics and
Photonics,
a section of the journal
Frontiers in Physics

RECEIVED 13 September 2022
ACCEPTED 10 October 2022
PUBLISHED 28 October 2022

CITATION

Wu Y-H, Liu C, Yang Z-Y and Yang W-L
(2022), Non-degenerate rogue waves
and multiple transitions in systems of
three-wave resonant interaction.
Front. Phys. 10:1043053.
doi: 10.3389/fphy.2022.1043053

COPYRIGHT

© 2022 Wu, Liu, Yang and Yang. This is
an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 28 October 2022
DOI 10.3389/fphy.2022.1043053

https://www.frontiersin.org/articles/10.3389/fphy.2022.1043053/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1043053/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1043053/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.1043053/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2022.1043053&domain=pdf&date_stamp=2022-10-28
mailto:chongliu@nwu.edu.cn
https://doi.org/10.3389/fphy.2022.1043053
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2022.1043053


various exact localized wave solutions in analytic form. These

contain the resonant solitons [1, 13–15, 20] as well as the

“breathing waves” such as breathers [23, 24] and rogue waves

(RWs) [23–28]. Physically, these localized waves correspond to

different nonlinear excitations [29, 30]. Recently, significant

progress has been made on the 3WRI solitons and RWs. In

particular, the 3WRI velocity-locked solitons have been

confirmed in both theory and experiment [14, 15], and the

existence of fundamental and high-dimensional RWs has been

predicted in theory recently [25–27]. However, just as the scalar

NLSE case [31–33], all existing 3WRI RWs are the conventional

degenerate solutions. Namely, the RWs correspond to an

identical spectral parameter of the associated Lax pair [25, 26,

28]. Recently, a new type of RWs—nondegenerate RWs—has

been demonstrated in the coupled NLSEs accounting for the

dynamics of vector waves in weak resonant processes [34]. Such

non-degenerate RWs consist of different fundamental RWs each

with individual Lax spectral parameter. This possibility arises

from the internal integrable structure of the coupled NLSEs

where the Lax pair is a multidimensional matrix. Just like the

coupled NLSEs, the 3WRI equations also admit

multidimensional (3 × 3) Lax matrix. Unlike the coupled

NLSEs, the 3WRI equations are the fundamental model

accounting for the dynamics of vector waves in strong

resonant processes. It is therefore relevant to find out whether

nondegenerate RWs exist in the 3WRI system.

On the other hand, as two different types of localized

excitations, transitions between the 3WRI RWs and solitons

remain completely unexplored. Transitions between different

types of nonlinear waves in both the scalar and vector

nonlinear systems have been a subject of extensive

research. Recent studies have demonstrated that the

transitions between RWs (or breathers) and solitons only

exhibit a simple transition process—from bright (dark)

RWs to bright (dark) solitons [35–37]. Namely, all these

results are limited to a relatively simple single transition. It

has been shown that such single transition describes a

continuous process of RW elongation, which corresponds

to the monotonic decay of modulation instability (MI) gain

[36, 37].

In this paper, we demonstrate the existence of

nondegenerate RWs in the 3WRI system, and reveal

multiple transitions which are different from the single

transition reported before [35–37]. The nondegenerate RWs

consist of two fundamental RWs each with individual Lax

spectral parameter. We present the existence diagram. We

show that the multiple transitions are closely connected with

the inherent energy exchange between different wave

components of the 3WRI system. The latter is forbidden in

the coupled NLSE case [38]. The robustness of all transition

dynamics in the presence of spontaneous MI induced by white

noise is confirm numerically.

2 The three-wave resonant
interaction system and rogue wave
solutions

The 3WRI equations describing the propagation of three

coupled waves in a weakly dispersive nonlinear medium [1, 8, 9],

can be written as, in dimensionless form,

u1t + c1u1z � u2u
p
3,

u2t + c2u2z � −u1u3,
u3z � c2 − c1( )up

1u2,
(1)

where uj(t, z), j = 1, 2, 3 are the slowly varying electric field

envelopes of the three waves. If z is the evolution variable, then

this system is the well-known 3WRI equation [1] where the three

characteristic velocities are 1/c1, 1/c2, and 0; otherwise, if the

evolution variable is t, this system models the nonlocal

interaction of two waves, that is the transformation u3 � (c2 −
c1)∫ up1u2dz in system (1) [39, 40]. In optics, the 3WRI Eq. 1

describes optical pulses with second-harmonic generation in a

KTP crystal [14–16].

Due to the resonant conditions for the frequencies and

momenta [8], the initial plane-wave background of Eq. 1 can

be expressed as

u 0[ ]
1 � a1 exp i k1t + qz( )[ ],

u 0[ ]
2 � a2 exp i k2t − qz( )[ ],

u 0[ ]
3 � ia3 exp i k2 − k1( )t − 2qz[ ], (2)

where

k1 � −c1q − a22δ, k2 � c2q − a21δ, a3 � a1a2δ, δ � c2 − c1
2q

,

with aj, kj, and q being the amplitudes, wavenumbers, and relative

frequency of the vector plane-wave fields. The model (1) is

integrable [1]. Namely, it admits various exact solutions. By

solving the associated Lax pair (13), exact solutions describing

localized nonlinear wave on the vector backgrounds (2) can be

constructed by the Darboux transformation method [23]. The

details are presented in Appendix. The first-order RW solutions

u[1]j of Eq. 1 are given by

u 1[ ]
1 � 1 + 2i λp − λ( )Ψp

11Ψ21

|Ψ11|2 + a21|Ψ21|2 + a22|Ψ31|2[ ]u 0[ ]
1 ,

u 1[ ]
2 � 1 + 2i λp − λ( )Ψp

11Ψ31

|Ψ11|2 + a21|Ψ21|2 + a22|Ψ31|2[ ]u 0[ ]
2 , (3)

u 1[ ]
3 � 1 + 4q λp − λ( )Ψp

21Ψ31

|Ψ11|2 + a21|Ψ21|2 + a22|Ψ31|2[ ]u 0[ ]
3 .

Here, the expressions of Ψ11, Ψ21 and Ψ31 as shown in the

Supplementary Appendix S7.1. These solutions depend on the

free parameters Aj and the spectral parameter λ. Solutions (3)

describe RWs when one of Aj vanishes; otherwise, they

describe the interaction between RWs and breathers when

Aj ≠ 0.
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3 Non-degenerate rogue waves and
transition dynamics

3.1 Spectral parameter analysis and
characteristics of rogue waves

The spectral parameter λ in Eq. 3 is one of the complex roots

of the discriminant condition:

iλM1 − 9N1( )2 + 4 λ2 + 3M1( ) M2
1 − 3iλN1( ) � 0, (4)

where

M1 � λ2 + q2 + a21 + a22, (5)
N1 � i λ3 − λq2 + a21 λ − q( ) + a22 λ + q( )[ ]. (6)

For simplicity, we set here a1 = a2 = a. The spectral parameter

λ is given explicitly by

λ± � ±
i

4q

����−Δ1

√ − ���
Δ2

√( ), |q|< a/2,
λ± � ±

1
4q

���
Δ1

√ + i
���
Δ2

√[ ], |q|> a/2,
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (7)

with

Δ1 � 2q
���������
2a2 + q2( )3√

− η2 − 18q2 a2 − q2( ),
Δ2 � 2q

���������
2a2 + q2( )3√

+ η2 + 18q2 a2 − q2( ),
and η = a2 − 4q2. The special case of |q| = a/2 has to be neglected

to avoid singular solutions in Eq. 3.

We stress that, the spectral parameter λ plays a key role

in the dynamics of localized waves. Namely, the imaginary

part of λ determines the existence condition of the waves,

while the real part determines the wave structures. In

particular, the sign of the imaginary part has no effect

on the waveform; while the sign of the real part induces

different waveforms.

Eq. 7 shows the variety of the spectral parameter λ.

Namely, for any given initial parameters we have two

spectral parameters λ+ and λ−. Such variety provides

possibilities for new RW formation.

Figure 1 shows the evolution of the spectral parameter λ

verse the relative frequency q. In the region |q| < a/2, both λ+
and λ− are purely imaginary (λ+r = λ−r = 0), and we have

λ+i = −λ−i. Thus, RWs in this region are degenerate for any

given a, q. Namely, u[1]j (λ+) � u[1]j (λ−) when |q| < a/2. In

contrast, in the region |q| > a/2, λ+ and λ− are complex, and

λ+ = −λ−. This makes it possible to have two different RWs in

the same parameter range, which is absent in previous results

[25, 26]. Such two RWs are non-degenerate.

Figure 2 shows the amplitude distributions of RWs in the

degenerate and non-degenerate regions, respectively. As shown

in Figure 2A, RWs with λ+ and λ− in the degenerate region |q| < a/

2 are identical, namely, |u[1]j (λ+)| � |u[1]j (λ−)|. Moreover, |u[1]1 |
and |u[1]2 | feature standard bright RWs, while |u[1]3 | exhibits dark
structure.

However, in the non-degenerate region, |u[1]j (λ+)| and
|u[1]j (λ−)| are different not only in velocity but also in

amplitude structure, as shown in Figure 2B. Specifically,

|u[1]j (λ+)| exhibits vector four-petal-bright-bright RWs;

while |u[1]j (λ−)| shows vector bright-four-petal-bright RWs.

Another remarkable result is that such RWs can exhibit

the soliton structure when q is large. As shown in Figure 3, the

vector RWs (Figure 3A) transform themselves to the vector

solitons (Figure 3B) when q changes from 0.4 to 2. A

comparison between the RWs (shown in Figure 2) and the

solitons (shown in Figure 3) reveals a distinct type of

transition between the bright (dark) RWs and the dark

(bright) solitons. Examples are shown in the case of

u[1]1,3(λ+) and u[1]2,3(λ−). This transition dynamics is different

from the conventional transitions between bright (dark) RWs

and bright (dark) solitons reported before [35–37].

3.2 Multiple transition of fundamental
rogue waves

To better understand the transitions shown above, we

focus our attention on u[1]1 (λ+) with different frequencies.

Figure 4 highlights the transition characteristics with the

parameter variation from q = 0 to q = 2. The extremum of

the amplitude profiles (at z = −2.35) versus the frequency are

shown in Figure 4A. The maximum amplitude corresponds to

the red and yellow curves, and the minimum amplitude is

represented by the blue solid and dashed curves. The labels in

Figure 4A correspond to the amplitude distributions of RWs

in Figure 4B.

FIGURE 1
Evolution of the spectral parameter λ versus the relative
frequency q. The gray and cyan areas correspond to the
degenerate and non-degenerate regions, respectively. The
parameters are a1 = a2 = a = 1.
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As can be seen, the structure of RWs is at first compressed

then elongated with a continuously decreasing amplitude

|u[1]1 (λ+)| as q increases. Finally, the RW is transformed into a

soliton-like wave. The corresponding localization increases at

first and then decreases.

Clearly, this transition process (a bright RW to a dark

soliton) contains multiple wave states, namely bright RW

[Figure 4 (b1)], four-petal RW [Figure 4 (b4)] and dark

soliton [Figure 4 (b6)]. This stands in sharp contrast to the

simple single transition reported before [35–37].

3.3 Non-degenerate second-order rogue
waves

As shown in Section 3.1, for any given parameters in the non-

degenerate region, there exist two different RWs. Let us consider

whether such two RWs can coexist in the same plane wave. To

answer this question, we proceed to construct the second-order RW

solution in the non-degenerate region. The details are given by

Supplementary Appendix S7.2. The solution is obtained by using the

second-order iteration of the Darboux transformation with two

FIGURE 2
Amplitude distributions of RWs |u[1]

j (λ+)|, |u[1]
j (λ−)| in the degenerate (A) and non-degenerate (B) regions. (A) RWs with q = 0.4 and

(B) RWs with q = 0.6. The other parameters are a1 = a2 = 1, c1 = 1, c2 = 2, A1 = A2 = 1, and A3 = 0. The spectral parameters λ± are calculated
by Eq. 7.
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spectral parameters {λ+, λ−}. Each spectral parameter corresponds to

a RW. Thus, this solution describes the dynamics of the non-

degenerate second-order RW. This higher-order RW solution is

different from the degenerate multi-RWs presented before [25, 26].

Figure 5 shows the characteristics of non-degenerate

second-order RWs with different q. To better analyze the

variation of each RW structure, we have separated the RWs by

the relative separations in both z and t, i.e., z1 = z − 1, t1 = t + 1,

z2 = z + 1, t2 = t − 1. As can be seen from the figure, the second-

order RWs (Figures 5A,B) have two different fundamental

RWs. In particular, such two RWs can both transform into two

solitons (Figure 5C). Interestingly, in either u[2]1 or u[2]2

component, two different types of transitions appear

simultaneously in the same wave component. One is the

multiple transition from bright RW to four-petal RW then

to dark soliton; another is the single transition from bright

RW to bright soliton.

4 Mechanism explanation

In previous results, the mechanism of single state transitions

is explained well by the MI analysis [35–37]. To better

understand the multiple transition, we use here the

combination analysis of the MI and the energy exchange

between different wave components. The latter is an

important physical quantity in 3WRI system that can be

monitored in experiments. Such combination provides a solid

interpretation for the transition mechanism.

We first pay attention to the standard modulation (linear)

stability analysis. Adding a small-amplitude Fourier modes to the

plane-wave solutions, we obtain

uj � u 0[ ]
j 1 + fje

iΩ t−μx( ) + gje
−iΩ t−μpx( ){ }, (8)

where fj and gj are small amplitudes, and the propagation

parameters Ω and μ are assumed to be real and complex,

respectively. A substitution of these perturbed plane-wave

solutions into Eq. 1, followed by linearization yields the

dispersion relation

a21
μc1 − 1

+ a22
μc2 − 1

( )δμ − c1 − c2
δ

[ ]2

+ 4μa22 c1 − c2( )
μc1 − 1

− Ω2μ2 � 0.

(9)
Considering the condition of RW formation, namely, Ω→ 0

[29, 30], we have the solutions of μ from Eq. 9 as follows

μ1 � μr + iμi1, μ2 � μr + iμi2, (10)

where μr denotes the real part, while μi1, μi2 are the imaginary

parts. For simplicity, we set c1 = 1 and c2 = 2. Their explicit

expressions are given by

μr � ϱ1 ϖ + 3a2
���
aη

√[ ], |q|< a/2,
ϱ1 ϖ + 2aqℓ1[ ], |q|> a/2,{

FIGURE 3
Amplitude distributions of solitons |u[1]

j (λ+)|, |u[1]
j (λ−)| in the non-degenerate regions of q = 2. (A) Solitons with λ+ and (B) solitons with λ−. Other

parameters are the same as in Figure 2.
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and

μi1 �
± ϱ1 2aq

������
Γ2 − Γ1

√[ ], |q|< a/2,
± ϱ1 3a2

����−aη√ − 2aqℓ2[ ], |q|> a/2,⎧⎨⎩
μi2 �

± ϱ1 2aq
������
Γ1 + Γ2

√[ ], |q|< a/2,
± ϱ1 3a2

����−aη√ + 2aqℓ2[ ], |q|> a/2,⎧⎨⎩
where ϖ = 3η 2 + 18a 2q 2 , ϱ1 � [4η2+ 5a4 + 16a2 q2]−1, Γ1 �
(a2 − 40q2) ���

aη
√

, Γ2 � η3 + 3a2q2(17a2 − 32q2), and ℓ1 �
[12

�������
Γ22 − Γ21

√
− Γ2]1/2, ℓ2 � [12

�������
Γ22 − Γ21

√
+ Γ2]1/2.

MI is described by the gain (growth rate). The latter is given

by G1,2 = |Im{μ1,2}| ≠ 0. It means that small-amplitude

perturbations suffer MI and grow exponentially as exp (Gx) at

the expense of pump waves.

Note that there are two different forms of the MI gain,

namely G � |μi1| and G � |μi2|. The existence condition of MI

is consistent with the imaginary part of spectral parameter

given by Eq. 7. As MI is regarded as the origin of RWs [29,

30], the two MI gains correspond to two different families

of RWs.

On the other hand, the effective energy exchanges take place

between the waves in different components. The effective energy

has the form [25, 26].

Ej λ±( ) � 1
2 ∫+∞

−∞
|u 1[ ]

j λ±( )|2 − |u 0[ ]
j |2( )dt. (11)

For RWs with different spectral parameters λ±, we have

Ej(λ±). In each case, one can verify that the effective energy

obeys the relation E1 = E3 = −2E2.

Figure 6A shows the variations of both the MI gain G � |μi1|,
G � |μi2| versus q. As can be seen, both two MI gains exhibit non-

monotonic variation. Specifically, as q increases, MI gain increases

first and reaches its peak at a certain q = qmax. It is given by z|μi|/zq =

0.MI gain then decreases gradually and approaches to zerowhen q is

relatively large. This process corresponds to the transition between

RWs and solitons reported above.

However, one should note that the two MI gains admit

different maximums. For G � |μi1|, we obtain qmax = 0.46; for

G � |μi2|, we obtain qmax = 0.6. This indicates that the variations

of theMI gains are asynchronous. To better understand the property

FIGURE 4
Characteristics of transitions on the certain range of frequency in the wave field |u[1]

1 (λ+)|.(A) Variation in the extremumof the amplitude profiles
of RWs versus the frequency at z = −2.35, including the maximum |u[1]

1max | (red and yellow curves) and the minimum |u[1]
1min| (blue solid and dashed

curves). There is only onemaximum in the range q ∈ (0.46, 0.53) (the gray area). Here the insert shows an enlargement of the gray area. Note that the
amplitude profiles of RWs at z = −2.35 in this region have no minimum. As q ≥ 0.53, there are two maximums and one minimum. (B) Amplitude
distributions |u[1]

1 | for (b1) q = 0.1, (b2) q = 0.4, (b3) q = 0.46, (b4) q = 0.53, (b5) q = 0.6, and (b6) q = 2.5. The insert curves in upper left correspond to
the amplitude profiles at z = −2.35. Other parameters are the same as Figure 2.
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of MI, we further consider the characteristics of the effective energy

of RWs.

Figure 6B shows the variations of the effective energy Ej (λ±)

versus q. All effective energies exhibit non-monotonic variation. For

u1 and u3, the effective energies E1 (λ±) and E3 (λ±) increase first and

reach the maximums. They then decrease and approach to zero.

However, the reverse process proceeds for E2 (λ±) in u2 wave

component. This comes from the conservation law E1 + E2 = E2
+E3. A comparison betweenMI gains and the effective energy shows

that the extreme point of Ej (λ+) is completely consistent with that of

G � |μi1|; the extreme point of Ej (λ−) coincides with that of

G � |μi2|. Thus, the multiple transition comes from the inherent

non-monotonic variation of the effective energy in 3WRI system.

5 Numerical simulations

Finally, we discussed the robustness of the RWs and their

transition dynamics. This can be done numerically by adding

random noise to the initial states. Such perturbed initial states

read

up � uj t, z � z0( ) 1 +m random −1, 1[ ]{ }, (12)

where m is a small number denoting the amplitude of noise, uj
(t, z = z0) denotes the exact vector solution at a certain

distance z0.

Figure 7 shows the numerical results of the fundamental

RWs (a) and the transformed solitons (b). We take the initial

states from the exact solutions u[1]j (λ+)(t, z0 � −10) (shown in

Figures 2A, 3A) perturbed by the noise amplitude m = 0.001.

As can be seen from the figures, both RWs and solitons can

suffer the random noises and be well reproduced. The

following chaotic states appear as the result of the

spontaneous MI.

Figure 8 shows the numerical results of the non-degenerate

RWs (a) and the transformed solitons (b). The corresponding

initial states are extracted from exact solutions

u[2]j (λ+; λ−)(t, z0 � −15) (shown in Figures 5A,C) perturbed

by the noise amplitude m = 0.0001. Despite being perturbed

by random noises, the non-degenerate RWs and solitons are well

reproduced. This result confirms the robustness of the non-

degenerate RWs and solitons in 3WRI system.

FIGURE 5
Amplitude distributions of non-degenerate second-order RWs, |u[2]

j (λ+; λ−)|with (A) q = 0.51, (B) q = 0.6, and (C) q = 2. From (A) to (C), one can
see clearly the transitions between non-degenerate RWs and solitons. The exact second-order solutions as shown in the Supplementary Appendix
S7.2, other parameters are the same as Figure 2.
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FIGURE 6
Non-monotonic variation of the MI gain (A) and effective energy (B) versus q, which can be obtained by Eqs 9, 11. Here the energy Ej (λ+) trend
consistent with MI gain G = |μi1|, and the extreme point corresponds to the most localized structures RWs for q = 0.46. Another case of MI gain G =
|μi2| corresponding to the energy changes Ej (λ−) that reaches an extreme at q = 0.6.

FIGURE 7
Numerical evolution of the transition between the fundamental RW (A) with q = 0.4 and soliton (B) with q = 2. The initial states are extracted
from the exact solutions u[1]

j (λ+)(t, z0 � −10) (shown in Figures 2A, 3A) perturbed by the noise amplitude m = 0.001.
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6 Conclusion

We demonstrated the existence, transition, formation

mechanism, and stability of the nondegenerate RWs in

the 3WRI system, which have not been reported before.

The nondegenerate RWs consist of two fundamental

RWs each with individual Lax spectral parameter. We

present the existence diagram. We show that the multiple

transitions are closely connected with the inherent energy

exchange between different wave components of the 3WRI

system, which is forbidden in the coupled NLSE systems. As

the 3WRI equations are the fundamental model accounting

for the dynamics of vector waves in strong resonant

processes, our results could provide insights into the

3WRI RW formation, and may offer the possibility of

experimental observations in multi-component resonant

systems. On the other hand, the RW is just the limiting

case of a breather with infinite period. Just like recent

advances in nondegenerate breathers in coupled NLSEs

[42, 43], we expect that 3WRI nondegenerate breathers

will play a key role in understanding wave dynamics in

strong resonant processes.
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