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Respiratory rate is an indicator of a broilers’ stress and health status, thus, it is

essential to detect respiratory rate contactless and stress-freely. This study

proposed an estimation method of broiler respiratory rate by deep learning and

machine vision. Experiments were performed at New Hope (Shandong

Province, P. R. China) and Wen’s group (Guangdong Province, P. R. China),

and a total of 300min of video data were collected. By separating video frames,

a data set of 3,000 images was made, and two semantic segmentation models

were trained. The single-channel Euler video magnification algorithm was used

to amplify the belly fluctuation of the broiler, which saved 55% operation time

compared with the traditional Eulerian video magnification algorithm. The

contour features significantly related to respiration were used to obtain the

signals that could estimate broilers’ respiratory rate. Detrending and band-pass

filtering eliminated the influence of broiler posture conversion and motion on

the signal. The mean absolute error, root mean square error, average accuracy

of the proposed respiratory rate estimation technique for broilers were 3.72%,

16.92%, and 92.19%, respectively.
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1 Introduction

According to the United Nations (UN) prediction, the global population will exceed

nine billion by 2050, thus, food security has become a challenging factor [1,2].

Alexandratos and Bruinsma [3] estimated that the demand for animal-derived food

could increase by 70% between 2005 and 2050 and that poultry meat production is crucial.

Additionally, meat consumption is notably dominant, especially in countries with

significant Gross Domestic Product (GDP) growth. Broilers are an essential source of
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protein, and according to the prediction, the demand for broilers

will further increase in the next decade [4].

Regarding animal welfare and productivity (economics)

in broilers production systems, some aspects still need

attention. In particular, broilers’ respiratory rate (RR) is

related to health and feeding environment [5]. The RR of

broilers provides farmers with the basis for diagnosing

respiratory-related diseases and stress [6]. In the current

commercial broiler husbandry, farmers judge the disease

and stress of broilers by manually observing the RR and

listening to their abnormal respiratory sounds. However,

this is laborious, objective, and has low accuracy.

Therefore, an effective accurate and automatic estimation

of broiler RR is of significant importance in reducing diseases

and improving animal welfare.

Several studies have reported on the detection of RR in

animals. Xie et al. [7] developed a method by computer vision

to detect the RR of pigs. This method extracted the maximum

curvature radius of the pig’s back contour in each frame and

constructed the respiratory waveform according to the extracted

curvature radius. The average relative error between the method

and manual count results was 2.28%. Stewart et al. [8] reported

on detecting cows RR by infrared thermal imaging technology. A

thermal infrared camera was used to monitor the air temperature

near the nostrils of cattle and detect breathing. Zhao et al. [9]

applied the Horn-Schunck optical flow method to calculate the

periodic change of optical flow direction of abdominal

fluctuation of dairy cows, which obtained their RR at a

detection accuracy of 95.68%. Song et al. [10] proposed a

Lucas Kanade sparse optical flow algorithm to calculate the

optical flow of cow plaque boundary. According to the change

law of average optical flow of plaque boundary in video sequence

frame, the detection of cow respiratory behavior was obtained,

and the average accuracy was 98.58%. Presently, RR monitoring

in animals focuses on those of larger size, such as pigs and dairy

cows. Due to poultry, such as broilers, being smaller, contactless

estimation of RR in poultry has not been studied.

Due to a large number of broilers in the broiler house, it is

unfeasible to detect broiler RR using the equipment mentioned

before, including radar and depth camera, for their high cost. In

contrast, computer vision technology is contactless and stress-

free for broilers. It is an ideal means to realize non-contact

detection of broiler RR. At present, some scholars use machine

vision and artificial intelligence to realize chicken disease early

warning and recognition. Okinda et al. [11] used the feature

variables which were extracted based on 2D posture shape

descriptors (circle variance, elongation, convexity, complexity,

and eccentricity) and mobility feature (walk speed) achieved the

early diagnosis of Newcastle disease virus infection in broiler

chickens. Wang et al. [12] realized the recognition and

classification of abnormal feces by using deep learning and

machine vision, so as to achieve the purpose of monitoring

digestive diseases of broilers. However, presently, no research

has reported on the use of computer vision technology to detect

the RR of broilers.

In this context, this paper presents a novel approach to

broiler RR estimation based on semantic segmentation,

contour feature, and video magnification. The main objective

of this study is to estimate the RR of broilers without contact and

stress, and achieve the estimation with movement and multiple

postures of broilers in actual farm environment. This introduced

technique will significantly improve automation and could be

considered a new tool in the field of precision livestock farming to

improve animal welfare and production efficiency.

2 Materials and methods

2.1 Experiment design and data collection

Two experiments were conducted in this study. At NewHope

broiler farm, Weifang, Shandong Province, P. R. China, in

October 2019, and at Wen’s research farm, Yunfu,

Guangdong Province, P. R. China in September 2021. A total

of 30 15 to 35-day-old Arbor Acres broilers were used in the

experiment. The farmer randomly selected the birds with average

body shape and good health. The temperature, humidity, and

light setting were kept up with the broiler production during the

experiment. With the increase of broiler age, the internal

temperature decreased from 28°C to 22°C, and the humidity

decreased between 80% and 50%, gradually. The floor was litter

(50% sphagnum and 50% wood shavings). The illumination was

DC adjustable light in the breeding house, and the light intensity

varied between 30 and 50lx.

An experimental broiler pen of 1 m (length) by 1 m (width)

by 0.5 m (height) was built with a carton board (the color was

close to the fence in the broiler house), and the pen hosted one

FIGURE 1
Experimental arrangement schematic (1. Computer. 2.
Camera).
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broiler at a time. The pens were set up in the broiler house (in the

aisles of the broiler house) and in this way the experimental

conditions were kept consistent with the production. Before the

broilers were brought into the pen, a camera (SARGO A8,

1,920 × 1,080) was pre-installed in the front and center of the

pen 0.2 m away from the ground shown in Figure 1. The camera

was connected to an Intel Core i5-4,500 u CPU, 4 GHz, 16 GB

physical memory Microsoft Windows 10 PC via USB port and

the SARGO software. The data was stored to a 500 GB drive

(SSD) installed in the PC for subsequent analysis.

The experimental broilers were placed in the chamber, one at

a time. When the birds were quiet (no stress), the computer-

controlled camera began to record the video for 10 min for every

broiler. In total, 200 min of videos were captured in New Hope

farm and 100 min in Wen’s research farm.

The proposed methods mainly include image segmentation,

feature extraction, posture conversion and motion influence

elimination, and RR estimation. To improve the algorithm’s

accuracy, a method of video motion amplification before

feature extraction was proposed.

2.2 Data labeling

An expert visual manual count was used as a gold standard

for RR measurement. An experienced veterinarian manually

labelled the captured videos and the broiler was considered

breathed once as the belly fluctuated once. The respiratory

times were recorded every 10 s, then multiplied by 6, the RR

of broilers (times/minute). Each 1-min video had six values (RR).

2.3 Image preprocessing and semantic
segmentation

The conditions during the data acquisition environment

were consistent with the actual farm environment. However,

the video background was complex and could not be processed

directly. Therefore, it was necessary to preprocess the image to

remove the background.

2.4 Image preprocessing

To obtain the image object, a variety of traditional image

processing methods were tested, including the OTSU [13]

algorithm, watershed algorithm [14], and edge detection

algorithm [15]. However, they were not satisfactory enough to

remove the background. Moreover, these methods had poor

performance on the images due to the interferents such as

light, broiler feathers, and dust in the broiler house, leading to

wrong or missing segmentation.

2.5 Semantic segmentation

In this study, two semantic segmentation algorithms based

on deep learning were used to locate and segment broiler

individuals, i.e., the Mask R-CNN [16] and YOLAC [17].

2.5.1 Mask R-CNN
Mask R-CNN follows the framework of Fast R-CNN and

adds a fully connected segmentation subnet after the primary

feature network to realize the new function of segmentation in

addition to classification and regression. It is a two-stage

framework [16]. In the first stage, the suggestion box is

scanned and generated, and in the second stage, the

suggestion box is classified, and the boundary box and mask

are formed [16]. Figure 2A shows the frame diagram of Mask

R-CNN. The convolution layer down sampling is realized

through the cross-layer connection of the residual network

(RESNET) [16]. Combined with the feature pyramid network

(FPN), the feature maps obtained from different sampling layers

are fused and transmitted to the next operation [16].

The regional recommendation network (RPN) obtains

several anchor boxes and adjusts them to fit the target better.

If multiple anchor boxes overlap, the optimal anchor box is

selected for transmission according to the score for the prospect,

and the ROI alignment improved by ROI pooling is given for

pooling [16]. Finally, boundary box and mask prediction are

realized through the fully connected network [16].

2.5.2 YOLACT
YOLACT is a one-stage instance segmentation method that

adds mask branches to the target detection network. However,

unlike the standard serial way, this method abandons the step of

feature location. It divides the instance segmentation task into

two parallel subtasks to improve efficiency: prototype mask and

target detection. The former uses the network results of the

complete convolutional network (FCN) to generate a series of

prototype masks that can cover the whole image [17], while the

latter predicts the masking coefficient based on the detection

branch to obtain the coordinate position of the instance in the

image and non-maximum suppression (NMS) screening [17].

The final prediction results are obtained by the linear

combination of the two branches.

Figure 2B shows the frame diagram of YOACT. Similar to

other networks, this method also performs feature extraction

through the backbone network and FPN. One part of the multi-

layer FPN is used to generate the prototype mask in the prototype

mask branch, and the other part is used to calculate the

information such as detection and positioning and mask

coefficient through the prediction head network, and then

screened through NMS [17]. The processing result is

combined with the generated prototype mask, and the final

result is obtained.
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2.5.3 Semantic segmentation model
development

The images were labeled by the open-source image

annotation software Labelme. A data set containing

3,000 groups of data was obtained, in which the labeled data

were randomly divided into the training set, verification set, and

test set, according to 8:1:1.

In this study, Mask R-CNN used a resnet101 network

structure. The learning rate of the first 20 epochs was 0.001,

and that of the last 40 epochs was 0.0001. There were

1,000 iterations per epoch, 60,000 iterations in total.

YOACT used resnet50 network structure, trained

60,000 iterations, and the initial learning rate was 0.001. It

was attenuated in the 20,000 and 40,000 iterations,

respectively, and the attenuation was 10% of the current

learning rate.

2.6 Video magnification algorithm

Because broilers are small, their belly fluctuates slightly

during breathing. To improve the detection accuracy of

broilers’ RR, a video magnification algorithm was used to

amplify the micromotion of broilers. The Euler video

magnification (EVM) algorithm was proposed by Wu et al.

[18]. The EVM method mainly includes color space

conversion, spatial decomposition, time-domain filtering,

linear amplification, and video reconstruction. Spatial

decomposition is a multi-spatial resolution image that

decomposes the video sequence through the image pyramid.

Time-domain filtering filters the images of different scales

obtained by spatial decomposition in the frequency domain to

obtain the frequency band of interest. Linear amplification

linearly amplifies the bandpass filtered signal and adds it to

the original signal. Video reconstruction is used to pyramid

reconstruct the processed multi-scale image to obtain the

enlarged image and then rebuild the video. For example, if a

one-dimensional (1D) signal is in the following form[19] as in

Eq. 1.

I(x, t) � f(x + δ(t)) (1)
Where I(x, t) is the value of position x in the signal at time t and

δ(t) is the displacement function.

If the first-order Taylor series expansion can express the

signal, it can be approximately described as by Eq. 2.

I(x, t) ≈ f(s) + δ(t) zf(x)
zx

(2)

When bandpass filtering is performed on all positions x in

signal I(x, t), and B(x, t) represents the filtered signal, assuming

that the translation movement δ(t) is in the band of the bandpass
filter, then the filtered signal can be determined by Eq. 3.

B(x, t) � δ(t) zf(x)
zx

(3)

FIGURE 2
Semantic segmentation models structure. (A) Mask R-CNN framework diagram. (B) YOLACT framework diagram.
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Then the signal is amplified by α and added back to I(x, t)
(Eq. 4):

~I(x, t) � I(x, t) + αB(x, t) (4)

Adding Eqs 1–3 gives Eq. 5.

~I(x, t) ≈ f(x) + (1 + α)δ(t) zf(x)
zx

(5)

Assuming that the amplified motion (1 + α)δ(t) also satisfies
the first-order Taylor series, the band-pass filter in the time

domain can be connected with motion amplification. The

processed output can be obtained by Eq. 6.

~I(x, t) ≈ f(x + (1 + α)δ(t)) (6)

Thus, the band of interest is extracted by a bandpass filter,

multiplied by a specific magnification factor, and added back to

the original signal to achieve motion amplification. The

magnification factor α had a limiting condition (Eq. 7).

(1 + α)δ(t)< λ

8
(7)

Where λ was the spatial wavelength of the signal.

The EVM algorithm is based on the YIQ color space of the

image. Before processing, the video image should be converted

from RGB space to YIQ space and then back to RGB space. In the

process of magnification, however, the information of three-color

channels is processed simultaneously, which is time-consuming.

It was found that the abdominal fluctuation of broilers in the

video is mainly the change of pixel brightness value. Therefore,

the RR estimate did not demand the image’s color information to

improve the processing speed, so the image was transferred from

RGB to grayscale. The conversion speed was considerably

enhanced since the gray image was a single-channel image.

2.7 Contours feature extraction

To associate the changes of broiler image with broiler

respiration, it is necessary to extract the correlated features.

Two 1-min videos were randomly selected, which the broiler

images were extracted by the semantic segmentation algorithm.

At the same time, we had manually checked the video frame by

frame according to the time axis and judged that the frame was in

the broiler inspiratory or expiratory state according to the

fluctuation state of the broiler belly. By recording these states

as the parameter “Breath,” the inspiratory process was set as “1”

and the expiratory as “0.” A total of 3,000 frames were obtained,

so the parameter “Breath” obtains a total of 3,000 data. Some

image contour features were extracted for the segmented broiler

images, shown in Table 1.

Using the software SPSS, the Pearson correlation analysis was

carried out between each feature and “Breath.”

2.8 Estimation of respiratory rate based on
signal power spectral density

The feature which significantly correlated with “Breath” was

regard as a time-dependent signal. Then, the signal was transformed

into a frequency domain by fast Fourier transform (FFT) [20], and

its power spectral density (PSD) [21] was analyzed. After PSD

analysis, the frequency with the maximum power density results

being the RR estimated by the feature signal.

2.9 Evaluation methods

When evaluating the performance of the semantic

segmentation algorithm, the accuracy P and intersection over

union (IoU) were used (Eq. 14 and Eq. 15).

P � TP

TP + FP
× 100% (14)

IoU � TP

TP + FP + FN
× 100% (15)

Where TP is the total number of correctly segmented pixels,

the total number of incorrectly segmented pixels, and the total

number of missed pixels.

We used three indicators, mean absolute error (RRme), root

mean squared error (RMSE), average accuracy (RRacc), to evaluate

the effects of the broiler RR estimation models (Eqs 16–18).

RRme � 1
N
∑N

I�1|RRD(i) − RRm(i)| (16)

RMSE �
�������������������
1
N
∑N

I
[RRD − RRm(i)]2

√
(17)

RRacc � (1 − 1
N
∑N

I�1
|RRD(i) − RRm(i)|

RRm(i) ) × 100% (18)

Where RRD is the RR detected by RR-D and RR-D-EVM, RRm is

the RR observed manually. N is the number of tested videos.

TABLE 1 The extracted feature variables.

Extracted features Defining equations

Centroid X X � ∑P_i xi∑ Pi

(Eq. 8)

Centroid Y Y � ∑ P_i yi∑ Pi

(Eq. 9)

Area S � ∑
x
∑
y
v(x, y) (Eq. 10)

Aspect Ration AR � W
H

(Eq. 11)

Extent EX � Sc
SB

(Eq. 12)

Solidity SO � SC
SH

(Eq. 13)

Where, Xi and Yi are the pixel coordinates, and Pi is the pixel’s value. v(x,y) is the gray

value of the point (x, y). W and H are the width and height of the contour. SC and SB are

the contour area and bounding rectangle area. SC and SH are the contours and convex

hull areas.
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3 Results and discussions

3.1 Semantic segmentation algorithm

The two semantic segmentation models have been evaluated

with the test dataset. Table 2 shows the segmentation results of

Mask R-CNN and YOACT models in this study. The average

accuracy of the YOLACT results is 95%, and the average IoU is

94%; the average accuracy of Mask R-CNN is 95%, and the

average IoU is 90%.

3.2 Feature acquisition

The results of Pearson correlation analysis between contours

features and “Breath” are shown in Table 3. It can be found that

the feature “Centroid Y” is significantly correlated with “Breath”

(p > 0.4), while “Centroid X” is weakly correlated (0.1 < |P| < 0.2)

and the feature “Area,” “Aspect Ratio,” “Extent,” “Solidity” is not

significantly correlated (|P| < 0.1). Therefore, this study applied

“Centroid Y” as the feature for RR estimation.

According to Eq. 9, the “Centroid Y” is affected by the height

of the broiler contour in the image and the different postures

influenced the height of the broiler contour, thus, it is necessary

to eliminate the impact of these different poses. Based on manual

observation and ethograms by [22,23], the broiler postures were

divided as standing, lying, and hanging their heads.

During the posture transformation of broilers, the “Centroid

Y” changes considerably. As shown in Figure 3, “Centroid Y”

suddenly increases due to the changes of broilers from lying to

standing posture. Considering that this study regarded the

“Centroid Y” as a time-dependent signal, then the broilers’

posture changes will influence the signal trend. Because the

signal is assumed to be stable in power spectral density (PSD),

hence, it is necessary to eliminate the signal trend caused by

posture changes.

TABLE 2 The semantic segmentation algorithm output.

Model Image ID Input Output Mask

Mask R-CNN 58

173

255

YOLACT 58

173

255
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The smoot priors approach (SPA) by Tarvainen et al. [24] is an

effective nonlinear signal detrending method and is often used to

process human ECG signals. The SPA algorithm was used to

detrend the “Centroid Y” signal. Figure 4 shows the “Centroid

Y” signal obtained from a 10-s video. Due to the changes in broiler

posture from standing to lying, the “Centroid Y” signal has an

apparent trend change. After the processing with the detrend

algorithm, the signal trend caused by posture change was

eliminated, as shown in Figure 4.

It was also observed that the broilers frequently movements,

i.e., flipping of wings and walking. These movements lead to the

change in the “Centroid Y,” as shown in Figure 5, where the

broiler flipping of wings caused the signal to change.

A band-pass filter was used to filter the noise caused by the

movement of broilers. As shown in Figure 6, the signal fluctuated

due to the wing shaking of the broiler. After band-pass filtering,

the processed signal filter the noise and eliminate the influence of

wing shaking.

3.3 Respiratory rate estimation

According to “Broiler production,” the RR of broilers are

different at different ages [25]. The RR of young broilers is

higher, reaching up to 65 times per minute on average. After

21 days of age, the RR of broilers decreases to about 45 times per

minute. Besides, stress influences the RR significantly. RR

reaches 130 times per minute or even more when the broiler

suffers from thermal stress. Therefore, considering the

influence of age and stress on RR, the range of broiler RR

was set as 25–150.

In this study, two RR estimation techniques were explored,

i.e., without video magnification algorithm (RR-D), and with

video magnification algorithm (RR-D-EVMGS). Fifty 10-s videos

were randomly selected from the dataset to test the two methods’

performance. The test result is shown in Figure 7.

The evaluation results of the two models are shown in

Table 4.

TABLE 3 Correlation analysis between the extracted features and breath.

Centroid X Centroid Y Area Aspect ration Extent Solidity

Breath Pearson Correlation(P) 0.166 0.417 −0.048 0.024 0.026 0.048

Sig. (2-tailed) 0.001 0.011 0.062 0.364 0.325 0.065

FIGURE 3
Posture conversion causes signal Centroid Y to change.
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3.4 Euler video magnification based on
grayscale

The speed of the EVM algorithm based on grayscale had been

improved. Table 5 shows the time consumed by two algorithms for

processing the same five videos on the same computer (CPU 4500 u,

4 GHZ). In this study, the speed of EVM based on grayscale was

improved by more than 55% compared with EVM.

3.5 Performance evaluation

To test the non-contact broiler RR estimation method

proposed in this paper, it is necessary to compare the results

obtained by this method and the reference standard (expert

visual manual count). To keep the consistency between the

proposed method and the reference standard, the Bland-

Altman way [26] was used to evaluate the consistency

FIGURE 4
Comparison between before and after signal detrend.

FIGURE 5
Centroid Y signal changes due to broiler movements.
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between the results of RR-D, RR-D-EVMGS, and expert visual

manual count.

As shown in Figure 8, the x-axis is the mean of the RR

estimated by RR-D, RR-D-EVMGS, and expert visual

manual count, and the y-axis is the difference between

them. The 95% consistency interval for RR-D and RR-D-

EVMGS between expert visual manual count is (−10.57,

13.45) and (−9.27, 11.48), respectively. It can be observed

that most of the RR data measured by the two methods are

FIGURE 6
Comparsion before and after signal filtering.

FIGURE 7
RR estimation result.

TABLE 4 Test results of RR-D and RR-D-EVMGS.

RRme (times/minute) RMSE (times/minute) RRacc (%)

RR-D 4.56 21.26 90.52

RR-D-EVMGS 3.72 16.92 92.19

TABLE 5 EVM and EVM based grayscale processing time.

Video ID EVM(s) EVM based on grayscale(s)

1 70.22 30.18

2 93.41 37.23

3 95.67 38.10

4 102.84 41.71

5 107.29 43.11
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within the confidence interval, indicating that the

consistency between RR-D, RR-D-EVMGS, and the expert

visual manual count is good.

3.6 Influence of factors that affects the
estimation of respiratory rate

Due to the broiler farming environment being complex and

dynamic, in addition to the broiler moving frequently, there is

numerous interferences affecting the performance of the broiler

RR estimation. Therefore, these interference factors were

analyzed to verify the effectiveness of the proposed method.

3.6.1 Effects of the angles between broiler and
camera on the estimation of respiratory rate

Because the camera was fixed and the broiler would move

freely, there were different angles between the broiler and the

camera. According to the angle of Broiler in the video, we

divided the data into three kinds: frontal, lateral, and back.

Five 1-min videos were selected from each of the three kinds

and tested with RR-D-EVMGS. The results are shown in

Table 6. It can be seen that the estimation of frontal

performance is worst. We suspect that this is because the

bird’s head is stable, so when the front of the broiler faces the

camera, the respiratory body movement is less evident than

that of the back and lateral.

FIGURE 8
Bland-Altman plot. (A) Bland-Altman plot of RR-D. (B) Bland-Altman plot of RR-D-EVMGS.
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3.6.2 Influence of breathing rate perturbation on
the estimation of respiratory rate

Because the RR of broilers is affected by age, health, and

environment, the RR varies greatly. Since our data were

obtained when the broiler were calm and no stress, their RR

was stable. To verify the estimation effect of the proposed

method in the case of fluctuation of RR, we randomly

selected ten 1-min videos, twice accelerated the first and last

250 frames, and kept the other frames unchanged, to simulate

the fluctuation of broiler RR, and then estimated it with the

method we proposed. The RR estimation results are shown in

Table 7. It can be seen from the table that the method proposed

in this paper performed well on the accelerated video; accuracy

was reduced by less than 1%. We deem that is because we

extract each frame of the video, the sampling frequency is much

greater than twice the upper limit of RR, which meets

Shannon’s sampling theorem. Therefore, the method

proposed in this paper can be used to estimate the RR of

broiler under special conditions, such as heat stress.

3.6.3 Analysis on the causes of poor estimation
effect

According to the test result, Figure 7, it could be found that

the estimation results of videos 12 and 13 were the worst, and the

error reached 37.5%. By checking the original video, it was found

that the broiler was too close to the camera, resulting in the

broiler’s body occupying almost the whole image. RR-D and RR-

D-EVMGS had poor performance on video 33, with an error of

30%. Checking the original video, it emerged that part of the body

walked out of the camera due to the movement of the broiler, and

the complete image of the broiler could not be extracted.

Therefore, the main factors affecting the estimation accuracy

of the two methods were the distance between the broiler and the

camera and whether the complete body contour of the broiler

could be extracted. The method proposed in this study realizes

the estimation of RR of broilers without contact and stress. It can

be used to remotely diagnose respiratory-related diseases and

monitor the stress of broiler (such as heat stress). The method

used in this study is portable and can be extended to different

objects, such as ducks, geese, etc. And we will also try to verify the

performance of this method on other objects in the future.

4 Conclusion

A non-stressful, contactless approach of RR estimate for broilers

is presented in this research. Compared to the animal respiration rate

detectionmethods proposed by Xie et al. [7] and Stewart et al. [8] and

others, this study was aimed at a smaller subject with more complex

applying environment, which means it was much more challenging

to achieve respiration rate estimation. This results in a lack of contact-

free RR estimate techniques for tiny birds like broilers. Using the

semantic segmentation technique, the broiler pictures could be

successfully retrieved from the complicated backdrop, with an

extraction accuracy of 95%. We came to the conclusion that

“Centroid Y” would be the ideal way to estimate broiler

respiration and presented the RR-D-EVMGS and RR-D

approaches. The performance of the two methods was compared

in 50 videos, and in RRme, RMSE, and RRacc, RR-D-EVMGS

performed better than RR-D. Through the Consistency evaluation

with the manual measures, the results of the two methods were

consistent with the manually measured results. The method

proposed in this study can be applied to farming robots, such as

the poultry health monitoring robot developed by Nanjing

Agricultural University. And the method proposed in this study

can be generalised to other small-sized birds for contactless RR

estimation, such as ducks and geese. Because this study was still

preliminary, there were some problems that needed to be further

solved. For example, although this study used a single-channel Euler

video magnification algorithm to improve the computing speed, it

still took much longer time to achieve real-time detection. To

address this matter, the algorithm requires further optimisation

TABLE 6 The test result of different angles between broiler and camera.

RRme (times/minute) RMSE (times/minute) RRacc (%)

Frontal 6.6 24.5 88.16

Back 4 13.6 93.67

Lateral 3.6 8.2 93.35

TABLE 7 The test result of the accelerated and original video.

RRme (times/minute) RMSE (times/minute) RRacc (%)

Original video test result 3.4 6.3 94.35

Accelerated video test result 4.5 10.75 93.85

Frontiers in Physics frontiersin.org11

Wang et al. 10.3389/fphy.2022.1047077

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1047077


in the future. Although the results obtained are still preliminary, we

believe that this contactless detection of broiler RR has a promising

prospect. It can provide technical support for broilers’ respiratory

diseases and heat stress monitoring.
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