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Mahalanobis distance is a distance measure that takes into account the

relationship between features. In this paper, we proposed a quantum KNN

classification algorithm based on the Mahalanobis distance, which combines

the classical KNN algorithm with quantum computing to solve supervised

classification problem in machine learning. Firstly, a quantum sub-algorithm

for searching theminimumof disordered data set is utilized to find out K nearest

neighbors of the testing sample. Finally, its category can be obtained by

counting the categories of K nearest neighbors. Moreover, it is shown that

the proposed quantum algorithm has the effect of squared acceleration

compared with the classical counterpart.
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1 Introduction

With the development of era, the amount of global data is increasing exponentially

every year. People often use machine learning to extract valid information from large

amounts of data. However, with the increase of the amount of data, classical machine

learning algorithms need a lot of time. How to design an efficient learning algorithm has

become a major difficulty in the field of machine learning. At this point, the speed

advantage of quantum computing over classical computing in solving certain specific

problems has led more and more scholars to think about how to use quantum computing

to solve the problem more efficiently and has given rise to a new field of

research – quantum machine learning (QML). Quantum machine learning uses

quantum superposition, quantum entanglement and other basic principles of

quantum mechanics to realize computing tasks [1]. That is to say, QML is a quantum

version of machine learning algorithms, which can achieve an exponential or squared

quantum acceleration effect.
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In recent years, researchers have studied quantum machine

learning algorithms in depth and have achieved outstanding

works in many branches of research, such as quantum K-

nearest neighbor (QKNN) algorithm [2–4], quantum support

vector machine (QSVM) [5, 6], quantum neural network (QNN)

[7–9] and so on [10, 11]. These algorithms take full advantage of

quantum superposition and entanglement properties, allowing

them to achieve quantum acceleration compared to classical

algorithms.

QKNN algorithms is a combination of quantum computing

and classical algorithm. In 2013, Lloyd proposed a distance-based

supervised learning quantum algorithm [12], which has

exponential acceleration effect compared with classical

algorithms. In 2014, Wiebe raised a QKNN algorithm based

on inner product distance [2] with squared acceleration effect. In

2017, Ruan realized a QKNN algorithm based on Hamming

distance [3], which has a time complexity of O((log2M)3) in the

case of an optimal threshold. These algorithms measure the

similarity between samples according to different distance

metrics and achieve quantum acceleration. However, none of

these distance measures consider the connection between

individual attributes in the samples, which leads to many

limitations in practical applications.

In this paper, we propose an efficient quantum version of

KNN algorithm based on Mahalanobis distance. The algorithm

architecture is similar to the classical algorithm. Similarly, we also

notice two key points in designing the KNN algorithm. One is to

efficiently compute the distance betweenM training samples and

test sample, and the other is to find the smallest K number of

samples. However, compared with the existing algorithms, the

proposed algorithm takes fully account of the sample correlations

and uses Mahalanobis distance to eliminate the interference of

correlations between variables. Finally, the test samples are

successfully classified using the algorithm of searching for K-

nearest neighbor samples and the calculated Mahalanobis

distance. The algorithm achieves a quadratic speedup in terms

of time complexity.

2 Preliminaries

In this section, we briefly review the main process of the

classical KNN classification and the Mahalanobis distance.

2.1 K-nearest neighbors classification
algorithm

KNN algorithm is a common supervised classification

algorithm, which works as follows: given a test sample and a

training sample set, where the training sample set contains M

training samples. Then, we compute the distances between the

test sample and the M training samples, and find the K nearest

training samples by comparing these distances. If the majority of

the K nearest neighbor training samples of the test sample belong

to a class, then the class of the test sample is that class [13, 14]. In

the KNN algorithm, the most complex step is to compute the

distance between the test sample and all training samples.

Moreover, the computational complexity increases with the

number and dimensionality of the training samples. In order

to classify the test samples with dimension N and perform the

distance metric withMN-dimensional training samples, we need

to perform O(MN) operations.
The general process of classical KNN classification can be

summarized in the following points.

1) Choose an appropriate distance metric and calculate the

distance between the test sample with M training samples.

2) Find the K training samples with closest distance to the test

sample.

3) Count the class with the highest frequency among these K

training samples, and that class is the class of the sample to be

classified.

Although the K-nearest neighbor algorithm has better

performance and accuracy, we should note that the choice of

the distance metric is extremely important [15]. In general, we

use the Euclidean distance as the metric. In fact, the Euclidean

distance is just an integration of the two samples’ deviations on

each variable by treating all variables equally, which has some

limitations in terms of data relevance. Instead, we use a

generalization of the Euclidean distance: the Mahalanobis

distance, which calculates the distance between two points by

covariance and is an effective method to calculate the similarity of

two unknown samples. Unlike the Euclidean distance, it takes

into account the correlation between various variables. The

difference between Euclidean distance and Mahalanobis

distance is shown in Figure 1.

As shown above, we can easily find that the Mahalanobis

distance is better than the Euclidean distance. The Mahalanobis

distance can be used to reasonably unify the data between

different features, since its computation takes into account the

fact that the scale units are different in different directions.

2.2 The Mahalanobis distance

Mahalanobis distance is an effective metric to calculate the

distance between two samples, which considers the different

feature attributes. It also has two advantages as follows. 1) It

is independent of the magnitude and the distance between two

points is independent of the measurement units of the original

data. 2) The Mahalanobis distance can also eliminate the

interference of correlation between variables.

In this paper, the training samples and the test sample are

combined into a data set x1, x2, x3,/xM, v{ }, which can be
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described as a column vector composed of N characteristic

attributes z1, z2, z3/zN{ }T μi is the expected value of i th

element, μi � E(zi). The correlation between the dimensions

of these samples is expressed by the covariance matrix Σ, i.e.,

Σ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E z1 − μ1( ) z1 − μ1( )[ ]
E z2 − μ2( ) z1 − μ1( )[ ] / E z1 − μ1( ) zN − μN( )[ ]

/ E z2 − μ2( ) zN − μN( )[ ]
..
.

E zN − μN( ) z1 − μ1( )[ ] 1 ..
.

/ E zN − μN( ) zN − μN( )[ ]
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)
where, the ij term in the covariance matrix (the ij term is a

covariance) is

Σij � cov zi, zj( ) � E zi − μi( ) zj − μj( )[ ]. (2)

The Mahalanobis distance between data points x and y is

D �
����������������
x − y( )TΣ−1 x − y( )√

, (3)

where Σ is the covariance matrix of x and y. By multiplying

the inverse of the covariance matrix based on Euclidean distance,

the effect of correlation between the data can be eliminated.

As description above all, it is not difficult to find approaches

to calculate the Mahalanobis distances between M training

samples and the test sample

∑M
i�1

di �∑M
i�1

����������������
xi − v( )Σ−1 xi − v( )

√
. (4)

Σ represents the covariance matrix ofX and v. The covariance

matrix is a semi-positive definite symmetric matrix that allows

for eigenvalue decomposition. Σ � ∑N
j�1λj|μj〉〈μj|, where λj is the

eigenvalue, and μj is the corresponding feature vectors. Then, Eq.

4 can be redescribed as

∑M
i�1

di �∑M
i�1

��������������������������
〈xi − v|∑N

j�1
λj

−1 μj
∣∣∣∣∣ 〉〈μj| xi − v| 〉

√√
. (5)

While we need to get the K minimum distance of them, thus

we just need to get

∑M
i�1

di �∑M
i�1
∑N
j�1

λ−1j 〈μj|xi − v.〉 (6)

3 The proposed quantum K-nearest
neighbor classification algorithm

In this section, we mainly describe the significant steps of the

proposed quantum KNN classification algorithm.

3.1 Calculating the Mahalanobis distance

Computing similarity is an important subprogram in

classification algorithms. For the classification of non-numerical

data, Mahalanobis distance is one of the popular ways to calculate

similarity. Here, we describe a quantum method to calculate

Mahalanobis distance between xi and v in parallel.

A1: Prepare the superposition state

According to Eq. 6, we need to prepare the required quantum

states 1��
M

√ ∑M
i�1|i〉|xi − v〉 and the covariance matrix Σ. For

simple description, xi − v is preprocessed on the basis of

classical data to make it normalized data.

Here, we firstly introduce the preparation process

of 1��
M

√ ∑M
i�1|i〉|xi − v〉. The process can be briefly divided

into two steps. First, prepare the superposition type 1��
M

√ ∑M
i�1|i〉,

FIGURE 1
The difference between Euclidean distance and Mahalanobis distance.
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and then the data xi − v is accessed through quantum random

access memory [16]. Next, we will explain these two steps in

detail.

At first, we prepare m � log2(M + 1) quantum qubit in the

state of |000/000〉(|0〉⊗m), and then a Hadamard gate operation

is performed once for each qubit to get the state:

H⊗m 000/000| 〉 � 1���
2m

√ ∑2m−1
i�0

i| 〉 (7)

However, our aim is to get the initial superposition qubits

|α〉 � 1��
M

√ ∑M
i�1|i〉. Since M may not be a power of 2, the state is

obtained with the help of a quantum comparator [17], as show in

Figure 2.

With the help of two auxiliary particles |0〉|0〉, we can judge

the value space of index i through the quantum comparator. The

details are shown as follows:

U1 0| 〉⊗m 0| 〉 0| 〉( )→ 1���
2m

√ ∑
i�0

i| 〉 0| 〉 1| 〉 + 1���
2m

√ ∑
0<i≤M

i| 〉 0| 〉 0| 〉

+ 1���
2m

√ ∑
i>M

i| 〉 1| 〉 0| 〉

(8)
Then we measure the auxiliary particles to obtain the target

state. When the result is |0〉|0〉 and the probability of measuring

success is M
2m, the require quantum state |α〉 � 1��

M
√ ∑M

i�1|i〉 will be

obtained after O(M2m) � O(1) times.

Finally, we access the classical data based on the quantum

random access memory theory. It is assumed that there exists a

quantum channel that can access the data stored in quantum

random access memory, and the data xi − v is stored in the form

of classical data in M storage units in QRAM. So, we can access

xi − v efficiently through a black box Ox in O(log2MN). The
specific operation is as follows:∑M

i�1 i| 〉 0| 〉��
M

√ →Ox ∑M
i�1 i| 〉 xi − v| 〉��

M
√ (9)

Next, we show how to get the covariance matrix. Since

the covariance matrix Σ is semi-positive definite, we can

implement it by Hamiltonian simulation [18]. Assuming that

Σ � ∑N
j�1λj|μj〉〈μj| [19]. Prepare a quantum black box given

access to Hermitian matrix Σ, any time t, and errors ϵ, operate
with approximate unitary precision ϵ through a quantum circuit

U2. Then the state eiΣt can be obtained.

U2 − eiΣt
���� ����≤ ϵ (10)

Compared with the classical algorithm, the state eiΣt obtained

by the quantum circuit has exponential acceleration effect. Its

time complexity is O(polylogN).
A2: Compute distances

In the following, we talk about how to compute the

Mahalanobis distances between the test sample and the

training samples, i.e., Eq. 6. Obviously, by performing the

steps of A1, we have obtained the state
∑M

i�1 |i〉|xi−v〉��
M

√ . To obtain

the form of Eq. 6, we need to perform the phase estimation and

controlled rotation. Specifically, it can be divided into two sub-

processes.

Step 2.1 Adding one register in the state |0〉 to get the state∑M

i�1 |i〉|0〉|xi−v〉��
M

√ . Then, we perform an unitary operation on the
second and the third registers controlled by U2 to achieve the
phase estimation. At this point, we obtain the quantum
state |Ψ1〉,

Ψ1| 〉 �
∑M
i�1
∑N
j�1

〈uj|xi − v〉|i〉 λj
~
t0

2π

∣∣∣∣∣∣∣ 〉 uj

∣∣∣∣ 〉[ ]��
M

√ . (11)

In phase estimation, λ̃jt0
2π ∈ [0, 1), which is a period that

numerical values outside the range are projected into the

range. So that we should limit the scope of λjt0
2π belong to

[−1
2,

1
2). To ensure the accuracy of results, some algorithmic

assumptions are made here, assuming that |λj| ∈ [1k, 1]. Due to

λj ≥ 0, t0 > 0 (t0 is the minimum time for simulating the

covariance matrix eiΣt), when t0 ≤ π, it can ensure
λjt0
2π ∈ [−1

2,
1
2). Usually, we take t0 = π to make the results

obtained from the phase estimation more accurate.

Step 2.2 Adding an auxiliary qubit |0〉, and performing a

controlled rotation operation (CR) on the second register of

|Ψ1〉, which can effectively extract the information in the

quantum register to the amplitude of the quantum state. The

process is as follows.

Suppose that θ ∈ R, ~θ is a d-bit finite precision representation

of θ. The controlled rotation Uθ can make:

|~θ〉|0〉→|~θ〉 f ~θ( ) 0| 〉 + ��������
1 − f ~θ( )2√

1| 〉( ). (12)

So, the following operation can be achieved by setting the

relevant parameters.∣∣∣∣∣∣∣∣∣∣λ̃jt02π 〉∣∣∣∣0〉→∣∣∣∣∣∣∣∣∣∣λ̃jt02π 〉 f
λ̃jt0
2π

( )|0〉 + �����������
1 − f

λ̃jt0
2π

( )2

√√
|1〉⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (13)

Apparently, if f(x) � 2π
t0
x, we can obtain |Ψ2〉.

FIGURE 2
Prepare the quantum state |α〉.
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Ψ2| 〉 �

∑M
i�1

i| 〉∑N
j�1

〈uj|xi − v〉
∣∣∣∣∣∣∣∣λj~ t0
2π 〉∣∣∣∣uj〉

c

λj
~ 0| 〉 +

���������
1 − c

λj
~

⎛⎝ ⎞⎠2
√√

1| 〉⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠��
M

√
(14)

From the preceding information, we know that the

Mahalanobis distance is di � ∑N
j�1λ

−1
j 〈μj|xi − v〉, so |Ψ2〉 can

be rewrite to

Ψ2| 〉 �
∑M
i�1

i| 〉di

∣∣∣∣∣∣∣∣λj~ t0
2π 〉 uj

∣∣∣∣ 〉 0| 〉��
M

√ +
∑M
i�1

i| 〉∑N
j�1

���������
1 − c

λj
~

⎛⎝ ⎞⎠2
√√

〈uj |xi − v〉
∣∣∣∣∣∣∣∣λj~ t0
2π 〉 uj

∣∣∣∣ 〉 1| 〉��
M

√
(15)

For applying the Mahalanobis distance calculated by the

above process to the classification algorithm, we have to use

the amplitude estimation (AE) algorithm to transfer the distance

information to qubits [20]. Then, we get the state about distance

information |Ψ3〉 � ∑M

i�1 |i〉|di〉��
M

√ . This process uses R iterations of
Grover operators and the error is less than δ, where R and δ

satisfy R≥ π(π+1)
δ .

3.2 Searching K minimum distances

In this section, we use the state |Ψ3〉 acquired by previous

chapter to search the K minimum distances through quantum

minimum search algorithm [21, 22].

Step 1. The set D � D1, D2/DK{ } represents K training

sample closest to test sample v � v1, v2, v3/vN{ } in
the training sample. The initialization D is a random

selection of K samples from the training samples.

Step 2. By Grover’s algorithm, we get one point xi at a time

from the quantum state |Ψ3〉. If that point is closer to
the test sample than some points in Dk,

i.e., d(v, xi)< d(v,Dk)(k ∈ [1, K]), the ith point is

used to replace the point Dk in D, and k is the

max d(v,Dk){ }(k ∈ [1, K]).
Step 3. In order to get the k points with the smallest distance,

repeat Step 2 to make q smaller and smaller (q is the

number of remaining points in the set Q) until q = 0.

That is, we find the k points that are closest to the test

sample.

To analyze the time complexity of the above process more

easily, we introduce a set Q, which is a subset of X beyond of D

and smaller than some points in set D from the test sample. q is

the number of points in set Q. In the following, we will use the

size of q to analyze the performance of the algorithm after each

operation. Repeating Step 2 k times can decrease q to 3
4 q. When

q > 2K, it can be reduced to 1
2 q by calling Oracle operation

O(
���
KM
q

√
) times.When q is decreased to q ≤ 2K, the calling time of

Oracle is K
��������������
M
K + M

2K + M
4K +/

√
. Then, if q is decreased to 0, the

total time is O
����
KM

√
. At this time, the points in set D are the K

training samples closest to the test sample.

4 Complexity analysis

Let us start with discussing the time complexity of the whole

algorithm. As mentioned above, the algorithm contains three steps:

A1. Preparation of the initial state.

A2. Parallel computation of the martingale distance.

A3. Search for K nearest neighbor samples.

An overview of the time complexity of each step is shown in

Table 1. A detailed analysis of each step of this algorithm is

depicted as follows.

In step A1, 1��
M

√ ∑M
i�1|i〉|xi − v〉 can be generated in time

O(logMN) with the help of quantum comparator and QRAM.

Then, theHamiltonian simulation has been performed tomake the

covariance matrix Σ. So, the time complexity of A1 is

O(logMN + polylogN). In part of A2, we utilize phase

estimation and controlled rotation to compute the distance, and

then translate the information into quantum state. According to

Ref. [1], the time complexity of phase estimation is O(Tu
ϵ ), where

Tu is the time of preparing the unitary operator eiΣt and 1
ϵ � 2−m eiΣt

is obtained by Hamiltonian simulation, therefore, the time

complexity is O(polylogN). In a word, the time complexity is

O(polylogNϵ ). Afterwards, in order to transfer the distance

information to qubits, we have to perform the AE algorithm R

times (discussed in step A2.2). Hence, the total time complexity of

the quantum algorithm for computing theMahalanobis distance is

O(logMN + R·polylogN
ϵ ). In Step A3, the time complexity of

searching is analyzed in Section 3.2, that is O( ����
KM

√ ).
Therefore, the time complexity of the whole algorithm is

O(logMN + R·polylogN
ϵ + ����

KM
√ ). Compared with the classical

KNN classification algorithm with O(MN) time complexity, it

has quadratic acceleration.

5 Conclusion

In this paper, we combine the ideology of quantum computation

with classical KNN classification algorithm to propose a quantum

KNN classification algorithm based on Mahalanobis distance. First,

we quantified the similarity measure algorithm based on the

Mahalanobis distance. Then, K nearest neighbor samples are

filtered using the quantum minimum search algorithm.

TABLE 1 The time complexity of the algorithm.

Step Running time

A1 O(logMN + polylogN)
A2 O(R·polylogNϵ )
A3 O( ����

KM
√ )

totally O(logMN + R·polylogN
ϵ + ����

KM
√ )
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Compared with other quantum KNN classification algorithms based

on Hamming distance or Euclidean distance, the Mahalanobis

distance used in this paper overcomes the drawback that

individual feature attributes with different degrees of variation

play the same role in calculating the distance metric and excludes

the interference of different degrees of correlation between variables.

When the training sample is very large, the time complexity of the

algorithm is O[logMN + R·polylogN
ϵ + ����

KM
√ ], which has a

quadratic acceleration effect. In conclusion, we give a complete

quantum classification algorithm. By executing the proposed

algorithm, the classification classes of the test samples can be

obtained. Moreover, our work gives the sub-algorithm to

calculate the Mahalanobis distance, which can be directly applied

to the designing of other quantum machine learning algorithms,

such as clustering.
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