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The subtraction game is a well-known problem in the field of game theory,

which is often called a one-heap Nim game. There are two players, a heap of

tokens, and a strategy matrix, in this game. It is called a restricted subtraction

game if some constraints are imposed on the strategy matrix. The subtraction

game could be solved by a classical algorithm with a query complexity no less

than O(N2) and computed by an O(N3
2 logN) quantum query algorithm with an

error probability ϵ≤ 1
N. The restricted subtraction game proposed by Huang et al.

can be computed by an exact quantum algorithmwithO(N3
2) queries. They also

proved that the classical exact query complexity isΘ(N2). In this study, we use an

array and an adjacency list to replace the strategy matrix and propose another

more general subtraction game than the one introduced by Huang et al. Based

on dynamic programming and the replaced game strategy, two linear classical

query algorithms are designed to solve the restricted subtraction game

proposed by Huang and this study, respectively.
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1 Introduction

Quantum computing is becoming a very hot research topic nowadays. There are

various computing models [1, 2], including quantum query complexity [3–5],

communication complexity [6, 7], and quantum finite automata [8–11] [12,13]. Game

theory is an important branch of modern mathematics, which has been applied in many

fields, such as economics and business, project management, and computer science. There

are many kinds of games in game theory, including infinitely long games, discrete and

continuous games, and combination games. Quantum games and quantum strategies

have been investigated since the 1990s [14,15]. Recently, the subtraction game has

attracted great attention. It is a kind of Nim game, which belongs to combination

games [16]. Nim games are notable games in game theory, and they have similar

definitions to subtraction games [17]. Following the definition of subtraction games

introduced by Kravchenko et al. [18], there are two players, a heap of tokens and a strategy

matrix Γ, in a subtraction game. Based on the strategy matrix Γ, two players take away a
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number of tokens one by one. The one who cannot make a legal

move will lose the game. In addition, Huang proposed a

restricted subtraction game in [19], where a constraint is

imposed on the strategy matrix. In the restricted subtraction

games, at most one “1” is allowed in each column of the strategy

matrix, and the rest is the same as the common subtraction

games introduced in [18].

Inspired by Huang, another restricted subtraction game is

proposed in this study, which is more general than the one

introduced by Huang et al. [19], that there are only a small

number of “1s” in each column of Γ. The other part of this game is

also the same as the common subtraction game. The detailed

definition of the subtraction game and the restricted subtraction

games is shown in Section 2.3.

The core of solving the (restricted) subtraction games is

to find an element from the disorder strategy matrix, which

is the basis of all the classical and quantum algorithms. As

shown by Kravchenko [18] and Huang et al. (2020), when

solving the subtraction games, the query complexity of the

classical algorithms is no less than O(N2). To reduce query

complexity, researchers have proposed quantum query

algorithms to solve common subtraction games. For

example, Khadiev and Kravchenko et al. (2019) had

designed a bounded error quantum query algorithm, with

an error probability of ϵ≤ 1
N, to solve the subtraction game in

the query complexity of O(N3
2 logN). As for the restricted

subtraction game, Huang [19] proposed an exact quantum

query algorithm to solve it with a query complexity of O(N3
2).

The proposed quantum algorithms to solve the common

subtraction games and the restricted subtraction games in

[18,19] are mainly based on Grover’s algorithm [20] and exact

Grover’s algorithm [21], respectively. As mentioned earlier,

there is a subroutine to find the position of an element in a

disorder data set. Grover’s algorithm (with a query complexity

of O( ��
N

√ )) is the most efficient method to accomplish this

compared with any classical algorithms (with a query

complexity of Ω(N)), where N stands for the size of the

data set. If the number of targets is not clear, Grover’s

algorithm will return a bounded error result with a query

complexity of O( ��
N

√ ). However, when there is only one target

in the data set, Long [21] designed an exact Grover’s algorithm

to find its position with a query complexity of O( ��
N

√ ).
To better solve the common subtraction games and the

restricted subtraction games, two new data structures are

introduced, and two linear query complexity algorithms are

designed to solve them. The designed algorithms are based on

dynamic programming and other forms of game strategy, which

replace the strategymatrix with other data structures. Inmore detail,

the strategy matrix is replaced with the strategy array when dealing

with the subtraction game proposed by Huang et al. [19]. When

dealing with the restricted subtraction game proposed in this study,

we replace the strategy matrix with the strategy adjacency list. More

details will be introduced in the following sections.

This article is organized as follows: the background

knowledge is introduced in Section 2, including definitions of

exact quantum query algorithms, bounded error quantum query

algorithms, (restricted) subtraction games, and some notations

used in this study. Section 3 introduces the data structures and

the designed algorithms. Finally, Section 4 shows the

conclusions.

2 Preliminary

In this section, we recall some background knowledge,

including the notations used in this study, the definitions of

quantum query algorithms, the common subtraction games, and

the restricted subtraction games.

2.1 Some basic notations

In this part, we introduce some notations used in this study.

• Γ: It stands for the strategy in the subtraction games, which

is often represented by an n × n Boolean matrix. n means

the number of tokens in a heap. If Γij = 1 and there are

enough tokens in the heap, the current player can remove

j − i tokens from the heap.

• Position: We call each number of tokens a position, so that

if Γij = 1 and the remaining tokens are available, the current

player can move from position j to position i.

• Losing position: A position is called a losing position if

there are no available moves in this position or each

possible move leads to a winning position of the

opponent.

• Winning position: A position is called a winning position if

there exists a possible move leading to a losing position for

the opponent.

• W-value: It represents the property of a position. The

W-value is 0 for a losing position and 1 for a winning

position.

• W[i]: It denotes the W-value of position i. The main

purpose of the subtraction game and its variations is to

find the value ofW by querying the elements of Γ as few as

possible.

• ADJ(k): It stands for the neighbor of a given node k.

2.2 Quantum query algorithms

Quantum query complexity is the quantum generalization of

classical decision tree complexity. In this complexity model, an

algorithm is charged for “queries” to the input bits, while any

intermediate computation is considered free. See [3, 22] for details

on quantum query complexity and exact quantum query complexity.
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For an input x = {x1x2. . .xn} ∈ {0,1}n, a quantum query could

be regarded as a unitary transformation determined by the

following Eq. 1:

Ox|i〉 � −1( )xi |i〉, (1)

during which i ∈ {1, 2, . . ., n}. Therefore, if there are t queries in a

quantum algorithm A, then A could be regarded as performing a

series of unitary operators, U0, Ox, U1, . . ., Ox, Ut, on the initial

state |ψ0〉. This process could be formulated as the following Eq.

2, and the final state is denoted as |ψf〉:

|ψf〉 � UtOxUt−1 . . .U1OxU0|ψ0〉. (2)

Finally, we measure the final state |ψf〉 with measure

operators {M0, M1}. For a special input x, the measured

results are the outputs of algorithm A, which can be denoted

as A(x). According to the quantum information theory, it is

obvious to know that Pr[A(x) � 0] � ‖M0|ψf〉‖2 and

Pr[A(x) � 1] � ‖M1|ψf〉‖2.
We say that the quantum query algorithm A computes f

within an error ε if it holds Pr[A(x) = f(x)] ≥ 1 − ε for every

input x ∈ {0,1}n. If ε = 0, we say that the quantum algorithm is

exact.

2.3 Subtraction games and their variations

The detailed definition of subtraction games and restricted

subtraction games is mainly referred to in [18, 19]. We will retell

in brief these two games as follows.

2.3.1 Subtraction games
There are two players in a subtraction game, who remove

some positive number of tokens from a heap one by one. There is

only one heap in the subtraction games, and it assumes that there

are n tokens in a heap in the initial state. The number of tokens

that each player can remove is constrained by an n × n strategy

matrix Γ, and each element Γij ∈ {0, 1}. In addition, Γ is an upper

triangle matrix. For any element in Γ, if Γij = 1, then the current

player can remove j − i tokens from the heap when the number of

tokens left in the heap is available. In the end, a player will lose

the game if (s)he cannot make a legal move or if this player is now

in a losing position where each possible move will lead to a

winning position for the opponent. Otherwise, the other player

will win the game.

2.3.2 Restricted subtraction game
Huang proposed a restricted subtraction game in [19]. They

imposed a constraint on the strategy matrix Γ and supposed that

only one “1” at most is allowed in each column of Γ. The other
part of the restricted subtraction game is the same as the

subtraction games. With this assumption, they could find the

position of this “1” in each column by an exact quantum query

algorithm [21] rather than the bounded error one. So, the

algorithm designed in their study has an acceleration

compared with the classical algorithm.

We can relax the restriction proposed by Huang et al. [19] by

assuming that there are only a small number of “1s” in each

column of the strategy matrix Γ. The other parts are the same as

with the common subtraction game.

In this section, we recall some background knowledge,

including the notations used in this study, the definitions of

quantum query algorithms, the common subtraction games, and

the restricted subtraction games.

3 The proposed algorithms

In this section, the data structures that are used to replace the

strategy matrix are introduced, and the linear exact query

algorithms are designed for the proposed restricted

subtraction games and the one in [19]. In addition, we also

designed a dynamic programming-based algorithm for the

common subtraction game [18].

3.1 Data structures

This section introduces two data structures that can achieve

the same effect as the strategy matrix, which are the adjacency list

and the array.

3.1.1 The adjacency list
The adjacency list is a collection of unordered lists used to

represent a finite graph as an array in graph theory and computer

science. The index of the array stands for a vertex, and each

element in its linked list represents the other vertices that form an

edge with the vertex. It can achieve the same effect with a matrix,

while it is more efficient when the matrix is sparse.

For the subtraction games, because the original strategy

matrix Γ may be given in a random way, we do not know the

position of the element “1.” If the strategymatrix is sparse, we can

append i (0 < i < j) to the adjacency list Γ′ randomly, where i is the

position of “1” in each column j to obtain the same strategy. From

this point of view, both the strategy matrix Γ and the adjacency

list Γ′ can represent the same strategy for the subtraction games.

Therefore, the strategy matrix can be replaced with the adjacency

list when there are only a small number of “1s” in each column of

the strategy matrix Γ. We do not quantify this “small number” as

long as it reflects the storage advantage of the adjacency list.

Furthermore, we take a 5 × 5 strategy matrix Γ as an example

to explain this process more clearly. For example, if we have a 5 ×

5 strategy matrix Γ, where
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Γ �

1 1 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 1 1
0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

then the position of each element “1” in each column is

appended to Γ′. For example, as the position of the element “1” in

column 3 of Γ is 2 and 3, we can append the nodes 2 and 3 toV3 in

Γ′ sequentially. Therefore, we can obtain the adjacency list of the

strategy Γ′, which has the same effect as the matrix strategy Γ, as
follows:

Please note that the previous explanation is aimed to

illustrate that the matrix and the adjacency list are equivalent

when generating the game strategy not that the matrix and the

adjacency list are equivalent at the data structure level.

3.1.2 The array
In computer science, an array is a data structure composed of

a collection of elements of the same type, and a contiguous piece

of memory is allocated for storage. Each element in the array can

be obtained through the index immediately.

As for the restricted subtraction game proposed by Huang

[19], there is only one “1” at most in each column of the matrix

strategy. Therefore, if we know the index of element “1” in each

column, we can determine the strategy. In this situation, the

position of each element “1” can be stored in the array and

achieve the same effect as the matrix. Therefore, the strategy

matrix can be replaced by the array.

For more detail, we denoted the column j of Γ as Γ[j] and the
strategy array as Γ′′. The element in Γ″[j] ∈ [ − 1, i] and Γ″[j] ∈ Z.
If Γ″[j] = −1, then there is no “1” in Γ[j], else the value of Γ″[j]
stands for the position of “1” in Γ[j]. Therefore, both Γ and Γ″ can
generate the strategy of restricted subtraction games. We also

take a 5 × 5 strategy matrix Γ as an example, where

Γ �

0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

When the strategy array Γ″ is used to replace the strategy

matrix Γ, we can set Γ″[2] = 1 and Γ″[3] = −1 because the position

of “1” in Γ[2] is 1, and there is no “1” in Γ[3]. Therefore, we can
obtain Γ″ as Γ″ = [ − 1, 0, 1, − 1, − 1].

3.2 Solving the common subtraction game

We first designed an algorithm to solve the common

subtraction game and analyze its query complexity. Based

on it, two algorithms are designed for solving the restricted

subtraction games proposed in this study by Huang et al.

[19], and their query complexity is analyzed.

Algorithm design: Algorithm 1 is designed for solving

common subtraction games. During this, Wt(k) stands for the

name of the function, and the other notations are introduced as

before.

Algorithm 1. Solving the common subtraction games.

Query complexity analysis: From Algorithm 1, it is clear to

find that only the operator of ADJ[j] needs to query the strategy

matrix Γ. In addition, Algorithm 1 is based on dynamic

programming, and the function Wi(k) is invoked recursively

in the “while” loop. Therefore, it is easy to know that the query

complexity of Algorithm 1 is O(N2). It should be noted that the

query complexity of the subtraction game has been proved to be

no less than O(N2).

3.3 Solving the restricted subtraction
game proposed in this study

When the number of “1” in each column is a small constant

m, (m≪n), the n× n strategymatrix Γwill be very sparse. In this
situation, we can use the adjacency list Γ′ to replace the strategy
matrix Γ.

Algorithm design: Based on the characteristics of an

adjacency list, we can obtain ADJ(j) of a given node j in a

constant time, and Algorithm 2 is designed to solve this

restricted subtraction game.
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Algorithm 2. Solving the restricted subtraction game proposed

in this study.

Query complexity analysis: The query complexity of the

adjacency list is O(m), where m is the total number of “1s” in

each column of the strategy matrix Γ. Since there are only a small

number of “1s” in Γ to access all of the “1s” in the strategy matrix,

the query complexity can be regarded as constant, which is O(1).

Therefore, the query complexity of the ADJ(k) operator in

Algorithm 2 is (O(1)). According to the analysis in Section

3.2, it is easy to know that the query complexity of Algorithm

2 is O(N). However, following the analysis in Kravchenko et al.

(2019), the query complexity of this game is O(N3
2 logN) and

O(N2) for the quantum query algorithm and the classical

algorithm, respectively. Therefore, we can draw a conclusion

that the query complexity can be improved when replacing the

strategy matrix with the adjacency list.

3.3.1 Solving the restricted subtraction games in
Huang et al.

As mentioned in Huang et al. [19], the main idea of the

restricted subtraction games is imposing a constraint on the

strategy matrix, such that there should be only one “1” at most in

each column. With this constraint, Huang et al. [19]used the

exact Grover’s algorithm to find the position of such a “1” if there

exists a “1” in that column [19]. After that, they update the value

ofW[i] with the following conditions; ifW[i] = 0, thenW[j] = 1,

else W[j] = 0(i ≤ j). Based on Grover’s algorithm, the query

complexity of this exact quantum algorithm is O(n3
2 logN) [21]

compared with the classical algorithm O(N2).

Similarly, with the situation in Section 3.3, we could further

decrease the query complexity of the restricted subtraction game

by replacing the strategy matrix Γ with the array Γ″.
Algorithm design: According to the characteristics of the

array, it will be more efficient to search for the target point “1” in

the array Γ″ because it can be directly accessed without using

other algorithms. So, the query complexity of finding the position

of “1” is constant (O(1)). In addition, the other parts of this

algorithm are similar to Huang’s method. Finally, we could

design Algorithm 3 to solve the restricted subtraction games

proposed by Huang et al. [19].

Algorithm 3. Solving the restricted subtraction games in Huang

et al. [19].

Query complexity analysis: Since the query complexity of

determining the value of Γ′′ is O(1), it is easy to find that the

algorithm 0 can be computed in a linear query time, that is, the

query complexity is O(N). It is more efficient compared with

Huang’s method (Huang et al., 2020), whose query complexity is

O(N3
2 logN).

4 Conclusion

Subtraction games and their variants can be solved by both

classical and quantum algorithms. Inspired by the restricted

subtraction game proposed by Huang, we proposed another

restricted subtraction game. Two linear query complexity

algorithms are designed to solve them, which is based on

dynamic programming and data structures, namely, the

adjacency list and the array. The query complexity of the

proposed algorithms is O(N), which is more efficient than that of

the traditional classical algorithms, whose query complexity is

O(N2), and the quantum algorithms, whose query complexity is

O(N3
2 logN).
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