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The muon capture reaction μ− + d→ n + n + ]μ in the doublet hyperfine state

is studied using nuclear potentials and consistent currents derived in the

chiral effective field theory, which are local and expressed in coordinate

space (the so-called Norfolk models). Only the largest contribution due to

the 1S0 nn scattering state is considered. Particular attention is given to the

estimate of theoretical uncertainty, for which four sources have been

identified: 1) the model dependence, 2) the chiral-order convergence for

the weak nuclear current, 3) the uncertainty in the single-nucleon axial form

factor, and 4) the numerical technique adopted to solve the bound and

scattering A = 2 systems. This last source of uncertainty has turned out to be

essentially negligible. For the 1S0 doublet muon capture rate ΓD(1S0), we

obtain ΓD(1S0) � 255.8(0.6)(4.4)(2.9) s−1, where the three errors come from

the first three sources of uncertainty. The value for ΓD(1S0) obtained within

this local chiral framework is compared with previous calculations and found

in very good agreement.
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1 Introduction

The muon capture on a deuteron, i.e. the process

μ− + d → n + n + ]μ, (1)

is one of the few weak nuclear reactions involving light nuclei which, on one side, are

experimentally accessible, and, on the other, can be studied using ab initio methods.

Furthermore, it is a process closely linked to the proton–proton weak capture, the so-

called pp reaction,

p + p → d + e+ + ]e, (2)
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which, although being of paramount importance in astrophysics,

is not experimentally accessible due to its extremely low rate and

can only be calculated. Since the theoretical inputs to study

reaction (2) and reaction (1) are essentially the same, the

comparison between the experiment and theory for muon

capture provides a strong test for the pp studies.

The muon capture reaction (1) can take place in two different

hyperfine states, f = 1/2 and 3/2. Since it is well known that the

doublet capture rate is about 40 times larger than the quartet one

(see, for instance, Ref. [1]), we will consider the f = 1/2 state only,

and we will focus on the doublet capture rate, ΓD. The

experimental situation for ΓD is quite confused, with available

measurements which are relatively old. These are the ones

of Refs. [2–5], 365 (96) s−1, 445 (60) s−1, 470 (29) s−1, and

409 (40) s−1, respectively. All these data are consistent with

each other within the experimental uncertainties, which are,

however, quite large. To clarify the situation, an experiment

with the aim of measuring ΓD with 1% accuracy is currently

performed at the Paul Scherrer Institute, in Switzerland, by the

MuSun Collaboration [6].

Many theoretical studies are available for the muon capture

rate ΓD. A review of the available literature from up to about

10 years ago can be found in Ref. [7]. Here, we focus on the work

conducted in the past 10 years. To the best of our knowledge, the

capture rate ΓD has been studied in Refs. [8–12]. The studies of

Refs. [9, 11] were performed within the phenomenological

approach, using phenomenological potentials and currents. In

Ref. [9], the first attempt to use the chiral effective field theory

(χEFT) was presented, within the so-called hybrid approach,

where a phenomenological nuclear interaction is used in

conjunction with χEFT weak nuclear charge and current

operators. In the study we present in this contribution,

though, we are interested not only in the determination of ΓD
but also an assessment of the theoretical uncertainty. This can be

grasped more comfortably and robustly within a consistent χEFT

approach. Therefore, we review only the theoretical works of

Refs. [8, 10, 12], which were performed within a consistent χEFT.

The studies of Refs. [8, 10] were essentially performed in parallel.

They both employed the latest (at those times) nuclear chiral

potentials and consistent weak current operators. In Ref. [8], the

doublet capture rate was found to be ΓD = 388.1 (4.3) s−1, when

the NN chiral potentials of Ref. [13], obtained up to the next-to-

next-to-next-to-leading order (N3LO) in the chiral expansion,

were used. When only the 1S0 channel of the final nn scattering

state was retained, it was found that ΓD(1S0) � 247.7(2.8) s−1. In
Ref. [10], a simultaneous study of the muon capture on a

deuteron and 3He was performed using the same N3LO chiral

potentials, but varying the potential cutoff Λ = 500, 600 MeV [13,

14], and consequently refitting consistently for each value of Λ
the low-energy constants (LECs) entering into the axial and

vector current operators. For the muon capture on a deuteron, it

was obtained ΓD = 399 (3) s−1, the spread accounting for the cutoff

sensitivity, as well as uncertainties in the LECs and electroweak

radiative corrections. When only the 1S0 channel is considered,

ΓD(1S0) � 254.9(1.4) s−1, where, in this case, the (small)

uncertainty arising from electroweak radiative corrections is

not included. In the case of the muon capture on 3He, an

excellent agreement with the available extremely accurate

experimental datum was found. Although obtained by

different groups and with some differences in the axial and

vector current operators adopted in the calculations, the

results of Refs. [8, 10] for ΓD and ΓD(1S0) should be

considered in reasonable agreement. It should be mentioned

that in both studies of Refs. [8, 10], a relation between the LEC

entering the axial current operator (denoted by dR) and cD, one of

the two LECs entering the three-nucleon potential (the other one

being cE) was taken from Ref. [15]. Then, the A = 3 binding

energies and the Gamow–Teller matrix element of tritium β-

decay were used to fix both cD (and consequently dR) and cE for

each given potential and cutoff Λ. Unfortunately, the relation

between dR and cD of Ref. [15] is missing of a factor −1/4, as

clearly stated in the Erratum of Ref. [10] (see also the Erratum of

Ref. [15]). While the work of Ref. [8] has not yet been revisited,

that of Ref. [10] has been corrected, finding very small changes in

the final results, which become ΓD = 398 (3) s−1 and

ΓD(1S0) � 253.5(1.2) s−1.
The most recent and systematic study of reaction (1) in χEFT,

even if only retaining the 1S0 nn channel, is that of Ref. [12].

There, ΓD(1S0) was calculated using a pool of 42 non-local chiral
potentials up to the next-to-next-to-leading order (N2LO), with a

regulator cutoff Λ in the range 450–600 MeV and six different

energy ranges in the NN scattering database [16]. The consistent

axial and vector currents were constructed (with the correct

relation between dR and cD), and a simultaneous fitting procedure

for all the involved LECs was adopted. The final result was found

to be ΓD(1S0) � 252.8(4.6)(3.9) s−1, in excellent agreement with

Ref. [10]. Here, the first error is due to the truncation in the chiral

expansion and the second one is due to the uncertainty in the

parameterization of the single-nucleon axial form factor (see as

follows). Furthermore, in Ref. [17], it has been found that a non-

proper treatment of the infrared cutoff when the bound-state

wave function is represented in a truncated basis (as in the case of

Refs. [9, 10]) can lead to an error of the order of ~ 1% in the few-

nucleon capture cross sections and astrophysical S-factors (as

that of the pp reaction, the case studied in Ref. [17]). Therefore,

we believe that it is also important to investigate this issue related

to the present muon capture process.

The chiral nuclear potentials involved in all the

aforementioned studies are highly non-local and expressed in

momentum space. This is less desirable than the r-space in the

case of the pp reaction, where the treatment in the momentum

space of the Coulomb interaction and the higher-order

electromagnetic effects is rather cumbersome. To overcome

these difficulties, local chiral potentials expressed in the r-

space would be highly desirable. These have been developed

only in recent years, as discussed in the recent review of Ref. [18].
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These potentials are very accurate and have proven to be

extremely successful in describing the structure and dynamics

of light and medium-mass nuclei. In particular, we are interested

in the work of the models of Ref. [19], the so-called Norfolk

potentials, for which, in these years, consistent electromagnetic

and weak transition operators have been constructed [20–22].

This local chiral framework has been used to calculate energies

[23] and charge radii [24] and various electromagnetic

observables in light nuclei, as the charge form factors in

A = 6, 12 [24] and the magnetic structure of few-nucleon

systems [22]. It has also been used to study weak transitions

in light nuclei [25, 26], the muon captures on A = 3, 6 nuclei [27],

neutrinoless double β-decay for A = 6, 12 [28] and the β-decay

spectra in A = 6 [29], and, finally, the equation of the state of pure

neutron matter [30, 31]. However, the use of the Norfolk

potentials to study the muon capture on a deuteron and the

pp reaction is still lacking. One of the aims of this work is to start

this path. Given the fact that ΓD(1S0) is the main contribution to

ΓD, and the 1S0 channel is also the only one of interest for pp

fusion [32, 33], we focus our attention only on ΓD(1S0). A full

calculation of ΓD, together with the rates for muon capture on A =

3, 6 nuclei, is currently underway. The second aim of the present

study is to provide a more robust determination of the theoretical

uncertainty than the work of Ref. [10], although probably not as

robust as the full work presented in Ref. [12]. However, the

procedure we plan to apply in the present work is much simpler

and, as shown as follows, with a quite similar outcome. We will

consider four sources of uncertainties: 1) the first one is due to

model dependence. In this study, the use of the local Norfolk

potentials will allow us to take into consideration the uncertainty

arising from the cutoff variation, as well as the energy ranges in

the NN scattering database up to which the LECs are fitted. In

fact, as it will be explained in Section 2.2, we will employ four

different versions of the Norfolk potentials, obtained using two

different sets of short- and long-range cutoffs, and two different

energy ranges, up to 125 MeV or up to 200 MeV, in the NN

scattering database. 2) The second source of uncertainty arises

from the chiral-order convergence. In principle, this should be

investigated by maintaining the same order for potentials and

weak nuclear currents. However, at present, the Norfolk

potentials, for which weak current operators have been

consistently constructed, are those obtained at N3LO. This

chiral order is needed to reach good accuracy in the

description of the NN systems and of light nuclei. Therefore,

it is questionable whether a study of reaction (1) using

potentials and currents at a chiral order which does not even

reproduce the nuclear systems under consideration, would be of

real interest. As a consequence, we will study, in the present

work, only the chiral-order convergence for the weak nuclear

currents, keeping fixed the chiral order of the adopted

potentials. 3) The third source of uncertainty is due to the

uncertainty in the parameterization of the single-nucleon axial

form factor gA(q2σ) as a function of the squared four-

momentum transfer q2σ . This aspect is discussed in detail in

Section 2.2. Here, we only notice that the most recent

parameterization for the single-nucleon axial form factor is

given by

gA q2σ( ) � gA 1 − 1
6
r2Aq

2
σ +/( ), (3)

where the dots indicate higher-order terms, which are

typically disregarded, and rA is the axial charge radius, its

square being given by r2A � 0.46(16) fm2 [34]. The large

uncertainty on r2A will significantly affect the total

uncertainty budget, as already found in Ref. [12]. 4) The

final source of uncertainty is the one arising from the

numerical technique adopted to solve the bound and

scattering A = 2 systems. Taking into consideration the

arguments of Ref. [17], we have decided to use two

methods. The first one is the method already developed by

Refs. [9, 10], i.e., a variational method, in which the bound and

scattering wave functions are expanded on a known basis and

the unknown coefficients of these expansions are obtained

using variational principles. The second method is the so-

called Numerov method, where the tail of the bound-state

wave function is, in fact, imposed “by hand” (see Section 2.3).

This last source of uncertainty will be shown to be completely

negligible.

The paper is organized as follows: Section 2 presents the

theoretical formalism, providing a schematic derivation for

ΓD(1S0) in Section 2.1, a description of the adopted nuclear

potentials and currents in Section 2.2, and a discussion of the

methods used to calculate the deuteron and nn wave functions in

Section 2.3. The results for ΓD(1S0) are presented and discussed

in Section 3, and some concluding remarks and an outlook are

given in Section 4.

2 Theoretical formalism

We discuss, in this section, the theoretical formalism

developed to calculate the muon capture rate. In particular,

Section 2.1 gives the main steps of the formalism used to

derive the differential and the total muon capture rate on a

deuteron in the initial doublet hyperfine state. A through

discussion is given by Ref. [9]. Section 2.2 reports the main

characteristics of the nuclear potentials and currents we used in

the present study. Finally, Section 2.3 presents the variational and

the Numerov methods used to calculate the deuteron bound and

nn scattering wave functions.

2.1 Observables

The differential capture rate in the doublet initial hyperfine

state dΓD/dp can be written as [9]
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dΓD
dp

� E2
] 1 − E]

mμ +md( )⎡⎢⎣ ⎤⎥⎦ p2dp̂
8π4

|TW|2, (4)

where p is the nn relative momentum, and

E] �
mμ +md( )2 − 4m2

n − 4p2

2 mμ +md( ) , (5)

with mμ, mn, and md being the muon, neutron, and deuteron

masses, respectively. The transition amplitude |TW|2 reads [9]

|TW|2 � 1
2f + 1

∑
s1s2h]

∑
fz

|TW f, fz; s1, s2, h]( )|2, (6)

where f, fz indicate the initial hyperfine state, fixed here to be

f = 1/2, while s1, s2, and h] denote the spin z-projection for the

two neutrons and the neutrino helicity state, respectively. In turn,

TW (f, fz; s1, s2, h]) is given by

TW(f, fz; s1, s2, h]) ≡ 〈nn, s1, s2; ], h] | HW | (μ, d);f, fz〉
≃

GV�
2

√ ψ1s ∑
sμsd

〈1
2
sμ, 1sd | ffz〉 lσ(h], sμ)

×〈Ψp,s1s2(nn) | jσ(q) | Ψd(sd)〉 , (7)

with GV being the vector coupling constant, chosen to be

GV � 1.14939 × 10−5 GeV−2, consistently with what has been

used in the fitting procedure of the LECs in the transition

currents (see Section 2.2). With lσ and jσ we indicate the

leptonic and hadronic current densities, respectively [9],

written as

lσ h], sμ( ) ≡ �u k], h]( ) γσ 1 − γ5( )u kμ, sμ( ), (8)
and

jσ q( ) � ∫ dx eiq·x jσ x( ) ≡ ρ q( ), j q( )( ). (9)

Here, the leptonic momentum transfer q is defined as

q = kμ − k] ≃ − k]. Furthermore, Ψd (sd) and Ψp,s1s2(nn) are
the initial deuteron and final nn wave functions, respectively,

with sd indicating the deuteron spin z-projection. Finally, in Eq.

7, the function ψ1s represents the 1s solution of the Schrödinger

equation for the initial muonic μ − d atom. Since the muon

capture occurs in the region where the deuteron and the muon

wave functions overlap, ψ1s can be approximated as the average

over the nuclear volume [9, 35], namely,

|ψ1s| ≃ |ψav
1s | ≡ |ψ1s 0( )| �

�������
α μμd( )3
π

√
, (10)

where ψ1s (0) denotes the Bohr wave function for a point charge e

evaluated at the origin, μμd is the reduced mass of the (μ, d)

system, and α = 1/137.036 is the fine-structure constant.

The final nn wave function can be expanded in partial waves as

Ψp,s1s2(nn) � 4π∑
S

〈1
2
s1,

1
2
s2 | SSz〉

× ∑
LLzJJz

iLYLLz
* (p̂)〈SSz, LLz | JJz〉 �ΨLSJJz

nn (p), (11)

where �ΨLSJJz
nn (p) is the nn wave function with orbital angular

momentum LLz, total spin SSz, and total angular momentum JJz.

In the present work, we restrict our study to the L = 0 state (1S0 in

spectroscopic notation).

Using standard techniques described in Refs. [9, 35], a

multipole expansion of the weak charge, ρ(q), and current,

j(q), operators can be performed, resulting in

〈�ΨLSJJz
nn p( )|ρ q( )|Ψd sd( )〉 � ���

4π
√ ∑

Λ≥0

������
2Λ + 1

√
iΛ

×
〈1sd,Λ0|JJz〉�����

2J + 1
√ CLSJ

Λ q( ), (12)

〈�ΨLSJJz
nn p( )|jz q( )|Ψd sd( )〉 � − ���

4π
√ ∑

Λ≥0

������
2Λ + 1

√
iΛ

×
〈1sd,Λ0|JJz〉�����

2J + 1
√ LLSJ

Λ q( ), (13)

〈�ΨLSJJz
nn (p) | jλ(q) | Ψd(sd)〉 � ���

2π
√ ∑

Λ≥1

������
2Λ + 1

√
iΛ

×
〈1sd,Λ − λ | JJz〉�����

2J + 1
√

× [−λMLSJ
λ (q) + ELSJ

Λ (q)] ,
(14)

where λ = ±1, and CLSJ
Λ (q), LLSJΛ (q), ELSJ

Λ (q), andMLSJ
Λ (q) denote

the reduced matrix elements (RMEs) of the Coulomb (C),

longitudinal (L), transverse electric (E), and transverse

magnetic (M) multipole operators, respectively, as defined in

Ref. [9]. Since the weak charge and current operators have scalar/

polar-vector (V) and pseudo-scalar/axial-vector (A) components,

each multipole consists of the sum of the V and A terms, having

opposite parity under space inversions. Given that, in this study,

only the 1S0 contribution is considered, the only contributing

multipoles are C1(A), L1(A), E1(A), and M1(V), where the

superscripts LSJ have been dropped. The integration of the

matrix elements is performed using ~ 50 Gaussian points

on the angles and a scaled grid on r with a maximum value

rmax ~ 42 fm. This permits full convergence of the integrals, and

the grid of r is large enough that all the low-energy components

of the current become negligible.

To calculate the differential capture rate dΓD/dp in Eq. 4, we

need to integrate over p̂. This is carried out numerically using the

Gauss-Legendre method with a number of points of the order of

10 so that an accuracy of better than 1 part in 103 can be achieved.

Finally, the total capture rate ΓD is obtained as

ΓD � ∫pmax

0

dΓD
dp

dp, (15)

where pmax is the maximum value of the momentum p. To find

the smallest needed number of grid points on p to reach

convergence, we computed the capture rate by integrating

over several grids starting from a minimum value of 20 points

up to a maximum of 80. We verified that the results obtained by

integrating over 20 or 40 points differ by about 0.1 s−1, while the

ones obtained with 40, 60, and 80 points differ by less than
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0.01 s−1. Therefore, we have used 60 grid points in all the studied

cases mentioned below.

2.2 Nuclear potentials and currents

In this study, we consider four different nuclear interaction

models and consistent weak current operators derived in χEFT.

We decided to concentrate our attention on the recent local r-

space potentials of Ref. [19] (see also Ref. [18] for a recent

review). The motivation behind this choice is that, in the future,

we plan to use this same formalism to the pp reaction, for which

the Coulomb interaction and also electromagnetic higher-order

contributions play a significant role at the accuracy level reached

by theory. The possibility to work in the r-space is clearly an

advantage compared with the momentum space, which would be

the unavoidable choice when using non-local potentials.

However, in the momentum space, the full electromagnetic

interaction between the two protons is not easy to be taken

into account. The potentials of Ref. [19], which we will refer to as

Norfolk potentials (denoted as NV), are chiral interactions that

also include, beyond pions and nucleons, Δ-isobar degrees of

freedom explicitly. The short-range (contact) part of the

interaction receives contributions at the leading order (LO),

next-to-leading order (NLO), and next-to-next-to-next-to-

leading order (N3LO), while the long-range components arise

from one- and two-pion exchanges, and are retained up to the

next-to-next-to-leading order (N2LO). By truncating the

expansion at N3LO, there are 26 LECs which have been fitted

to the NN Granada database [36–38], obtaining two classes of

Norfolk potentials, depending on the range of laboratory energies

over which the fits have been carried out: the NVI potentials have

been fitted in the range 0–125 MeV, while for the NVII

potentials, the range has been extended up to 200 MeV. For

each class of potential, two cutoff functions CRS(r) and CRL(r)
have been used to regularize the short- and long-range

components, respectively. These functions have been defined as

CRS r( ) � 1

π
3
2R3

S

e− r/RS( )2 , (16)

CRL r( ) � 1 − 1

r/RL( )6e r−RL( )/aL + 1
, (17)

with aL ≡ RL/2. Two different sets of cutoff values have been

considered, (RS; RL) = (0.7; 1.0) and (0.8; 1.2), and the resulting

models have been labeled “a” and “b,” respectively. All these

potentials are very accurate: in fact, the χ2/datum for the NVIa,

NVIIa, NVIb, and NVIIb potentials are 1.05, 1.37, 1.07, and

1.37 [19], respectively. It should be noted that in Ref. [19],

another set of NV potentials labeled NVIc and NVIIc was

constructed, with (RS; RL) = (0.6; 0.8). The reason for not

considering these potential models in this work is that they

have been found to lead to a poor convergence in the

hyperspherical harmonics method used to calculate the 3H

and 3He wave functions needed to predict the Gamow–Teller

matrix element in tritium β-decay. This study is, in turn,

necessary to fit the aforementioned dR LEC (see as follows

and Ref. [20]). Therefore, for the NVIc and NVIIc potentials,

consistent currents are not available, and we have disregarded

them in this work.

We now turn our attention to the weak transition operators.

When only the 1S0 nn partial wave is included, we have seen that

the contributing multipoles are C1(A), L1(A), E1(A), and M1(V).

Consequently, the weak vector charge operator is of no interest in

the process under consideration, and we will not discuss it here.

The weak vector current entering M1(V) can be obtained from

the isovector electromagnetic current, performing a rotation in

the isospin space, i.e., with the substitutions

τ i,z/20τ i,± � τ i,x ± iτi,y( )/2, (18)
τi × τj( )

z
0 τi × τj( )

±
� τ i × τj( )

x
± i τ i × τj( )

y
. (19)

Therefore, we will review the various contributions to the

electromagnetic current, even if we are interested only in their

isovector components. The electromagnetic current operators up

to one loop have been most recently reviewed in Ref. [22]. Here,

we only give a synthetic summary. Following the notation of Ref.

[22], we denote withQ the generic low-momentum scale. The LO

contribution, at the order Q−2, consists of the single-nucleon

current, while at the NLO or order Q−1, there is the one-pion-

exchange (OPE) contribution. The relativistic correction to the

LO single-nucleon current provides the first contribution of

order Q0 (N2LO). Furthermore, since the Norfolk interaction

models retain explicitly Δ-isobar degrees of freedom, we take into

account also the N2LO currents originating from explicit Δ
intermediate states. Finally, the currents at order Q1 (N3LO)

consist of 1) terms generated by minimal substitution in the four-

nucleon contact interactions involving two gradients of the

nucleon fields and by non-minimal couplings to the

electromagnetic field; 2) OPE terms induced by γπN

interactions of sub-leading order; and 3) one-loop two-pion-

exchange terms. A thorough discussion of all these contributions

as well as their explicit expressions is given in Ref. [22]. Here, we

only remark that 1) the various contributions are derived in

momentum space and have power–law behavior at large

momenta, or short range. Therefore, they need to be

regularized. The procedure adopted here, as in Ref. [22], is to

carry out first the Fourier transforms of the various terms. This

results in r-space operators which are highly singular at vanishing

inter-nucleon separations. Then, the singular behavior is

removed by multiplying the various terms by appropriate r-

space cutoff functions, identical to those of the Norfolk potentials

of Ref. [19]. More details are given in Refs. [21, 22]. 2) There are

5 LECs in the electromagnetic currents which do not enter the

nuclear potentials and need to be fitted using electromagnetic

observables. These LECs enter the current operators at N3LO; in
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particular, two of them are present in the currents arising from

non-minimal couplings to the electromagnetic field, and three of

them are present in the sub-leading isoscalar and isovector OPE

contributions. In this study, these LECs are determined by a

simultaneous fir to the A = 2–3 nuclei magnetic moments and the

deuteron threshold electrodisintegration at backward angles over

a wide range of momentum transfers [22]. In this work, we used

the LECs labeled with set A in Ref. [22].

The axial current operators used in the present work are the

ones of Ref. [20]. They include the LO term of order Q−3, which

arises from the single-nucleon axial current, and the N2LO and

N3LO terms (scaling as Q−1 and Q0, respectively), consisting of

the relativistic corrections and Δ contributions at N2LO, and of

OPE and contact terms at N3LO. It should be noted that at NLO,

here of orderQ−2, there is no contribution in χEFT. The explicit r-

space expression of these operators is given in Ref. [20]. Here, we

only remark that all contributions have been regularized at a

short and long range consistently with the regulator functions

used in the Norfolk potentials. Furthermore, the N3LO contact

term presents a LEC, here denoted by z0 (but essentially equal to

the dR LEC mentioned in Section 1), defined as

z0 � gA

2
m2

π

f2
π

1

mπRS( )3 − mπ

4gAΛχ
cD + mπ

3
c3 + 2c4( ) + mπ

6m
[ ].

(20)
Here, gA = 1.2723 (23) is the single-nucleon axial

coupling constant, m = 938.9 MeV is the nucleon mass,

mπ = 138.04 MeV and fπ = 97.4 MeV are the pion mass and

decay constant, respectively, Λχ ~ 1 GeV is the chiral-

symmetry breaking scale, and c3 = −0.79 and c4 = 1.33 are

two LECs entering the ππN Lagrangian at N2LO and taken

from the fit of the pion-nucleon scattering data with Δ-isobar
as explicit degrees of freedom [39]. As mentioned previously,

cD is one of the two LECs which enter the three-nucleon

interaction, the other being denoted by cE. The two LECs cD
(and consequently z0) and cE have been fitted to

simultaneously reproduce the experimental trinucleon

binding energies and the central value of the Gamow–Teller

matrix element in tritium β-decay. The explicit values for cD
are −0.635, −4.71, −0.61, and −5.25 for the NVIa, NVIb,

NVIIa, and NVIIb potentials, respectively.

The nuclear axial charge has a much simpler structure than

the axial and vector currents, and we have used the operators as

derived in Ref. [40]. At LO, i.e., at the order Q−2, it retains the

one-body term, which gives the most important contribution. At

NLO (orderQ−1), the OPE contribution appears, which, however,

has been found to be almost negligible in this study. The N2LO

contributions (order Q0) exactly vanish, and at N3LO (order Q1),

there are two-pion-exchange terms and new contact terms where

new LECs appear. N3LO has not been included in the calculation,

since the new LECs have not been fixed yet. However, we have

found the contribution of C1(A) to be two orders of magnitude

smaller than the one from the other multipoles. Therefore, the

effect of the axial current correction at N3LO can be safely

disregarded.

All the axial charge and current contributions are multiplied by

the single-nucleon axial coupling constant, gA(q2σ), written as a

function of the squared of the four-momentum transfer q2σ .

Contrary to the triton β-decay, in the case of the muon capture

on a deuteron, the four-momentum transfer is quite large. The

dependence of gA(q2σ) on q2σ is, therefore, crucial and, as already

mentioned in Section 1, is a source of theoretical uncertainty in this

study. In the past, it has been used for gA(q2σ), a dipole form [9], but

in Ref. [41], it has been argued that the dipole form introduces an

uncontrolled systematic error in estimating the value of the axial

form factor. Alternatively, it has been proposed to use the small-

momentum expansion, which leads to the expression of Eq. 3. In our

study, we decided to use the new parameterization for gA(q2σ) of Eq.
3, but with a slightly smaller uncertainty on the axial charge radius rA
compared with Ref. [41], as discussed in Ref. [34]. In this work, rA
has been chosen as the weighted average of the values obtained by

two independent procedures having approximately the same

accuracy, about 50%. One procedure is the one of Ref. [41] and

used for the axial form factor a convergent expansion given by

gA q2σ( ) � ∑kmax

k�0
akz q2σ( )k, (21)

where the variable z(q2σ) is defined as

z q2σ( ) � �������
tcut − q2σ

√ − ������
tcut − t0

√�������
tcut − q2σ

√ + ������
tcut − t0

√ , (22)

with tcut � 9 m2
π and −∞ < t0 < tcut. In Eq. 21, ak is the expansion

parameters that encode the nuclear structure information and

need to be experimentally fixed. From gA(q2σ) in Eq. 21, we can

obtain r2A as [41]

1
6
r2A ≡

1
gA 0( )

dgA q2σ( )
dq2σ

∣∣∣∣∣∣∣∣
q2σ�0

. (23)

The value for r2A is obtained by fitting experimental

data of neutrino scattering on a deuterium and is found

to be r2A(z exp.]) � 0.46(22) fm2 [41].

Alternatively, it is possible to obtain r2A from experiments

on muonic capture on protons, as carried out by the MuCap

Collaboration. To date, these experiments are characterized by

an overall accuracy of 1%, but a future experiment plans to

reduce this uncertainty to about 0.33% [34]. In this case,

r2A(MuCap) � 0.46(24) fm2 [34]. In order to take into account

both r2A(z exp.]) and r2A(MuCap), we adopted for r2A the value

r2A � 0.46(16) fm2, as suggested in Ref. [34]. The uncertainty

on r2A remains quite large, at about 35%, but it is slightly

smaller than the one of Ref. [41], which has been adopted in

the study of Ref. [12]. The consequences on the error budget

are discussed in Section 3. We finally notice that the dipole
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function for gA(q2σ), with a cutoff value of ΛA = 1 GeV as used,

for instance, in Refs. [9, 10], can be reduced to Eq. 3 by

imposing r2A � 0.467 fm2.

2.3 Nuclear wave functions

The calculation of the nuclear wave functions of the deuteron

and nn systems was, first of all, performed using the variational

method described in Ref. [9], where all the details of the

calculation can be found. Here, we summarize only the main

steps.

The deuteron wave function can be written as

Ψd r, Jz( ) � ∑
α

∑M−1

i�0
cα,i fi r( )Yα r̂( ), (24)

where the channels α ≡ (l; s; J; t) denote the deuteron quantum

numbers, with the combination (l = 0, 2; s = 1; J = 1; t = 0)

corresponding to α = 1, 2, respectively, and the functions Yα(r̂)
are given by

Yα r̂( ) ≡ Yl r̂( ) ⊗ χs[ ]
JJz
ξttz . (25)

The M radial functions fi(r), normalized to unity, with i = 0, . . .,

M − 1, are written as

fi r( ) �
������
i!γ3

i + 2( )!

√
e−

γ
2 r 2( )Li γr( ), (26)

where γ is a non-variational parameter chosen to be [9]

γ = 0.25 fm−1 and (2)Li (γr) are the Laguerre polynomials of

the second type [42]. The unknown coefficients cα,i are obtained

using the Rayleigh–Ritz variational principle, i.e., imposing the

condition

z

zcα,i
〈Ψd|H + Bd|Ψd〉 � 0, (27)

where H is the Hamiltonian and Bd is the deuteron binding

energy. This reduces to an eigenvalue–eigenvector problem,

which can be solved with standard numerical techniques [9].

The nn wave function �ΨLSJJz
nn (p) in Eq. 11 is written as a sum

of a core wave function Ψc(p), and of an asymptotic wave

function Ψa(p), where we have dropped the superscript LSJJz
for ease of presentation. The core wave function Ψc(p) describes

the nn scattering state where the two nucleons are close to each

other, and is expanded on a basis of Laguerre polynomials,

similarly to what we did for the deuteron wave function.

Therefore,

Ψc p( ) � ∑M−1

i�0
di p( )fi r( )Yα r̂( ), (28)

where fi(r) and Yα(r̂) are defined in Eqs 26, 25, respectively. It

should be noted that α ≡ L = 0; S = 0, J = 0, Jz = 0. In the

unknown coefficients di(p), we have explicitly kept the

dependence on p.

The asymptotic wave function Ψa(p) describes the nn

scattering system in the asymptotic region, where the nuclear

potential is negligible. Consequently, it can be written as a linear

combination of regular (Bessel) and irregular (Neumann)

spherical functions, denoted as jL(pr), nL(pr), respectively, i.e.,

Ψa p( ) � ~FL pr( )Yα r̂( ) + ∑
L′
RLL′ ~GL′ pr( )Yα′ r̂( ), (29)

where RLL’ is the reactance matrix, and ~FL′(pr) and ~GL′(pr) are
defined as

~FL′ pr( ) ≡ jL pr( )
pL

, (30)
~GL′ pr( ) ≡ nL pr( ) 1 − e−ϵr( )2L+1pL+1, (31)

so that they are well defined for p → 0 and r → 0. The function

(1 − e−ϵr)2L+1 was found to be an appropriate regularization

factor at the origin for nL (pr). We use the value ϵ = 0.25 fm−1

as in Ref. [9]. It should be noted that since L = L′ = 0 the reactance

matrix is, in fact, just a number here, and R00 = tan δ0, δ0 being

the phase shift.

To determine the coefficients di(p) in Eq. 28 and the

reactance matrix RLL’ in Eq. 29, we use the Kohn variational

principle [43], which states that the functional

RLL′ p( )[ ] � RLL′ p( ) − mn

Z2
〈�Ψα′ p( )|H − E|�Ψα p( )〉 (32)

is stationary with respect to di(p) and RLL’. In Eq. 32, E is the nn

relative energy (E = p2/mn, mn being the neutron mass) and H is

the Hamiltonian operator. Performing the variation, a system of

linear inhomogeneous equations for di(p) and a set of algebraic

equations for RLL’ are derived. These equations are solved by

standard techniques. The variational results presented in the

following section are obtained using M = 35 for both the

deuteron and the nn scattering wave functions.

To test the validity of the variational method and its

numerical accuracy, in this work, we also used the Numerov

method for the deuteron and the nn wave functions.

For the deuteron wave function, we used the so-called

renormalized Numerov method, based on the work of Ref.

[44]. Within this method, the Schrödinger equation is

rewritten as

I
d2

dx2
+ Q x( )[ ]Ψ x( ) � 0, (33)

where I is the identity matrix and Q(x) is a matrix defined as

Q x( ) � 2μ

Z2
( ) EI − V x( )[ ], (34)

and Ψ(x) is also a matrix whose columns are the independent

solutions of the Schrödinger equation with non-assigned

boundary conditions on the derivatives. In Eq. 34, μ is the np
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reduced mass, E ≡ − Bd, and V(x) is the sum of the np nuclear

potential Vnp(x) and the centrifugal barrier, i.e.,

V x( ) � Vnp x( ) + Z2l l + 1( )
2μr2

. (35)

The Schrödinger equation is evaluated on a finite and discrete

grid with a constant step h. The boundary conditions require

knowing the wave function at the initial and final grid points,

given by x0 = 0 and xN = Nh, respectively. Specifically, it is

assumed that Ψ(0) = 0 and Ψ(Nh) = 0. No conditions on first

derivatives are imposed.

Equation 33 can be rewritten equivalently as [44]

I − T xn+1( )[ ]Ψ xn+1( ) − 2I + 10T xn( )[ ]Ψ xn( )
+ I − T xn−1( )[ ]Ψ xn−1( ) � 0, (36)

where xn ∈ A, A ≡ (x0, xN), and T (xn) is a 2 × 2 matrix defined

as [44]

T xn( ) � − h2

12
Q xn( ). (37)

It should be noted that Eq. 36 is, in fact, the natural extension to a

matrix formulation of the ordinary Numerov algorithm (see Eq.

65 as follows).

By introducing the matrix F (xn) as [44]

F xn( ) � I − T xn( )[ ]Ψ xn( ), (38)

Equation 36 can be rewritten as

F xn+1( ) − U xn( )F xn( ) + F xn−1( ) � 0, (39)
where the matrix U (xn) is given by

U xn( ) � I − T xn( )[ ]−1 2I + 10 T xn( )[ ]. (40)

Furthermore, we introduce the matrices R (xn) and R̂(xn),
defined as [44]

R xn( ) � F xn+1( )F−1 xn( ), (41)
R̂ xn( ) � F xn−1( )F−1 xn( ), (42)

and their inverse matrices as

R−1 xn( ) � F xn( )F−1 xn+1( ), (43)
R̂
−1

xn( ) � F xn( )F−1 xn−1( ). (44)
By using definitions (41) and (42), it is possible to derive from Eq.

39 the following recursive relations:

R xn( ) � U xn( ) − R−1 xn−1( ), (45)
R̂ xn( ) � U xn( ) − R̂

−1
xn+1( ). (46)

We now notice that, since Ψ(0) = 0, Eq. 38 implies that F (0) = 0

and, consequently, from Eq. 43, it follows that R−1 (0) = 0.

Similarly, since Ψ(Nh) = 0, from Eqs 38, 44 we obtain

R̂
−1(Nh) � 0. Starting from the R−1(0) and R̂

−1(Nh)
values, and iteratively using Eqs 45, 46, it is possible to

calculate the R (xm) and R̂
−1(xm+1) values up to a matching

point xm, so that the interval A remains divided into two sub-

intervals, A1 ≡ [x0, xm+1] and A2 ≡ [xm, xN]. These values are

needed to calculate the deuteron binding energy and its wave

function. In fact, assuming we knew the deuteron binding energy

Bd ≡ − E for a given potential, then we could integrate Eq. 33 in

the two sub-intervals A1 and A2, obtaining the outgoing (left)

solution Ψl (xn) in A1, and the incoming (right) solution Ψr (xn)

in A2. If Bdwere a true eigenvalue, then the functionΨ(xn) and its
derivative have to be continuous in xm. The wave function

continuity at two consecutive points, for example, xm and

xm+1, implies that

Ψl xm( ) · l � Ψr xm( ) · r ≡ ψ xm( ), (47)
Ψl xm+1( ) · l � Ψr xm+1( ) · r ≡ ψ xm+1( ), (48)

where l and r are two unknown vectors. Multiplying Eq. 48 by

[I − T(xm+1)] and using Eq. 38, we obtain

Fl xm+1( ) · l � Fr xm+1( ) · r ≡ f xm+1( ). (49)
Similarly, from Eq. 47, we can write

Fl xm( ) · l � Fr xm( ) · r ≡ f xm( ). (50)

Using Eq. 41 with xn = xm for the outgoing solution and Eq. 42

with xn = xm+1 for the incoming solution, we can write

Fl xm+1( ) � R xm( )Fl xm( ), (51)
Fr xm+1( ) � R̂

−1
xm+1( )Fr xm( ). (52)

By replacing Eqs 51, 52 with Eq. 49 and using Eq. 50, we obtain

that

R xm( )f xm( ) � R̂
−1

xm+1( )f xm( ) (53)
or equivalently that

R xm( ) − R̂
−1

xm+1( )[ ]f xm( ) � 0. (54)

A non-trivial solution is only admitted if the aforementioned

equation satisfies the following condition:

det R xm( ) − R̂
−1

xm+1( )[ ] � 0. (55)

This determinant is a function of the energy E, i.e.,

det E( ) � det R xm( ) − R̂
−1

xm+1( )[ ]. (56)

Therefore, we proceed as follows: starting from an initial trial

value E1, we calculate det (E1). Fixing a tolerance factor ϵ, for
example ϵ = 10–16, if det (E1) ≤ ϵ, we assume E1 being the

eigenvalue, otherwise we compute the determinant for a second
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energy value E2. If det (E2) ≤ ϵ, we take the deuteron binding

energy as Bd = −E2, otherwise it is necessary to repeat the

procedure iteratively until det (Ei) ≤ ϵ. For the iterations after

the second one, the energy is chosen through the relation

Ei � Ei−2 − det Ei−1( ) Ei−2 − Ei−1
det Ei−2( ) − det Ei−1( ), (57)

which follows from a linear interpolation procedure. The

procedure stops when det (Ei) ≤ ϵ, and the deuteron binding

energy is taken to be Bd = −Ei.

To calculate the S- and D-wave components of the reduced

radial wave function, denoted as u0 (xn) and u2 (xn), respectively,

we notice that they are the two components of the vector ψ(xn),

defined in Eq. 47 at the point xm. The starting point is to assign an

arbitrary value to one of the two components of the vector

function f (xm) (see Eq. 50). Since R (xm) and R̂
−1(xm+1) are

known, the value of the other component is fixed by Eq. 54. By

defining the outgoing function as f (xn) = F (xn) ·l, from Eq. 41, it

follows that

f xn( ) � R−1 xn( )f xn+1( ), (58)

where n = m − 1, . . ., 0. Similarly, we can proceed with the

incoming function. By defining it as f (xn) = F (xn) ·r, from Eq. 42

we have

f xn( ) � R̂
−1

xn( )f xn−1( ), (59)
where n = m + 1, . . ., N. At this point, the vector function f (xn)

can be calculated ∀ xn ∈ [x0, xN], through Eqs 58, 59. The u0 (xn)
and u2 (xn) functions are given from f (xn) by

ψ xn( ) � I − T xn( )[ ]−1f xn( ). (60)

Finally, the deuteron wave function is normalized to unity.

The single-channel Numerov method, also known as a

three-point algorithm, is used to calculate the nn wave

function. Although the method is quite well known, to

provide a comprehensive review of all the approaches to

the A = 2 systems, we briefly summarize its main steps.

Again, we start by defining a finite and discrete interval I,

with constant step h, characterized by the initial and final

points, x0 = 0 and xN = Nh, respectively. Then, the

Schrödinger equation can be cast in the form

u″ xn( ) ≡ d2 u x( )
dx2

∣∣∣∣∣∣∣∣x�xn � W xn( )u xn( ), (61)

where

W xn( ) � 2μ

Z2
( )V xn( ) − p2, (62)

with V (xn) being the nuclear potential and p the nn relative

momentum. To solve Eq. 61, it is convenient to introduce the

function z (xn), defined as

z xn( ) � u xn( ) − h2

12
u″ xn( ). (63)

By replacing Eq. 61 with Eq. 63, z (xn) can be rewritten as

z xn( ) � 1 − h2

12
W xn( )( )u xn( ). (64)

By expanding z (xn−1) and z (xn+1) in an interval around the point

xn in a Taylor series up to O (h4), and adding together the two

expressions, we obtain

z xn+1( ) � 2z xn( ) − z xn−1( ) + h2u″ xn( ) + O h6( ). (65)

This is a three-point relation: once the z (xn−1) and z (xn) values

are known, after calculating u″(xn) using Eq. 61, we can compute

z (xn+1) at the order O (h6).

By fixing the values u (0) = 0 and u(h) = h, we consequently know

z (0) and z(h), i.e.,

u 0( ) � 00z 0( ) � 0, (66)

u h( ) � h0z h( ) � 1 − h2

12
W h( )( )u h( ), (67)

and u″(h) is obtained by Eq. 61. Then, z (2h) is obtained from Eq.

65, and consequently,

u 2h( ) � z 2h( )
1 − h2/12( )W 2h( )[ ], (68)

whereW (2h) is given by Eq. 62. Equation 68 can be used again

to determine the u(3h) value, and, proceeding iteratively, the

S-wave scattering reduced radial wave function is fully

determined except for an overall normalization factor. This

means that for a sufficiently large value of xn ∈ A, denoted as

x�n, we can write

u x�n( ) � N j0 kx�n( ) + tan δ0 n0 kx�n( )[ ], (69)

where N is the sought normalization constant, and the phase shift δ0
can be computed by taking the ratio between Eq. 69 written for x�n

and the same equation written for xm, m being close to �n so that

TABLE 1 Deuteron binding energies Bd, in MeV, and nn S-wave phase
shift δ0 at E=5 MeV, in deg, calculatedwith theNumerov (Num.) or
the variational (Var.) methods using the four Norfolk chiral potentials
NVIa, NVIIa, NVIb, and NVIIb. Here, we report the results up to the
digit fromwhich the twomethods start to differ. The experimental
value for Bd is Bexp

d � 2.2245 MeV.

Potential Bd (Num.) Bd (Var.) δ0(Num.) δ0(Var.)

NVIa 2.22465 2.22464 57.714 57.714

NVIIa 2.22442 2.22441 57.766 57.766

NVIb 2.22482 2.22486 57.815 57.812

NVIIb 2.22418 2.22427 57.964 57.960
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tan δ0 � u xm( )j0 kx�n( ) − u x�n( )j0 kxm( )
u x�n( )n0 kxm( ) − u xm( )n0 kx�n( ). (70)

Finally, using Eq. 69, the normalization constant N is given by

N � u x�n( )/ j0 kx�n( ) + tan δ0n0 kx�n( )[ ] (71)

so that the function u(xn) turns out to be normalized to

unitary flux.

To compare the results obtained with the variational and

the Numerov methods, Table 1 shows the deuteron binding

energies and the nn phase shifts at the indicative relative

energy E = 5 MeV for the four chiral potentials under

consideration. In the table, we can see an excellent

agreement between the two methods, with a difference well

below 1 keV for the binding energies. The phase shifts

calculated with the two methods are also in excellent

numerical agreement. Furthermore, Figure 1 shows the

deuteron and the nn wave functions, still at E = 5 MeV as

an example, for the NVIa potential. The results obtained with

the other chiral potentials present similar behavior. In the

figure, we can see that the variational method fails to

reproduce the u0(r) function for r > 20 fm. However, it

should be noticed that in this region, the function is almost

two orders of magnitude smaller than in the dominant range of

r ~ 0–5 fm. As we will see in the following section, we already

anticipate that these discrepancies in the deuteron wave

functions will have no impact on the muon capture rate.

3 Results

We present, in this section, the results for the ΓD(1S0) muon

capture rate, obtained using the Norfolk potentials and consistent

currents, as presented in Section 2.2. In particular, we will use the

four Norfolk potentials NVIa, NVIb, NVIIa, and NVIIb,

obtained varying the short- and long-range cutoffs (models a

or b), and the range of laboratory energies over which the fits

have been carried out (models I or II). For each model, the weak

vector current and the axial current and the charge operators

have been consistently constructed. In particular, we will indicate

with the label LO those results obtained including only the LO

contributions in the vector current and axial current and charge

operators, and with NLO those obtained including, in addition,

the NLO contributions to the vector current and axial charge

FIGURE 1
Deuteron u0(r) (left top panel) and u2(r) (right top panel) functions, and the nn 1S0 function (left bottom panel) at E =5 MeV are calculated with
the variational (dashed red line) and the Numerov (black solid line) methods. The NVIa potential is used. To appreciate the differences between the
two methods, the function u0(r) and u2(r) are shown in a semilogarithmic scale.
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operators. We remind the reader that there are no NLO

contributions to the axial current. With the label N2LO we

will indicate those results obtained including the N2LO terms

of the vector and axial currents, but not the axial charge since

they vanish exactly. Finally, with N3LO we will indicate the

results obtained when N3LO terms in the vector and axial

currents are retained. It should be noted that this is the order

in which new LECs appear. The contributions at N3LO for the

axial charge are, instead, discarded for the reasons explained

in Section 2.2. Finally, we will use the dependence given in Eq. 3

with gA = 1.2723 and r2A � 0.46 fm2 for the axial single-nucleon

form factor. However, to establish the uncertainty arising from

the rather poor knowledge of r2A (see Ref. [34] and the

discussion in Section 1 and at the end of Section 2.2), we

will also show results obtained with r2A � 0.30, 0.46, 0.62 fm2,

so that the 0.16 fm2 uncertainty on r2A [34] will be taken into

account.

First, we begin by proving that the uncertainty arising from

the numerical method adopted to study the deuteron and the

nn scattering states is well below the 1% level. In fact, Table 2

shows the results obtained with the NVIa potential and

currents with up to N3LO contributions, using either the

variational or the Numerov method to solve the two-body

problem (see Section 2.3). The function dΓD(1S0)/dp (see Eq.

4) calculated with the same potential and currents is shown in

Figure 2. As the figure and the table show, the agreement

between the results obtained with the two methods is

essentially perfect, of the order of 0.01 s−1 in ΓD(1S0), well
below any other source of error (≃ 0.005%). Therefore, from

now on, we will only present results obtained using the

variational method, which is numerically less involved than

the Numerov one.

Table 3 shows the results for ΓD(1S0), obtained using all four
Norfolk potentials, NVIa, NVIb, NVIIa, and NVIIb, and

consistent currents, from LO up to N3LO. The axial charge

radius is fixed at r2A � 0.46 fm2. As seen in the table, we can

provide our best estimate for ΓD(1S0), which we calculate

simply as the average between the four values at N3LO,

ΓD(1S0) � 255.8 s−1. Furthermore, we would like to remark

that the overall model dependence is quite small, the largest

difference being of the order of 1.1 s−1 between the NVIa and

NVIIb results, at N3LO. Going into more detail, 1) by comparing

the NVIa (NVIIa) and NVIb (NVIIb) results, still at N3LO, we

can get a grasp on the cutoff dependence, which turns out to be

smaller than 1 s−1 for both models I and II. 2) By comparing the

NVIa (NVIb) and NVIIa (NVIIb) results, again at N3LO, we can

conclude that the dependence on the NN database used for the

LECs’ fitting procedure for the potentials is essentially of the

same order. To remain conservative, we decided to define the

theoretical uncertainty arising from model dependence as the

half range, i.e.,

TABLE 2 Total doublet capture rate in the 1S0 nn channel, ΓD(1S0) in
s−1, calculated using either the Numerov or the variational
methods to obtain the deuteron and the nn scatteringwave functions.
Here, we report the results up to the digit for which the two methods
differ. The NVIa potential and consistent currents at the various
chiral order are used, and the axial charge radius is taken to be
r2A � 0.46 fm2.

χ-order Numerov Variational

LO 245.43 245.42

NLO 247.59 247.58

N2LO 254.67 254.65

N3LO 255.31 255.30

FIGURE 2
Differential doublet capture rate in the 1S0 nn channel,
dΓD(1S0)/dp in s−1MeV−1, as a function of the nn relative
momentum p in MeV, calculated using either the Numerov (black
solid line) or the variational (red dashed line) methods in order
to obtain the deuteron and the nn scattering wave functions. The
curves are exactly on top of each other. The NVIa potential and
consistent currents at N3LO are used. The axial charge radius is
taken to be r2A � 0.46 fm2.

TABLE 3 Total doublet capture rate in the 1S0 nn channel, ΓD(1S0) in
s−1, calculated using the four Norfolk potentials NVIa, NVIb, NVIIa,
and NVIIb, and consistent currents, at the various chiral orders. We
also report the uncertainty due to the truncation of the chiral
expansion in the current for each order. The axial charge radius is
taken to be r2A � 0.46 fm2, and the variational method is applied to
calculate the deuteron and the nn scattering wave functions.

χ-order

Potential

NVIa NVIb NVIIa NVIIb

LO 245.4 (62.0) 245.1 (61.9) 245.7 (62.1) 246.6 (62.3)

NLO 247.6 (15.7) 247.6 (15.7) 247.9 (15.7) 249.0 (15.7)

N2LO 254.7 (4.1) 259.1 (4.4) 255.0 (4.1) 260.3 (4.4)

N3LO 255.3 (1.1) 255.6 (1.3) 255.9 (1.1) 256.4 (1.4)
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ΔΓD 1S0( ) mod − dep[ ] ≡ |ΓD 1S0( )NVIIb − ΓD 1S0( )NVIa|
2

. (72)

From this, we obtain ΔΓD(1S0)[mod − dep] � 0.6 s−1. We want

to remark that this estimate of ΔΓD(1S0)[mod − dep] does not
take into account the error on the fit of the nuclear

interaction’s LECs or its chiral truncation. Therefore, it

should be considered just as a lower bound of the actual

uncertainty.

From Table 3, we can conclude that the chiral-order

convergence seems to be quite well under control for all the

potential models. In fact, in going from LO to NLO, ΓD(1S0)
has increased by 2.2 s−1 for the a models, and 2.5 s−1 and 2.4 s−1 for

the models NVIb and NVIIb, respectively. This small change is

because the only correction appearing at NLO comes from the

vector current. Passing fromNLO toN2LO, the muon capture rate

increases by 7.1 s−1 for the interactions NVIa and NVIIa, and

11.5 s−1 and 11.3 s−1 for the models NVIb and NVIIb, respectively.

This can be understood considering that the terms with the Δ-
isobar contributions appear at this order for the vector and axial

current. The convergence at N3LO shows instead a more involved

behavior: for the models NVIa and NVIIa, an ΓD(1S0) increase of
0.6 s−1 and 0.9 s−1, respectively, while for the models NVIb and

NVIIb, the muon capture rate decreases by 3.5 s−1 and 3.9 s−1,

respectively. Even if the results are in reasonable agreement with

the expected chiral convergence behavior (in particular for the

models a), the chiral convergence of the current shows a significant

dependence on the regularization that we tracked back to the axial

current corrections and in particular to the different value of the

constant cD (see Section 2.2). We still find remarkable that the

results at N3LO obtained with the various potentials, even if their

chiral convergence patterns are quite different, turn out to be

within 1.1 s−1.

The theoretical uncertainty arising from the chiral-order

convergence of the nuclear weak transition operators can be

studied using the prescription of Ref. [45]. Here, we report

the formula for the error at N2LO only. At this order, for

each energy, we define the error for the differential capture

rate (to simplify the notation from now on we use

ΓD(p) � dΓD(1S0)/dp), as

ΔΓD p( ) ≡ max Q3|ΓDLO p( )|, Q2|ΓDNLO p( ) − ΓDLO p( )|,{
Q|ΓDN2LO p( ) − ΓDNLO p( )|}, (73)

where we assumed

Q � 1
Λ

p8 +m8
π

p7 +m7
π

(74)

as in Ref. [46] for the case of the np↔ dγ reaction. Here, p is the

relative momentum of the nn system and we assume a value of

Λ ≃ 550 MeV, which is of the order of the cutoff of the adopted

interactions. Analogous formulas have been used to study the

other orders (see Ref. [45] for details).

In Figure 3, we show the error on dΓD(1S0)/dp order by

order in the expansion of the nuclear current up to N3LO for the

NVIa interaction. From the figure, the nice convergence of the

chiral expansion of the currents is evident. The total error arising

from the chiral truncation of the currents on ΓD(1S0) is then

computed by integrating the error of the differential capture rate

over p, namely,

ΔΓD 1S0( ) curr − conv[ ] � ∫pmax

0
ΔΓD p( )dp. (75)

Note that here we assumed the distribution of the truncation

error to be uniform, this being a systematic error. Therefore,

we do not square it in Eq. 75. Table 3 also shows for each order

the error relative to the chiral truncation of the electroweak

currents. To be the most conservative as possible, we keep as

error the largest obtained with the various interaction models.

In the same spirit, we consider the error computed at N2LO,

since the calculation at N3LO does not contain all the

contributions of the axial charge (see discussion Section

FIGURE 3
Differential doublet capture rate in the 1S0 nn channel,
dΓD(1S0)/dp in s−1MeV−1, as a function of the nn relative
momentum p in MeV, calculated order by order with the relative
errors computed following the prescription of Ref. [45]. The
axial charge radius is taken to be r2A � 0.46 fm2.

TABLE 4 Total doublet capture rate in the 1S0 nn channel, ΓD(1S0)
in s−1, is calculated using all the different interactions and
consistent currents up to N3LO, and three different values of
r2A, r

2
A � 0.30,0.46,0.62 fm2. The variational method is applied to

calculate the deuteron and the nn scattering wave functions.

Potential r2A � 0.30 r2A � 0.46 r2A � 0.62

NVIa 258.2 255.3 252.4

NVIb 258.5 255.6 252.8

NVIIa 258.7 255.9 253.0

NVIIb 259.3 256.4 253.6
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2.2). Therefore, we obtain ΔΓD(1S0)[curr − conv] � 4.4 s−1. In

comparison, the same calculation at N3LO would give as an

error ΔΓD(1S0)[curr − conv]|N3LO � 1.4 s−1. We want to remark

that the uncertainty computed here arises only from the chiral

truncation of the currents and it represents only a lower bound

of the total chiral error.

Finally, Table 4 shows the results obtained with all the

interactions and consistent currents up to N3LO for the three

values of the axial charge radius, r2A � 0.30, 0.46, 0.62 fm2. This

allows us to understand the importance of this last source of

theoretical uncertainty. The three values are chosen to span

the range of values proposed in Ref. [34], being the lower limit,

central value, and upper limit for r2A. We also verified that

ΓD(1S0) has a linear dependence on r2A. As a consequence,

performing the calculation for the three mentioned values of

r2A is essentially equivalent to the “standard” error

propagation. Again, we define the theoretical uncertainty

ΔΓD(1S0)[r2A] arising from this last source as the half-range

of the results, i.e.,

ΔΓD 1S0( ) r2A[ ] ≡ max
pot

|ΓD 1S0( )r2
A
�0.30 − ΓD 1S0( )r2

A
�0.62|

2

⎧⎨⎩ ⎫⎬⎭, (76)

where maxpot indicates that we take the maximum value among

the different interactions considered. From the table, we can

conclude that ΔΓD(1S0)[r2A] � 2.9 s−1, which is found to be

essentially model-independent.

In conclusion, our final result for ΓD(1S0) is
ΓD 1S0( ) � 255.8 0.6( ) 4.4( ) 2.9( ) s−1, (77)

where the three uncertainties arise from model dependence,

chiral convergence, and the experimental error in the axial

charge radius rA. The overall systematic uncertainty becomes

5.0 s−1 when the various contributions are summed. The

uncertainty on r2A is instead statistical and, therefore, must

be treated separately. This result can be compared with those

of Refs. [10, 12]. In Ref. [10], we found a value of 253.5 (1.2) s−1,

the error taking care of the cutoff dependence and the

uncertainty in the dR LEC fitting procedure. When only the

cutoff dependence is considered, it reduces to 0.2 s−1, somewhat

smaller than the present 0.6 s−1. The central values that we

obtained and the one quoted in Ref. [10], even if the chiral

potentials are very different, are instead in reasonable

agreement. In Ref. [12], it was found that

ΓD(1S0) � 252.8(4.6)(3.9) s−1, where the first error is due to

the truncation in the chiral expansion and the second is due to

the uncertainty in the nucleon axial radius rA. These two

errors should be compared with our 5.0 s−1 and 2.9 s−1. The

agreement for the first error is very nice, while the

small difference in the second error is certainly due to the

fact that in Ref. [12] a larger uncertainty for r2A was used

(0.22 fm2 vs. the present 0.16 fm2). Also, in this case, the

agreement between the central values is good, even if the

potential models adopted are very different. This could

suggest that the observable ΓD(1S0) is not sensitive to the

nuclear potential model, as long as this can properly

reproduce the deuteron and the nn scattering systems (as, in

fact, any realistic modern potential usually does).

4 Conclusion and outlook

We investigated, for the first time, with local nuclear

potential models derived in χEFT and consistent currents,

the muon capture on deuteron, in the 1S0 initial nn scattering

state. The use of this framework allowed us to 1) provide a new

estimate for the capture rate ΓD(1S0), which turned out to

agree with the results already present in the literature and

obtained still in χEFT, but with different (non-local) potential

models [10, 12]; 2) accompany this estimate with a

determination of the theoretical uncertainty, which arises

from model dependence, chiral convergence, and the

uncertainty in the single-nucleon axial charge radius rA.

We also verified that the uncertainty arising from the

numerical technique adopted to solve the two-body bound-

and scattering-state problem is completely negligible.

Our final result is ΓD(1S0) � 255.8(0.6)(4.4)(2.9) s−1,

where the three errors come from the three sources of

uncertainty just mentioned. To provide an indicative value

for the overall uncertainty, we propose to sum the systematic

uncertainties arising from sources 1) and 2), obtaining the

value of 5.0 s−1. Then, this error can be summed in quadrature

with the one of source 3), 2.9 s−1. Therefore, we obtain

ΓD(1S0) � 255.8(5.8) s−1. We remark again that the value of

5.8 s−1 for the overall uncertainty is only indicative, and the

preferable procedure should be to treat the three errors,

0.6 s−1, 4.4 s−1, and 2.9 s−1, separately. Moreover, it is

important to remind that the errors coming from the

sources 1) and 2) can be considered only as lower limits of

the actual uncertainty coming from the model dependence

and the chiral truncation.

Given the success of this calculation in determining

ΓD(1S0) and its uncertainty, with a procedure less involved

than the one of Ref. [12], which still leads to similar results, we

plan to proceed with applying this framework to the

calculation of ΓD, retaining all the nn partial waves up to

J = 2 and L = 3. These are known to provide contributions to ΓD
up to 1 s−1 [9]. In parallel, we plan to study the muon capture

processes also on 3He and 6Li, in the footsteps of Ref. [27].

Here, the Norfolk potentials were used in conjunction with the

variational and Green’s function Monte Carlo techniques to

solve for the A = 3, 6 bound states, and the final results were

found to disagree, to some level, with the experimental data. It

will be interesting to verify these outcomes, using the

hyperspherical harmonics method to solve for the A = 3, 6

nuclei [47–49]. Last but not least, we plan to apply this same
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framework to weak processes of interest for solar standard

models and solar neutrino fluxes, i.e., the proton weak capture

on proton (reaction 2), and on 3He (the so-called hep

reaction). In this second case, it is remarkable that a

consistent χEFT calculation is still missing (see Refs.

[50–52]). For both reactions, we will be able to provide a

value for the astrophysical S-factor at zero energy

accompanied by an estimate of the theoretical uncertainty.
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