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Artificial neural networks are very time consuming and energy intensive to train,

especially when increasing the size of the neural network in an attempt to

improve the performance. In this paper, we propose to preprocess the input

data of a deep neural network using a reservoir, which has originally been

introduced in the framework of reservoir computing. The key idea of this paper

is to use such a reservoir to transform the input data into a state in a higher

dimensional state-space, which allows the deep neural network to process the

data with improved performance. We focus on photonic reservoirs because of

their fast computation times and low-energy consumption. Based on numerical

simulations of delay-based reservoirs using a semiconductor laser, we show

that using such preprocessed data results in an improved performance of deep

neural networks. Furthermore, we show that we do not need to carefully fine-

tune the parameters of the preprocessing reservoir.
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Introduction

Deep neural networks (DNNs) are a key part of the domain of machine learning and

artificial neural networks. They have shown to be widely applicable for various problems,

e.g. natural language processing [1], drug discovery [2], detection of medical images [3–5],

fault diagnosis in solar panels [6] and many other applications. They are able to achieve

very high accuracy on these tasks because of their ability to generalise underlying patterns

and features. This is achieved by training the network, which is performed by means of

fitting a large dataset of input samples to a model. In order to achieve high accuracies, one

often uses large and complex networks, with a large number of parameter weights [7].

However, increasing the number of layers and parameters in DNNs is computationally

difficult and requires much memory, time and energy. For example, the GPT-3

autoregressive language model [8] contains 175 billion parameters which need to be

optimized. Several hardware implementations have been investigated to accelerate the

training of such DNNs. Examples include application specific integrated circuits (ASICs),

graphics processing units (GPUs) and field programmable gate arrays (FPGAs) [9, 10].
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Instead of the aforementioned electronic hardware accelerators,

several different photonic hardware accelerators have also been

investigated [11, 12]. Examples of this include coherent

nanophotonic circuits [13], diffractive deep neural networks

[14], all-optical neural networks [15] and photonic

convolutional accelerators for optical neural networks [16].

The reason why photonics-based accelerators are particularly

interesting is because of their high bandwidth and high power

efficiency. Different from hardware accelerators, one can also

look into preprocessing the input data before injecting it into the

DNNs to improve their performance. For example, using a

diffuser that generates speckle patterns can improve the

scalability and generalization when using convolutional neural

networks [17]. Additionally, hybrid data processing architectures

have also been developed, such as LightOn’s optical processing

unit which functions as a fast external preprocessor [18, 19].

Motivated by these photonic implementations, we look into the

opportunities offered by photonic reservoir computing (RC) as

preprocessor for DNNs.

Reservoir computing systems are recurrent neural networks

which consist of three layers: an input layer, a reservoir and an

output layer. The input layer is where the data is injected into the

system and the output layer is where predictions are made using

the input data, typically using a linear read-out. The reservoir

contains a large amount of randomly connected nonlinear nodes.

An illustration of such an RC system is shown in Figure 1A.

Different from deep neural networks is that the weights of the

reservoir are fixed and are not altered. Only the weights in the

output layer are trained, shortening the training time of the

network drastically. This also reduces the overall complexity of

RCs and makes them ideally suited for hardware

implementations using various physical systems [20]. They

have been successfully applied for various prediction tasks,

such as speech recognition [21, 22], time-series predictions

[23–25] and nonlinear channel equalization tasks [26].

The reason why RC systems performwell with a simple linear

read-out layer (shown in Figure 1A) as output layer, is because

the reservoirs transform the input in a high-dimensional state-

space. Such a transformation, however, might also be very useful

to be done at the input of a DNN such that the combined

performance of a reservoir and DNN surpasses that of the DNN

and/or that of the RC. In this paper, we investigate this

conjecture, and we will do that based on a specific photonic

reservoir by way of example.

We focus on a photonic reservoir, because of its fast

information processing rate, high bandwidth and small power

consumption [27, 28]. More specifically, we use a photonic delay-

based reservoir based on a single-mode semiconductor laser to

function as a fast, low-energy preprocessor for digital deep neural

networks. This optoelectronic delay-based reservoir has already

shown good performance for various tasks in previous

experiments, e.g. for spoken-digit recognition, time-series

prediction of the Santa Fe dataset [29], speech recognition

tasks [30], and nonlinear channel equalization tasks [26].

We investigate and compare the performance of various

networks. We use the photonic delay-based reservoir,

combined with either a linear read-out layer such as in

conventional reservoir computing, or combined with a deep

neural network. In case of the combined reservoir and DNN

system, we feed the output of the reservoir as input to the DNN,

making the photonic reservoir in this coupled system a

preprocessor. This basically means that the linear read-out

layer in Figure 1A is replaced with a DNN, as shown in

Figure 1B. We compare the performance of these networks

with other neural networks, such as the DNN alone and a

long short-term memory (LSTM) network. This latter network

contains a form of memory, making it ideal to be used to make

comparisons with the other networks for the specific benchmark

task used in this paper. We investigate the performance of the

different networks on a time-series prediction task as benchmark

and give a heuristic explanation for these results making use of

their memory capacity. The final goal of this paper is to

investigate whether photonic reservoirs are viable to

preprocess input data when coupled to DNNs, resulting in a

FIGURE 1
Simplified representation of a generic reservoir computing system, with the input layer, reservoir and linear read-out as output layer (A).
Simplified representation of the network that uses a reservoir as preprocessor. In the output layer, we have replaced the linear read-out layer with a
deep neural network (DNN) in order to make predictions (B).
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better performance compared to DNNs without such a

preprocessing network. This allows one to use a fast photonic

reservoir, combined with a relatively small DNN (which needs

limited training) to achieve good results on benchmark tasks.

This paper is organised as follows. Section 2 gives a short

introduction on the various networks used in this paper:

delay-based reservoir computing, together with the

numerical model used to simulate this RC system (in

Section 2.1), the deep neural network (in Section 2.2) and

the long short-term memory network (in Section 2.3). The

combined system, consisting of the preprocessing reservoir

and DNN, which is the novel architecture, is described in

Section 2.4. In these sections, we also discuss how we perform

training. Additionally, we explain the benchmark task which

is used (in Section 2.5) and describe a heuristic explanation of

the results of the networks by their memory capacity (in

Section 2.6). In Section 3, we give an overview of the

performance results of the different networks. Section 4

concludes with a discussion of the results in this paper.

Materials and methods

Photonic delay-based reservoir
computing

In this work, we simulate a reservoir computing system

which is based on a semiconductor laser (SL) with delayed

optical feedback [31]. The layout of our RC system is shown

in Figure 2, where we show in detail how the different layers of

Figure 1A are implemented in our system. The input layer is

where the input data is optically injected into the reservoir layer

using an unbalanced Mach-Zehnder modulator (MZM). Before

injecting the input data samples into the reservoir, these data

samples are first convoluted with a mask m(t). The reservoir is

made using a single-mode semiconductor laser with delayed

optical feedback. The delay time is indicated by τ. In the

output layer, the intensity of the SL is measured by a

photodetector and is sampled at θ time intervals to represent

the response at the virtual nodes. These intensity values are then

FIGURE 2
Simplified architecture of a delay-based reservoir computing system, with the input layer, reservoir and linear read-out layer. SL represents the
semiconductor laser, driven by a constant pump current. In the input layer, a maskm(t) encodes the input sample uk, which is in turn injected into the
reservoir using a Mach-Zehnder modulator (MZM). In the reservoir, we have a node separation θ and a delay time τ, the virtual nodes are depicted by
the cyan circles. In the linear read-out layer, we show the predicted target data ŷk . (A). Simplified representation of the network architecture of
the reservoir, functioning as preprocessor, coupled to the DNN, with its nodes depicted by blue circles (B).
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multiplied with the trained weights in order to make a prediction

[27, 32].

The simulations for the delay-based RC system used in this

paper are based on numerical integration of the following rate-

equations [33].

dE t( )
dt

� 1
2

1 + iα( )ξN t( )E t( ) + ηE t − τ( )e−iϕFB + ~Fβ t( )
+ μEinj t( ) (1)

dN t( )
dt

� ΔI
e
− N t( )

τc
− g + ξN t( )[ ] E t( )| |2, (2)

Where E is the dimensionless complex-valued slowly-varying

envelope of the electric field of the laser and N the excess amount

of carriers. α is the linewidth enhancement factor, ξ the

differential gain and g the threshold gain of the

semiconductor laser. η and μ are the feedback and injection

rates. ϕFB represents the phase difference between the electric

field of SL in Figure 2A and the feedback term, which is delayed

with the delay time τ. ~Fβ(t) represents the Gaussian distributed

white noise, modelling spontaneous emissions. This noise

strength is controlled by β and has following properties,

〈~Fβ(t)〉 � 0 and 〈~Fβ(t)~Fβ(t′)*〉 � β/τc δ(t − t′), with τc the

carrier lifetime. ΔI/e is the excess pump current divided by

the elementary charge, where ΔI = I − Ithr, with I the pump

current and Ithr the threshold pump current of the SL. The

injection of input data is handled by an MZM, which optically

injects data into the reservoir. This injection is modeled in the

simulations using Einj, where Einj(t) � ϵ(1 + eiB(t)), and is

performed with no frequency detuning as Einj is injected on

the same frequency as the optical frequency of the free running

semiconductor laser [34]. The amplitude of the injected electric

field is represented by ϵ, and the injected data signal by B(t),

where B(t) = A S(t) + Φ. A and Φ are here the modulation

amplitude and bias of the MZM, and S(t) the masked input signal

that is defined as the convolution between the k-th input sample

-from a total of n input samples- uk, and the mask m(t),

S t( ) � m t( ) p ∑
k

ukδ t − kτ( ). (3)

Themaskm(t) is a piecewise constant function, withN values

randomly selected from [0, 0.25, 0.5, 0.75, 1], where each sublevel
has a time length equal to the node separation θ. This ensures that

the total length of the mask equals Nθ. In this work, we have

chosen for the period of the mask Nθ being equal to the delay

time τ, where τ = 4 ns. This choice is taken out of simplicity,

although an improvement in performance has been observed in

literature when a small mismatch in the mask length is

introduced [35]. The parameters which are used in this work

are summarized in Table 1, and are taken from [34] where it is

shown that these parameter values lead to good RC performance.

To construct the linear read-out layer, the light intensity is

calculated as |E(t)|2, as in a practical implementation one would

sample the reservoir’s output using a photodetector that

measures intensities. We sample the intensity after every time

interval of duration θ, and thus we calculate N samples of the

intensity during every input sample uk.

A state matrix A is then constructed with the N sampled

intensities stored in the columns of this matrix, for every input

data sample, stored in the rows. This state matrix has the

dimensions (n × N) and is normalized between 0 and 1, by

dividing it with the maximum value found in this matrix. This

state matrix is used during the training phase to obtain the output

TABLE 1 Parameters used in the simulations.

Parameter Symbol Standard value

Amount of virtual nodes N 200 (unless stated otherwise)

Node separation θ 20 ps

Linewidth enhancement factor α 3

Threshold gain g 1 ps−1

Differential gain ξ 5 × 10−9 ps−1

Spontaneous emission noise factor β ≈ 102

Carrier lifetime τc 1 ns

Threshold pump current Ithr 16 mA

Excess pump current rate ΔI
e

1.02 × 105 ps−1 (unless stated otherwise)

Feedback rate η 7.8 ns−1 (unless stated otherwise)

Injection rate μ 98.1 ns−1 (unless stated otherwise)

Amplitude of injected field ϵ 100

Feedback phase ϕFB 0

Modulation amplitude of MZM A π/2

Bias voltage of MZM Φ π/4
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weights w corresponding to the N nodes of the reservoir, via a

least squares minimization procedure with the expected data y,

w � A†y. (4)
where we have used the real Moore–Penrose pseudoinverse

(denoted by the symbol†). The predicted values ŷ for the data

samples are thus given by

ŷ � Aw. (5)

Note that in Eq. 4, we actually add an additional bias node in

the state matrix which can account for possible offsets in the data,

so that the dimensions ofA are here (n × (N + 1)). The addition of

this extra bias node is only done for the linear read-out layer of

the reservoir computing system. Adding an extra bias node is not

performed for the other networks discussed in this paper, because

they already have biases in their networks. The weights of Eq. 4

are then used in the test phase, where we apply these weights to

unseen data and measure its performance.

Deep neural network

The DNN model we employ in this paper uses as input the

data, with 200 features (unless stated otherwise), and returns a

single value as a prediction. The reason for the specific amount of

features is explained in Section 2.5. The network consists of three

fully-connected layers, where the amount of nodes is decreased

throughout the network. The first hidden layer in the DNN is a

fully-connected layer with 100 nodes, with a ReLU activation

function in each of the nodes [36]. The next hidden layer is

another fully-connected layer, now with 50 nodes, and again with

the ReLU activation function. This information is then injected

into the final layer, which only has one node. The output of this

node corresponds to the target data and results in a prediction ŷk

for the data sample. Note that this network architecture is not

necessarily the most optimal structure for the problems

considered in this paper. Its architecture was chosen by a

small preliminary study, where the amount of nodes is

decreased with a factor of two in the next hidden layer

compared to each previous layer. The optimization of this

architecture, however, is not within the scope of this paper

and thus we do not alter the DNN architecture itself here.

This DNN model is trained using the Adam optimizer [37],

with a learning rate of 10−3 for 104 epochs (unless stated

otherwise). In order to avoid overfitting on the data, we use

early stopping on a validation set, which is different from the

training and test set. The loss, defined here as the mean squared

error between the expected target data samples yk and the

predicted target data samples ŷk, is calculated for every epoch

for the training and validation set. If the loss for the validation set

increases for a certain amount of epochs, the training is stopped.

Once the model is trained after the defined epoch amount, the

model weights are used on the test data and the performance of

the trained model is evaluated. We implement the DNN on a

standard consumer mobile CPU (Intel Core i7-10710U) using

the PyTorch 1.4.0 and NumPy 1.19.2 libraries, with Python

3.8.5 as programming language.

Long short-term memory

The DNN from the previous section does not contain

recurrent connections and will thus have no memory in the

internal network. In the time-series forecasting task that we use

as benchmark (see details in Section 2.5), such memory might be

essential to achieve good performance. Therefore, and in order to

further validate any performance gains by the reservoir as

preprocessor, we also consider another type of neural network

with recurrent connections. More specifically, we also study the

performance of the long short-term memory (LSTM) networks

[38, 39].

The LSTM network was first introduced in 1997 by Sepp

Hochreiter and Jürgen Schmidhuber as a solution to the

vanishing and exploding gradient problem of recurrent neural

networks, which can occur when training an artificial neural

network [40]. LSTMs are gradient-based recurrent neural

networks with feedback connections and are able to introduce

a lasting type of memory of recent inputs in the network during

training. This is accomplished by using memory cells with gate

units, where a connection is made to the neuron itself at the next

time step during training. They have been proven to be very

useful in many tasks, e.g. for speech recognition, natural language

modeling and text classification [41, 42].

We use an LSTM network that takes input data with

200 features. The LSTM network used in this paper has a

hidden dimension of 500 nodes, with the ReLU activation

function and batch normalisation. Additionally, a recurrent

dropout is used with a rate of 50%. The final layer consists of

a single fully-connected node, and results in a prediction ŷk for

the data sample. Note that this network architecture is not

necessarily the most optimal structure of the LSTM for the

problems considered in this paper. For example, the amount

of nodes is found by a small preliminary study, and is most likely

not the optimal amount. The optimization of this architecture,

however, is not within the scope of this paper and thus we do not

alter the LSTM architecture itself here.

We again train using the Adam optimizer, with a learning

rate of 10−4 for 104 epochs. Early stopping on a validation set is

also used here to avoid overfitting. The loss, defined here as the

mean squared error between the expected target data sample yk
and the predicted target data sample ŷk, is calculated for every

epoch for the training and validation set. If the loss for the

validation set increases for a certain amount of epochs, the

training is stopped. Once the model is trained after the

defined epoch amount, the model weights are used on the test
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data and the performance of the trained model is evaluated. We

implement the LSTM on a standard consumer mobile CPU (Intel

Core i7-10710U) using the PyTorch 1.4.0 and NumPy

1.19.2 libraries, with Python 3.8.5 as programming language.

Photonic reservoir as preprocessor for
deep neural networks

With the aim of achieving an improved performance when

combining systems, we use the photonic delay-based reservoir

from Section 2.1 as preprocessor, together with the DNN

described in Section 2.2, with the same (hyper)parameters.

This means that the conventional linear read-out layer from

Figure 2A is now replaced with the DNN, which is shown in

Figure 2B. This is done as follows: we inject the input data

samples as described in Section 2.1 into the reservoir. After the

reservoir, we calculate the light intensity from the simulated time

traces as |E(t)|2 and perform the sampling in order to construct

the state matrix A. Instead of performing training using the

conventional linear read-out in the output layer, we now use a

DNN and train its weights.

The advantages of such a photonic reservoir is that in

principle it can be very fast to run, promises a low power

requirement [27, 28] and has inherently a form of memory

due to the delayed feedback, making it an ideal candidate to

preprocess the input data for the DNN. This means that all time-

dependent information processing is done by the fast analog

photonic reservoir and the DNN is used for regression.

The physical implementation of the fast photonic reservoir

can be based on existing (delay-based) RC systems. An example

of such an RC system is described in [43], where a semiconductor

laser is coupled with a fiber-optic feedback loop. This

implementation achieved good performance on several tasks

such as speaker recognition, spoken digit recognition and

chaotic time-series prediction, and this at data rates above

1 Gbyte/s. Such a system, however, can become quite large to

physically implement with many components. Instead,

integrated implementations have been proposed and tested.

For example, in [31], a compact delay-based reservoir

computing system is demonstrated by using a laser and delay

line on an InP photonic integrated circuit. They showed in their

experiment that the chip was able to operate at 0.87 GSa/s, for a

reservoir which contains 23 nodes. Another example of such an

integrated implementation is given in [44]. The authors

demonstrate a spatially parallel delay-based photonic reservoir,

where multiple integrated optical cavities are used, resulting in

the possibility for a much higher amount of virtual nodes. The

experimental maximum bandwidth was here only limited by the

used arbitrary waveform generator oscilloscope to 20 GHz. Such

compact on-chip implementations of photonic reservoirs would

allow for small-scale implementations of the combined system,

where the information of the light intensity of the reservoir is

measured by photodetectors and then digitally sent to the DNN

which is implemented on e.g. FPGAs, ASICs, etc. Where the

training is performed.

The DNN again takes as input data with 200 features, due to

the reservoir containing 200 nodes in our case, so that every node

from the reservoir is now sent as input to the DNN for every

input sample, as shown in Figure 2B.

It is important to note that we do not further optimize the

architecture of the DNN itself, but rather the reservoir with

which we want to couple it with. This is done because the

optimization of the DNN is out of the scope of this paper and

because we mainly focus on the reservoir itself as the

preprocessor.

One-step ahead prediction task: Santa Fe
dataset

In order to compare the performance of the different

networks, we evaluate their normalized mean squared error

on a one-step ahead time-series prediction task as benchmark.

The used input dataset is the Santa Fe dataset which consists of

9093 data samples sampled from a far-IR laser in a chaotic regime

[45]. The Santa Fe data is first normalized over the whole dataset

before being used in the networks, resulting in uk ∈ [0,1].

For the networks containing a reservoir, we inject the first

3010 data samples, which function as the training dataset. As test

dataset, we inject the following 1010 data samples, with an

interval of 10 samples between the training and the test

dataset. For both training and test set we discard the first

210 samples to avoid transients occurring from switching

datasets (10 samples) and to be able to compare with the

other networks that do not contain a reservoir (200 samples).

This results in a training dataset and test dataset with sizes of

2800 and 800 input samples for the networks containing a

reservoir.

For the networks without a reservoir, we have to redefine the

input as we do not have a state matrix here, which normally

originates from the reservoir. As input for these networks, we

create a matrix analogous to such a state matrix, but which

features the preceding data samples, instead of the intensity

response of the nodes of the reservoir. For this, we now use a

sliding window over the data samples to create the input for the

neural networks. The 200 data samples preceding a data sample

are now used to predict the next data sample. This means that the

first row of the matrix contains the first 200 Santa Fe data samples

to predict the 201st data sample, the second row contains data

samples 2 to 201 to predict the 202nd data sample and so on. This

results in a training dataset and test dataset with dimensions

(2800 × 200) and (800 × 200), which are the same dimensions as

the state matrices used in the networks with reservoirs. The

difference now is that the resulting matrices use the 200 previous

data samples as features to predict the next data samples. Note
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that we will split the training dataset into a true training dataset,

containing 2300 samples, and a validation set, containing

500 input samples.

The final performance of the different networks is evaluated

by their normalized mean squared error (NMSE) on the test set

between the expected output y and predicted output ŷ,

NMSE ŷ, y( ) � 〈 y − ŷ( )2〉
〈 y − 〈y〉( )2〉

. (6)

The network with the lowest NMSE thus results in the best

performance for this particular task. The typical state-of-the-art

values for the normalized mean squared error on the Santa Fe

one-step ahead predictions via RC system simulations are around

0.01 [46, 47].

Memory capacity

In order to give a heuristic explanation for the increase in

performance between the delay-based reservoir computer and

the DNN which uses the reservoir as preprocessor, we will

calculate their task-independent memory capacities. This is

done using techniques from [48] where we inject discrete

input samples uk from a uniform distribution between [−1,

+1] into the reservoir and train the weights to reconstruct

products of normalized Legendre polynomials via li-delayed

past input samples u(k − li) [48, 49]. In this work, we will

limit this delayed input to li ≤ 10, and we calculate the

memory capacity up until degree 5 to limit the computation time.

The target data y(k) is produced by a product of Legendre

polynomials Pδ(·), of a certain degree δ, from previous inputs.

Note that there exist multiple combinations of Legendre

polynomials if we consider combined degrees greater than 1.

For example, if the combined degree d = 3, we have to consider

product combinations of Legendre polynomials with degrees: δ ∈
{(3), (2, 1) and (1, 1, 1)}. For example, the combination δ = (2, 1)

for the third degree can then be written as a product of Legendre

polynomials with degree 2 and 1:

y δ� 2,1( ), l1 ,l2 ,l3( )( ) k( ) � P2 u k − l1( ), u k − l2( )( )P1 u k − l3( )( ), (7)

where (l1, l2, l3) are the set of indices of past input samples,

which we have limited to li ≤ 10 here. This means that we also

have many different possible combinations for these values,

adding to the complexity when calculating the memory

capacity. The mean squared error between the expected signal

y(k), such as for the example given in Eq. (7), and the predicted

signal ŷ(k) can be calculated for all input samples. The mean

squared error, for a specific product combination δ and a set of

specific indices of past inputs (l1, . . . ), is used for calculating the

memory capacity,

C δ, l1 ,...( )( ) � 1 − 〈 y − ŷ( )2〉
〈y2〉 , (8)

where C(δ,(l1 ,... )) ∈ [0, 1] and with the average taken over all input
samples. If one then sums over all possible combinations of the

delayed elements (l1, . . . ), where li ≤ 10, for a specific

combination of Legendre polynomials δ, we have

Cy δ( ) � ∑
l1 ,...( )

Cy δ, l1 ,...( )( ). (9)

If we then sum Cy(δ) over all possible Legendre combinations

which give rise to the combined degree d, we have the memory

capacity per degree d,

Cd � ∑
δ

Cy δ( ). (10)

The total computational capacity of the system, CC, can be

calculated by summing over all memory capacities Cd, for all

degrees. According to [48], its theoretical upper limit for the

delay-based RC system considered in this paper is given by the

amount of virtual nodes N. Since we are only using a finite

amount of input data, we could potentially overestimate the value

for the memory capacity Cd. To avoid this, we implement a

threshold capacity Cthr, so that values below Cthr are not

considered for calculating the memory capacity, as discussed

in [48]. The reason for this is because memory capacities below

Cthr are not statistically relevant and are thus removed for its

calculation.

In order to limit the computational load when calculating the

memory capacities, due to the large amount of possible

combinations of Legendre polynomials and delays, we limit

the amount of virtual nodes in the reservoir for this specific

task to N = 25, instead of the previous N = 200 for the one-step

ahead prediction task. The node separation θ remains fixed to θ =

20 ps, and the input data consists of 5 × 105 uniformly distributed

samples, with values between -1 and 1. For the parameters used

here, we have a threshold memory capacity of approximately Cthr

≈ 2.7 × 10−4. Since we have changed the amount of virtual nodes

to N = 25, we have also changed the layout of the DNN itself. It

still consists of 3 fully-connected layers, but the DNN now takes

input data with 25 features. The first hidden layer is a fully-

connected layer with 12 nodes, followed by the ReLU activation

function [36]. The next layer is another fully-connected layer,

now with 6 nodes, and again with the ReLU activation function.

The final layer again only has a single node for predicting ŷk.

In case of the combined reservoir and DNN, we use the first 4 ×

104 data samples for training the model, while the last 104 samples

are used as validation dataset. This validation dataset is used for the

early stopping procedure against overfitting, where the standard

amount of training epochs is set at 1.5 × 103 epochs. The DNN is

trained using the Adam optimizer, with a learning rate of 10−3.
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Results

Performance on santa Fe one-step ahead
prediction task

We compare the different networks based on their

performance as expressed by the NMSE on the one-step

ahead prediction of the Santa Fe dataset. The final NMSE on

the test dataset, together with their total training time and time

per epoch are summarized in Table 2. The different times are

measured on a standard consumer mobile CPU (Intel Core i7-

10710U). For the parameters of the reservoir, we use the values

given in Table 1, as they are the parameter values which were

optimal in previous scans for the RC system [34].

We have investigated the learning curves, i.e. the NMSE as a

function of the epochs (not shown), of all networks which require

backpropagation, i.e. containing a DNN or LSTM, for choosing

the amount of epochs to train the networks. We have observed

that all three networks showed a decreasing training loss with

increasing epochs. For both the combined system of the reservoir

and DNN and only the DNN, we have observed that the

validation loss saturates to a constant loss after around

2000 epochs. As their training time per epoch is not very

large for both these networks, as shown in Table 2, we have

limited their amount of epochs to 104, allowing for a good NMSE.

For the LSTM network, we observed that the validation error still

decreases with increasing epochs. Due to this network being very

time-intensive to train, with a training time per epoch being

30 times that of the other two networks as shown in Table 2, we

have limited its training to also 104 epochs. It is important to note

again that for this amount of epochs, the saturation of the

validation loss is not yet reached for the LSTM.

The time required for calculating the weights of the RC

network is negligible, because no backpropagation is performed

here, in contrast to the other models. We can clearly see from

Table 2 that the photonic reservoir coupled with the DNN as

output layer outperforms all other networks, in both low

training time and low NMSE. For the parameters specified

in Table 1, we are able to achieve an NMSE for the reservoir

combined with the DNN which is almost 4 times lower than the

NMSE achieved when using a photonic RC system. The DNN

has a total training time comparable to that of the photonic

reservoir coupled with the DNN, and the same amount of free

parameters that are being trained, but the NMSE is much larger

when using only the DNN. The LSTM network, which is

generally a good choice for time-series forecasting due to its

recurrent nature, has an NMSE which is around 1.5 times larger

than that of the photonic RC. This can be explained by the fact

that the LSTM is very time-intensive to train compared to the

other networks, so that we have opted to limit its amount of

training epochs, and which still results in almost 1 hour of

training time. We expect that if the amount of epochs is

increased further (i.e. for several additional 104 epochs), we

are able to achieve a similar NMSE as the photonic RC. Both the

DNN and LSTM networks have a higher NMSE compared to

the photonic RC system, with the LSTM having the largest

training time. The reason why the photonic RC system has a

lower NMSE than the DNN is due to the fact that the RC system

is a recurrent neural network, which is able to capture the time

dependencies of sequential input data. For example, the

(software) introduction of reservoir computing was partially

introduced by the Echo State Network (ESN) [23], which is a

recurrent neural network and which showed good performance

on the Santa Fe time-series prediction task [25].

Note that the simulation of photonic reservoir itself requires

a lot of time. This simulation is, however, not concluded in the

training time in Table 2, because physical implementations of

photonic RC can be very fast. Its computing time is

approximately equal to the amount of input samples

multiplied with the delay time, nτ. This is of the order of

several μs and is thus negligible compared to the training

times in Table 2. Note that the time required for the

optimization of the (hyper)parameters of the reservoir (for the

photonic RC and photonic reservoir with DNN) and the neural

networks (for the DNN combined with or without the reservoir,

and for the LSTM) is not shown in Table 2, as it is not actual

training time. However, if one wants to achieve the best possible

performance, a scan for the reservoir parameters and/or of the

network hyperparameters needs to be performed, which also

requires time. The advantage of the photonic reservoir is that its

parameter optimization does not need to be very precise, as a

good performance can already be achieved for a rather broad

range of parameter values, as we will show in the following

results.

TABLE 2 NMSE and time used for training the different simulated network models, on the Santa Fe one-step ahead prediction task.

Network NMSE (×10−2) Epochs Total
training time (s)

Training time per epoch
(ms)

Photonic RC 1.332 - - -

DNN 3.384 104 103.95 10.40

LSTM 2.210 104 3072.26 307.23

Photonic reservoir with DNN 0.354 104 94.96 9.50
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The results in Table 2 show that the photonic reservoir,

coupled with or without the DNN, results in a good performance.

Therefore, we now investigate these two networks when varying

the parameters of the reservoir instead of using only fixed

reservoir parameters. We do this by varying the pump

current, injection rate and feedback rate. For this, we fix the

feedback rate and perform a grid scan over the pump current and

injection rate in Figure 3. This is shown for both the RC system,

in Figure 3A and the reservoir coupled with the DNN, in

Figure 3B. The improvement factor, defined as the NMSE

resulting from the RC system divided by the NMSE of the

reservoir coupled with the DNN, for the same parameters of

FIGURE 3
NMSE resulting from a grid search of injection rate and pump current, at constant feedback rate η =7.8 ns−1, for conventional RC (A), for the
photonic reservoir coupled with the DNN (trained for 1.6 ×104 epochs) (B) and the improvement factor of the reservoir combined with the DNN
compared to the RC system (C).

FIGURE 4
NMSE resulting from a grid search of feedback rate and pump current, at constant injection rate μ =98.1 ns−1, for conventional RC (A), for the
photonic reservoir coupled with the DNN (trained for 1.6 × 104 epochs) (B) and the improvement factor of the reservoir combined with the DNN
compared to the RC system (C).
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both reservoirs, is shown in Figure 3C. The same figures are

shown in Figure 4, where the feedback rate and pump current are

now varied, for a constant injection rate.

Figure 3A shows that the RC system performs well for a broad

range of pump currents and injection rates. This region can mainly

be found around high pump currents and high injection rates. This

is indicated by the light and dark blue regions in the figures. The

darker the blue color, the better performance, indicated by a lower

NMSE on the test set. Additionally, we observe that the region of

good performance is broader, and with better performance, when

the reservoir is combined with the DNN, as shown in Figure 3B.

This improvement of the reservoir coupled with the DNN is also

clearly visible in the improvement factor in Figure 3C. Values which

are larger than 1 indicate an improvement in performance when

using the reservoir with the DNN compared to the RC system. This

figure shows that a large portion of parameter space results in an

improvement, often with a factor around 2 to 5, compared to only

the RC system. Notably, the region below the threshold pump

current is improved when using the combined system (shown in

Figure 3Cwhere the horizontal axis is less than 0). This indicates that

these reservoirs can function relatively well even when the threshold

pump current is not yet reached. If one considers the region at high

current and low injection rate for which the RC did not result in a

good performance (indicated by the red regions in Figure 3A), we

can see that the performance at these parameter combinations is not

improved upon when the reservoir is combined with the DNN (also

shown by the red regions in Figure 3B).

As with Figure 3, Figure 4A shows that there is a broad parameter

range of pump current and feedback rate for which the RC system

performs well. This region is further broadened and improved when

we use a reservoir coupled with the DNN, shown in Figure 4B. This is

again reflected by the light and dark blue regions in both figures,

indicating a lowNMSE, and thus good performance.We observe that

when the pumpcurrent is increased above threshold, the feedback rate

needs to be decreased in order to achieve a good performance on both

networks. Analogous to Figure 3, all of the parameter combinations

whichwere already performing well with the RC system are improved

when the reservoir is coupled with the DNN at those same parameter

combinations. This is shown in Figure 4C,where typical improvement

factors can be found around 4 to 8 for a broad area of parameter

combinations. Most notably, there are even parameter combinations

which have more than 10 times improvement in performance, which

can be found just below threshold pump current1. This shows that the

feedback rate and pump current play a large role when using

reservoirs combined with DNNs, and can allow for large

performance increases when properly adjusted.

In order to find the optimal values for the reservoir

parameters, we perform an additional Bayesian search in the

parameter space of pump current, injection rate and feedback

rate. This Bayesian search is performed using the Gaussian

Processes function gp_minimize of the scikit-optimize

0.8.1 library. Figure 5 shows the NMSE for 1653 points

projected on the pump-current and injection rate axes

(Figures 5A, B) and on the pump-current and feedback rate

axes (Figures 5C, D). This figure shows the projections of a true

three dimensional scan of the full three dimensional parameter

ranges for the RC system and the reservoir coupled with the

DNN. This is opposed to Figures 3, 4, where only two

dimensional scans were performed, and where one value

always remained fixed (either feedback rate or injection rate).

In Figure 5, the parameter combinations which result in a good

performance, and thus low NMSE, are represented by large, dark

blue dots. If the NMSE is high, and thus a poor performance, the

dots are small and red.

The results of Figure 5 show that also in this scan of parameter

space the NMSE is improved when the reservoir is coupled with the

DNN, as indicated by the larger and bluer dots in Figures 5B, D as

compared to Figures 5A, C. This is even the case for parameter

values which resulted in a poor performance for the RC systems, e.g.

near the edges of the searched parameter space. This is in agreement

with the results found in Figures 3, 4, where the same parameter

regions with good performance can be found. The most optimal

values (i.e. with the lowest NMSE) found for both systems are shown

in Table 3. In this table, we see that the reservoir coupled with the

DNN, at its most optimal parameter values, is able to have anNMSE

which is 3.5 times better than the best NMSE found with RC, also at

its most optimal parameter values. Note that these twoNMSE values

are found at different parameter combinations, as we are comparing

the best possible performance we are able to achieve with both

systems. This is in contrast to the previous two dimensional scans,

where we reported the improvement factor for the same parameter

combinations, where we observed higher improvement factors.

Memory capacity

In the previous section, we have established that combining a

photonic reservoir with a DNN works well. We now try to gain

more insight as to why such systems work well by calculating

their memory capacity.

Figure 6 shows the memory capacity for various degrees as

colored bars. In this figure, we observe that the delay-based reservoir

coupled with the DNNhas for both the linear and nonlinear degrees

the highest memory capacities. This results in this system having the

largest total memory capacity, when compared with the

conventional delay-based reservoir computing system.

Knowing that the total memory capacity for the RC system is

bounded by N, in our case N = 25, we observe that the RC system

has a lowmemory capacity. This is presumed to be the case due to

noise inherently present in the delay-based system and due to

correlations present between virtual nodes. As the output layer in

such system is only a linear layer, we conjecture that this system
1 Note that this is not visible in Figure 4C due to the maximum scale

set here.
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thus has more trouble dealing with such negative effects

compared to the combined reservoir with the DNN, which

can minimize these effects and has much more inherent

nonlinearity due to its structure. This also explains why

mostly the nonlinear degrees for the memory capacity seem to

benefit from adding a DNN to the reservoir, resulting in the total

memory capacity being larger.

Note that it is not clear if the total memory capacity of the

combined system is still bounded by the theoretical upper limit

for the RC system, which is the size of the photonic reservoir (i.e.

the maximum total memory capacity is equal to the number of

nodes). It might be possible that the theoretical maximum of the

memory capacity for the combined system is larger than the

upper limit for the RC system, as additional variables are

introduced in the DNN. However, an in-depth study of the

theoretical maximum memory capacity of the combined system

is outside the scope of the present paper.

Figure 6 shows that coupling a delay-based RC system with a

DNN significantly enhances both the linear and nonlinear

memory capacities. This gives a heuristic explanation as to

why it is able to outperform a conventional RC on the Santa

Fe prediction task. This is because the Santa Fe one-step ahead

FIGURE 5
NMSE for various values for injected pump current, feedback rate and injection rate. The selection of these values was performed using a
Bayesian optimisation of this three dimensional parameter space. The two left plots are the results when using only an RC system, (A,C), and the two
right plots are the results of the reservoir combinedwith the DNN (trained for 1.6 ×104 epochs), (B,D). Large and blue values for the dots indicate a low
NMSE, and thus a good performance.

TABLE 3 Optimal NMSE and reservoir parameters for the photonic RC system and the reservoir combined with the DNN (trained for 1.6 ×104 epochs),
on the Santa Fe one-step ahead prediction task.

Network NMSE (× 10−2) I/Ithr − 1 η (ns−1) μ (ns−1)

Photonic RC 0.912 1.33 2.92 109.60

Photonic reservoir with DNN 0.255 0.79 15.24 115.06

FIGURE 6
Memory capacity per degree of linearly independent basis
functions for the delay-based reservoir computing system, with
N =25, and the reservoir, also with N =25, coupled with the DNN.
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prediction task typically requires high non-linear memory

capacities [50], which is the case when a preprocessor is used.

This also indicates that the combination of a reservoir and a

DNN can potentially outperform the RC system in other tasks,

different from the time-series prediction.

Discussion

In this work, we have numerically investigated the use of photonic

delay-based reservoirs as preprocessors for deep neural networks. This

results in a combined system which is different from conventional

reservoir computing, as the output layer now contains more

parameters which can be trained. The choice for photonic

reservoirs was made because of their potential to achieve fast

information processing, high bandwidth and small power

consumption, making such reservoirs ideal as physically

implemented preprocessors. These reservoirs are able to transform

the input data into a higher dimensional state-space, which improves

performance of the deep neural networks. We show that using a

preprocessing reservoir with a deep neural network results in an test

errorwhich is almost four times lowerwhen compared to conventional

reservoir computing, at the most optimal reservoir parameters, and

around ten times lower when compared with the DNN alone for

predicting the Santa Fe time-series. Additionally, the improvement in

performance is valid for a broad region of reservoir parameters,making

the preprocessing reservoir advantageous even when it is not properly

fine-tuned.We have also investigated the memory capacity in order to

provide an explanation for the improvement when using a reservoir

with a deep neural network compared to the reservoir computing

system.We found that thememory capacitywith the combined system

is much higher when compared with the reservoir computing system.

Therefore, we have shown that photonic reservoirs are ideally suited as

preprocessors for achieving improved performance when combined

with deep neural networks.

In our simulations, we have focused on predicting the Santa

Fe time-series as main learning task. This task typically requires

large nonlinear memory capacities in order to result in a good

performance. A reservoir computing system is able to solve this

task, as it has nonlinear memory capacity. However, as shown by

our study of the memory capacity, we are able to increase the

linear and nonlinear memory capacities of a DNN when we

combine it with a preprocessor.

Note that it is also possible to use other networks, different from

the DNN, which also have intrinsic memory, such as e.g. the LSTM

network. We have also investigated its performance on the Santa Fe

time-series prediction task, but observed that its performance is

slightly worse compared to the photonic reservoir computing

system. Additionally, if we use an LSTM network with many

parameters, it becomes very intesive to train. Using only a DNN

for this prediction task results in the worst performance of all

investigated networks. This is most likely because such networks

have a lower memory capacity compared to the other networks. Note

that some extra form of memory is added to both the LSTM and

DNN due to the construction of the input data (i.e. using a sliding

window of the input data) but it is not sufficient for this training task

as reflected by their performance. This shows that first using a

recurrent neural network as preprocessor for DNNs results in

better performance for time-dependent prediction tasks, such as

the Santa Fe task, as opposed to using recurrent DNNs. This is

also supported by the fact that the memory capacity, which is a task-

independent performance indicator, is higher when using a combined

system consisting of a reservoir as preprocessor and a DNN when

compared to using only a reservoir computing system.We conjecture

that due to the increased (non)linear memory capacities, the addition

of a preprocessor is also able to yield improvements for other tasks

which require such memory capacities, e.g. for tasks defined in [27].

Therefore, we are convinced that additional learning tasks, such as

dynamical system modelling tasks (e.g. nonlinear autoregressive

moving average model, NARMA) and nonlinear channel-

equalization tasks could be of great interest for future studies, due

to their time-dependent nature, for the combined systemof a reservoir

and DNN.

Note that one does not necessarily need to use a delay-based

reservoir to function as a preprocessor. The use of other reservoirs is

also expected to give improvements, such as e.g. for photonic spatial

reservoirs, or other types of photonic reservoirs, when coupled with

DNNs. This is further supported for photonic spatial reservoirs, such

as the swirl architecture, by the fact that they show good performance

on the same task considered here [51], i.e. the Santa Fe one-step ahead

prediction task. Therefore, we are convinced that adding such a

reservoir to a DNN will also result in an improved performance. Our

study thus indicates that physical reservoirs, as developed in the

framework of reservoir computing, are very well suited as

preprocessors for DNNs, resulting in improved performance.
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