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Noise-reductionmethods are an area of intensive research in signal processing.

In this article, a new conjugate gradient method is proposed for noise reduction

in signal processing and image restoration. The superiority of this method lies in

its employment of the ideas of accelerated conjugate gradient methods in

conjunction with a new adaptive method for choosing the step size. In this

work, using some assumptions, the weak convergence of the designedmethod

was established. As example applications, we implemented ourmethod to solve

signal-processing and image-restoration problems. The results of our

numerical simulations demonstrate the effectiveness and superiority of the

new approach.
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1 Introduction

Noise reduction is an important step in signal pre-processing; it is widely applied in

many fields, including underwater acoustic imaging [1, 2], pattern recognition [3], and

target detection and feature extraction [4], among others [5]. In this article, a new

approach based on a conjugate gradient method is derived from mathematical principles.

We consider the degradation model of signal or image such as:

y � Aω + ε, (1)

where ω ∈ RN is an original signal or image,A is the degradation operator, ε is the noise,

y ∈ RM is the observed data. The essence of noise reduction is solving Eq. 1 to obtain ω.

The solving of Eq. 1 can be considered as the following problem [6]:

min
ω∈RN

1
2
‖y −Aω‖2 s.t. ‖ω‖1 ≤ r, (2)

where r > 0 and ‖ · ‖1 is the ℓ1 norm. Let C � {ω ∈ RN: ‖ω‖1 ≤ r} and Q = {y}, then Eq. 2

can be seen as a split feasibility problem (SFP) [7–10]. Thus, we translate the problem of

noise reduction to SFP, which can be described as:
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find ω ∈ C such that Aω ∈ Q, (3)

where H1 and H2 are real Hilbert spaces, A: H1 → H2 is a

bounded linear operator, the closed and convex set C ⊂ H1

(C ≠ ∅), and Q ⊂ H2 (Q ≠ ∅). In order to solve the SFP, Byrne

[11, 12] presented the CQ algorithm, which creates a

sequence {ωi}:

ωi+1 � PC ωi − τ iA* I − PQ( )Aωi( ), (4)

where PC is the projection to C, PQ is the projection to Q,

τi ∈ (0, 2
‖A‖2), and A* is the adjoint operator of A. For convex

functions c and q, the definitions of C and Q are

C � ω ∈ H1: c ω( )≤ 0{ } and Q � u ∈ H2: q u( )≤ 0{ }.
There have been some research works devoted to solving Eq.

3. In 2004, Yang [13] presented a relaxed CQ algorithm using PCi

and PQi to replace PC and PQ. Here, we define two sets at point

ωi by

Ci � ω ∈ H1: c ωi( )≤ 〈ζ i,ωi − ω〉{ }, (5)
where ζi ∈ zc(ωi), and

Qi � u ∈ H2: q Aωi( )≤ 〈ϑi,Aωi − u〉{ }, (6)

where ϑi ∈ zq(Aωi). For all i > 1, clearly, C ⊆ Ci and Q ⊆ Qi. In

addition, Ci and Qi are half-spaces. Furthermore, referring to

[14], we define

fi ω( ) � 1
2
‖ I − PCi( )ω‖2 + 1

2
‖ I − PQi( )Aω‖2, (7)

where Ci andQi are given as in Eqs. 5, 6. In this specific case, their

gradient is

∇fi ω( ) � I − PCi( )ω +A* I − PQi( )Aω. (8)

Yang [13] presented a relaxed CQ algorithm in a finite-

dimensional Hilbert space:

ωi+1 � PC ωi − τ i∇fi ωi( )( ), (9)

where τi ∈ (0, 2
‖A‖2). Notice that calculating ‖A‖ is complex and

costly whenA is a high-dimensional dense matrix. In 2005, Yang

[15] presented a new adaptive step size τi, which is defined as:

τi � ρi
‖∇fi x( )‖, (10)

where

∑∞
i�1

ρi � ∞, ∑∞
i�1

ρ2i < +∞ .

However, Yang’s step size (Eq. 10) requires that Qi is bounded

and the matrix A is full rank. Recently, Wang [16] absolutely

eliminated these problems. Considering the CQ algorithm, López

[17] introduced a novel step size to overcome these problems;

this is defined as:

τ i � ρifi xi( )
‖∇fi xi( )‖2, (11)

where ρi ∈ (0, 4). With Lopez’s step size (Eq. 11), it was proved

that {ωi} in Eq. 9 weakly converges to the solution of the SFP.

In 2005, Qu and Xiu [18] introduced a relaxed CQ algorithm

that is improved by using an Armijo line search in Euclidian

space. In 2017, on the basis of the above application, Gibali [19]

extended this to Hilbert spaces, which proved that {ωi} weakly

converges to a solution of the SFP as follows:

FIGURE 1
From top to bottom: original signal, observed signal, and signals recovered by López’s algorithm, Yang’s algorithm, Sakurai and Iiduka’s
algorithm, and Algorithm 1.
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yi � PCi ωi − τ i∇fi ωi( )( ),
ωi+1 � PCi ωi − τ i∇fi yi( )( ), (12)

where τi � γℓli , γ > 0, ℓ ∈ (0, 1), li is the smallest nonnegative

integer, and ] ∈ (0, 1) satisfies:

τ i‖∇fi ωi( ) − ∇fi yi( )‖≤ ]‖ωi − yi‖.

In 2020, Kesornprom et al. [20] introduced a gradient-CQ

algorithm that derived a weak-convergence theorem for

solving the SFP in the framework of Hilbert spaces. This is

described as:

yi � ωi − τ i∇fi ωi( ),
ωi+1 � PCi yi − φi∇fi yi( )( ),

where Ci, fi, and ∇fi are given in Eqs 5, 7, 8, respectively, and

τ i � ρifi ωi( )
‖∇fi ωi( )‖2 + θi

, and

φi �
ρifi yi( )

‖∇fi yi( )‖2 + θi
, 0< ρi < 4, 0< θi < 1.

The conjugate gradient method [21] is a commonly used

acceleration scheme in the steepest descent method. The

conjugate gradient direction of f at ωi is

di+1 � −∇fi ωi( ) + βidi,

where d0 = −∇f(ω0) and βi ∈ (0, ∞). In this article, motivated by

previous works [22–24], a new viscosity approximation method

based on the conjugate gradientmethod is introduced. Many other

iterative methods of solving the SFP have been proposed [25–29].

Herein, combining the relaxed CQ algorithm with a new step

size and the conjugate gradient method, we find the solution of

noise reduction problem in Eq. 1 by solving the SFP in Hilbert

spaces with a novel approach. Section 2 gives some basic

definitions and lemmas. In Section 3, the theorem for proving

the weak convergence of our method is presented. In Section 4, we

present experimental results and compare them with the relaxed

CQ algorithms of López [17], Yang [15], and Sakurai and Iiduka

[20]. Finally, conclusions are given in Section 5.

2 Preliminaries

Throughout this article, to obtain our results, some technical

lemmas are used.

Lemma 2.1 [30]. Suppose the nonempty set C ⊂ H1 is closed and

convex. Thus, for all h1, h2 ∈ H1 and c ∈ C,

FIGURE 2
Comparison of recovered color images of Lena, peppers, house, panda using different algorithms with 1,000 iterations. From left to right:
original image, noised image, López’s algorithm, Yang’s algorithm, Sakurai and Iiduka’s algorithm, and Algorithm 1.
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(i) 〈h1 − PCh1, c − PCh1〉 ≤ 0;

(ii) ‖PCh1 − PCh2‖2 ≤ 〈PCh1 − PCh2, h1 − h2〉;
(iii) ‖PCh1 − c‖2 ≤ ‖h1 − c‖2 − ‖PCh1 − h1‖2.

From Lemma 2.1(ii), let I express the identity operator; then,

I − PC is a firmly nonexpansive operator, i.e.,

‖ I − PC( )h1 − I − PC( )h2‖2 ≤ 〈 I − PC( )h1 − I − PC( )h2, h1
− h2〉, ∀h1, h2 ∈ H1.

Definition 1. Suppose R is a set of real numbers, G: H → R is

convex; the definition of its subdifferential at w is then

zG w( ) � ζ ∈ H|G z( )≥G w( ) + 〈ζ , z − w〉, ∀ z ∈ H{ }.

To obtain our results, we prove the following lemma.

Lemma 2.2. Let fi(ω) be defined in Eq. 7; then ∇fi is Lipschitz

continuous with Lipschitz constant 1 + ‖A‖2
Proof. For any p, q ∈ H,

‖∇fi p( ) − ∇fi q( )‖ � ‖ I − PCi( )p − I − PCi( )q +A* I − PQi( )Ap −A* I − PQi( )Aq‖
≤ ‖p − PCip + PCiq − q‖ + ‖A* I − PQi( )Ap −A* I − PQi( )Aq)‖
≤ ‖p − q‖ + ‖A‖‖ I − PQi( )Ap − I − PQi( )Aq)‖
≤ ‖p − q‖ + ‖A‖‖Ap −Aq‖
≤ ‖p − q‖ + ‖A‖2‖p − q‖
� 1 + ‖A‖2( )‖p − q‖.

So, ∇fi is 1 + ‖A‖2-Lipschitz continuous.

3 Algorithm and convergence

A novel gradient-CQ algorithm is established in this section.

Furthermore, we prove that the sequence created by our

approach is convergent.

Algorithm 1. Let α1, α2, βi, β̂i ∈ (0, 1), and the sequences {di},

{ωi}, {yi}, {d̂i}, and {zi} be denoted as:

di+1 � −τ i∇fi ωi( ) + α1βidi,
yi � ωi + di+1,

d̂i+1 � −φi∇fi yi( ) + α2β̂id̂i,

zi � yi + d̂i+1,
ωi+1 � PCi zi( ),

where τi � ρifi(ωi)
‖∇fi(ωi)‖2+θi, φi � ρifi(yi)

‖∇fi(yi)‖2+θi, and 0 < ρi < 4, 0 < θi < 1.

We next state our weak-convergence theorem.

Theorem 3.1. The following assumptions hold:

(C1) inf
i
ρi(4 − ρi)> 0;

(C2) lim
i→∞ θi � 0;

(C3) lim
i→∞ βi � 0, lim

i→∞ β̂i � 0

(C4) {(I − PCi)ωi} and {(I − PQi)Aωi} are bounded.
So, {ωi} inAlgorithm 1 converges weakly toω* ∈Ω, which is the

nonempty solution set of the SFP.

FIGURE 3
Comparison of SNR (left) and PSNR (right) values resulting from image recovery using the four algorithms with 1,000 iterations.

FIGURE 4
Comparison of CT images of a knee joint recovered using different algorithms with 500 iterations. From left to right: original image, noised
image, López’s algorithm, Yang’s algorithm, Sakurai and Iiduka’s algorithm, and Algorithm 1.
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Proof. First, by using mathematical induction, we show

that {di} and {d̂i} are bounded. Assume that ‖di‖ ≤M holds, for

some i ≥ i0. Assumption C3 implies that there exists i0 ∈ N

such that βi ≤
1
2, ∀ i ≥ i0. Let M � max{‖di0‖, 2 sup

i≥1
‖τi[(I − PCi)

ωi +A*(I − PQi)Aωi]‖}<∞. From Algorithm 1, the triangle

inequality guarantees that

‖di+1‖ � ‖ − τ i I − PCi( )ωi +A* I − PQi( )Aωi[ ] + α1βidi‖
≤ ‖τ i I − PCi( )ωi +A* I − PQi( )Aωi[ ]‖ + α1βi‖di‖
≤M,

which means that ‖di‖ ≤ M for all i ≥ i0, so {di} is bounded.

Assume that ‖d̂i‖≤ M̂ is true for some i ≥ i0 and let M̂

� max{‖d̂i0‖, 2supi≥1‖φi[(I − PCi)xi +A*(I − PQi)Axi]‖}<∞.

As with the proof that ‖di‖ is bounded, we deduce

‖d̂i+1‖ � ‖ − φi I − PCi( )yi +A* I − PQi( )Ayi[ ] + α2β̂id̂i‖
≤ ‖φi I − PCi( )yi +A* I − PQi( )Ayi[ ]‖ + α2β̂id̂i‖
≤ M̂.

Let z ∈ Ω. Since Q ⊆ Qi and C ⊆ Ci, we obtain Az �
PQi(Az) � PQ(Az) and z � PCi(z) � PC(z). We have ∇fi(z) =

0. From Lemma 2.1(iii),

‖ωi+1 − z‖2 � ‖PCi zi( ) − z‖2
≤ ‖zi − z‖2 − ‖PCi zi( ) − zi‖2
� ‖zi − z‖2 − ‖ωi+1 − zi‖2.

(13)

Combining Lemma 2.1(ii), Eq. 7, and Eq. 8, we obtain

〈∇fi yi( ), yi − z〉 � 〈 I − PCi( )yi, yi − z〉 + 〈A* I − PQi( )Ayi, yi − z〉
� 〈 I − PCi( )yi, yi − z〉 + 〈 I − PQi( )Ayi,Ayi −Az〉
≥ ‖ I − PCi( )yi‖2 + ‖ I − PQi( )Ayi‖2
� 2fi yi( ).

(14)

as with Eq. 14, it follows that

〈∇fi ωi( ),ωi − z〉≥ 2fi ωi( ).
notice that

‖yi − z − φi∇fi yi( )‖2 � ‖yi − z‖2 + φ2
i ‖∇fi yi( )‖2 − 2φi〈∇fi yi( ), yi − z〉

≤ ‖yi − z‖2 + φ2
i ‖∇fi yi( )‖2 − 4φif yi( )

� ‖yi − z‖2 + ρ2i
f2
i yi( )

‖∇fi yi( )‖2 + θi( )2‖∇fi yi( )‖2

−4ρi
f2
i yi( )

‖∇fi yi( )‖2 + θi

≤ ‖yi − z‖2 + ρ2i
f2
i yi( )

‖∇fi yi( )‖2 + θi( )2 ‖∇fi yi( )‖2 + θi( )
−4ρi

f2
i yi( )

‖∇fi yi( )‖2 + θi

� ‖yi − z‖2 − ρi 4 − ρi( ) f2
i yi( )

‖∇fi yi( )‖2 + θi
.

(15)

similar to Eq. 15, we deduce

‖ωi − z − τ i∇fi ωi( )‖2 � ‖ωi − z‖2 + τ2i ‖∇fi ωi( )‖2 − 2τi〈∇fi ωi( ),ωi − z〉
≤ ‖ωi − z‖2 + τ2i ‖∇fi ωi( )‖2 − 4τifi ωi( )
� ‖ωi − z‖2 + ρ2i

f2
i ωi( )

‖∇fi ωi( )‖2 + θi( )2‖∇fi ωi( )‖2

−4ρi
f2

i ωi( )
‖∇fi ωi( )‖2 + θi

≤ ‖ωi − z‖2 + ρ2i
f2

i ωi( )
‖∇fi ωi( )‖2 + θi( )2 ‖∇fi ωi( )‖2 + θi( )

−4ρi
f2

i ωi( )
‖∇fi ωi( )‖2 + θi

� ‖ωi − z‖2 − ρi 4 − ρi( ) f2
i ωi( )

‖∇fi ωi( )‖2 + θi
.

(16)

Furthermore, combining Algorithm 1, and Eq. 15, we have

‖zi − z‖2� ‖yi − z − φi∇fi yi( ) + α2β̂id̂i‖2
� ‖yi − z − φi∇fi yi( )‖2 + ‖α2β̂id̂i‖2
+ 2〈yi − z − φi∇fi yi( ), α2β̂id̂i〉
≤ ‖yi − z − φi∇fi yi( )‖2
+ 2〈yi − z − φi∇fi yi( ) + α2β̂id̂i, α2β̂id̂i〉
≤ ‖yi − z − φi∇fi yi( )‖2 + 2α2β̂i〈zi − z, d̂i〉

≤ ‖yi − z‖2 − ρi 4 − ρi( ) f2
i yi( )

‖∇fi yi( )‖2 + θi
+ β̂iM̂,

(17)

where M̂ � sup
i∈N

2α2〈zi − z, d̂i〉. As with Eq. 17, we deduce

FIGURE 5
Comparison of CT images of a head recovered using different algorithms with 500 iterations. From left to right: original image, noised image,
López’s algorithm, Yang’s algorithm, Sakurai and Iiduka’s algorithm, and Algorithm 1.
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‖yi − z‖2 � ‖ωi − z − τ i∇fi ωi( ) + α1βidi‖2
≤ ‖ωi − z − τ i∇fi ωi( )‖2 + 2α1βi〈yi − z, di〉

≤ ‖ωi − z‖2 − ρi 4 − ρi( ) f2
i ωi( )

‖∇fi ωi( )‖2 + θi
+ βiM,

(18)

where M � sup
i∈N

2α1〈yi − z, di〉. Thus, from Eqs 13, 17, 18, it

holds that

‖ωi+1 − z‖2 ≤ ‖yi − z‖2 − ρi 4 − ρi( ) f2
i yi( )

‖∇fi yi( )‖2 + θi
+ β̂iM̂

−‖ωi+1 − yi + φi∇fi yi( ) − α2β̂i d̂i‖2

≤ ‖ωi − z‖2 − ρi 4 − ρi( ) f2
i ωi( )

‖∇fi ωi( )‖2 + θi
+ f2

i yi( )
‖∇fi yi( )‖2 + θi

( )
+ βiM + β̂iM̂( ) − ‖ωi+1 − yi + φi∇fi yi( ) − α2 β̂i d̂i‖2.

(19)

from Theorem 3.1(C3) and 0 < ρi < 4, we deduce

‖ωi+1 − z‖≤ ‖ωi − z‖.
Therefore, lim

n→∞‖ωi − z‖ exists; hence {ωi} is bounded.

Consequently, {yi} and {zi} are bounded. Back to the previous

step (Eq. 19), we obtain

lim inf
i→∞

ρi 4 − ρi( ) f2
i ωi( )

‖∇fi ωi( )‖2 + θi
+ f2

i yi( )
‖∇fi yi( )‖2 + θi

( ) � 0,

which implies by (C2) and (C3) of Theorem 3.1 that

lim
i→∞

f2
i ωi( )

‖∇fi ωi( )‖2 � lim
i→∞

f2
i yi( )

‖∇fi yi( )‖2 � 0. (20)

furthermore, it yields

‖∇fi ωi( )‖ � ‖∇fi ωi( ) − ∇fi z( )‖≤L‖ωi − z‖,
‖∇fi yi( )‖ � ‖∇fi yi( ) − ∇fi z( )‖≤ L‖yi − z‖, (21)

where L � 1 + ‖A‖2. This implies that ‖∇fi(ωi)‖ and ‖∇fi(yi)‖ are
bounded. From Eqs 20, 21, we have

lim
i→∞

fi ωi( ) � lim
i→∞

fi yi( ) � 0,

which implies

lim
i→∞

‖ I − PCi( )ωi‖ + ‖ I − PQi( )Aωi‖( )
� lim

i→∞
‖ I − PCi( )yi‖ + ‖ I − PQi( )Ayi‖( ) � 0.

Moreover, from Eq. 19, we have

lim
i→∞

‖ωi+1 − yi + φi∇fi yi( ) − α2β̂id̂i‖ � 0. (22)
We notice that

lim
i→∞

φi‖∇fi yi( )‖ � lim
i→∞

ρifi yi( )
‖∇fi yi( )‖2 + θi

‖∇fi yi( )‖( ) � 0. (23)

Therefore, combining Eqs. 22, 23 and lim
i→∞ β̂i � 0, we have

lim
i→∞

‖ωi+1 − yi‖ � 0.

In addition, from Algorithm 1 and Theorem 3.1(C3), we obtain

lim
i→∞

‖yi − ωi‖ � lim
i→∞

τi‖∇fi ωi( )‖( ) � 0.

Then, we deduce

FIGURE 6
Comparison of SNR values of the knee joint (left) and head (right) images resulting from image recovery using the four algorithms with
500 iterations.

FIGURE 7
Original image.
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lim
i→∞

‖ωi+1 − ωi‖ � 0,

considering {ωi} is bounded. Consequently, we can find a

subsequence {ωik} → ω* and ω* ∈ H1. Subsequently, we prove

ω* ∈ Ω. Using Eq. 5, and the fact that ωk+1 ∈ Cik, we have

c ωik( )≤ 〈ζ ik,ωik − ωik+1〉,

where ζ ik ∈ zc(ωik). Applying the boundedness of zc, it follows

that

c ωik( )≤ ‖ζ ik‖‖ωik − ωik+1‖→ 0, k → ∞ . (24)

From ωik.ω* and Eq. 24, we deduce

c ω*( )≤ lim inf
k→∞

c ωik( )≤ 0.

FIGURE 8
Versions of the image in Figure 7 with sampling rates of 30%, 40%, 50%, and 60% from left to right.

FIGURE 9
Comparison of images recovered using the four algorithms. From top to bottom: López’s algorithm, Yang’s algorithm, Sakurai and Iiduka’s
algorithm, and Algorithm 1; from left to right: sampling rates of 30%, 40%, 50%, and 60%.
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Hence, ω* ∈ C. Then, we show that Ax* ∈ Q. The fact that

PQik
(Aωik) ∈ Qik implies

q Aωik( )≤ 〈ϑik,Aωik − PQik
Aωik( )〉, (25)

where ϑik ∈ zq(Aωik). Then, we get
q Aωik( )≤ ‖ωik‖‖Aωik − PQik

Aωik( )‖→ 0, k → ∞ .

Moreover, according to Eq. 25, we deduce

q Aω*( )≤ lim inf
k→∞

q Aωik( )≤ 0.
Therefore, Aω* ∈ Q. We can thus draw the conclusion that the

sequence {ωi} → Ω.

4 Experimental results

In this section, we describe numerical simulations to

demonstrate the applications of Yang’s algorithm [15], López’s

algorithm [17], Sakurai and Iiduka’s algorithm [20], and the

proposed algorithm (Algorithm 1) in signal processing and

image recovery. The results of our simulations show that the

proposed method has higher efficiency than the well-known

methods in the literature. The experiments were carried out in

the environment of Matlab2016 and the CPU is Intel(R)

Core(TM) i5-8265U with @1.60GHz 1.80 GHz.

4.1 Signal processing

In the test, let original signal has m nonzero components, we

chooseN = 4,096,M = 2048, andm = 128 according to Eq. 1 . The

mean value and variance of Gaussian noise are 0 and 10–4,

respectively. The initial point ω1 = (1,1,. . .,1)T, ω0 =

(0,0,. . .,0)T, α1 = 0.8, α2 = 0.9, ρi = 1.1, θi � 1
i3 and r = m. The

mean squared error (MSE) can be chosen as the evaluation

criterion, which is defined as:

MSE � 1
N
‖ω* − ω‖2,

where ω is the original signal, ω* is the recovered signal. We set

the stopping criteria MSE ≤10–5. Figure 1 shows the results of this
experiment. These indicate that the number of iterations and

CPU time required by our approach are the best of the four

methods.

4.2 Image recovery

The value of each pixel in a grayscale image is in the range

[0.255]. The image restoration can be described as the minimizer:

min
�s∈C

‖A�s − y‖2,

where ‖·‖2 is the standard Euclidean norm, y is the observed

image, �s is the approximation of the original image, and A is a

blurring operator. When a color image is processed, we divide it

into three channels: red, green, and blue. Supposing the size of

the image in each channel is M × N, we have the formula for

the MSE:

MSE � 1
MN

∑M−1

i�0
∑N−1

j�0
‖�s i, j( ) − s i, j( )‖2,

where �s and s are the restored and original images, respectively.

FIGURE 10
Comparison of the SNR values of the images in Figure 9.
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Seeking to illustrate the effects of image recovery, we use the

signal-to-noise ratio (SNR) and peak SNR (PSNR), which are

defined:

SNR ≔ 20 log10
‖�s‖2

‖s − �s‖2, PSNR ≔ 20 log10
255




MSE

√ .

In short, larger SNR and PSNR values indicate better restoration

of the image. Figure 2 show the results of different color images

recovery. Figure 3 shows a comparison of the SNR and PSNR

values for images recovered using the four algorithms. The

experimental results show that the proposed algorithm always

has the largest SNR and PSNR values for different images, which

clearly indicates that the proposed algorithm is more effective in

recovery than other algorithms.We next applied our method to

medical images. Figures 4, 5 show computed tomography (CT)

images of a knee joint and a head, and Figure 6 shows a

comparison of the SNR values resulting from recovery using

each algorithm for these images. From Figure 6, it can be seen

clearly that the SNR of our method(the red line) is significantly

higher than other methods.

Figure 7 shows an original grayscale image. In Figure 8, we

investigate the use of our method on this image with different

sampling rates. In Figure 9, we show the image recovered by the

four algorithms with different sampling rates. Figure 10 shows a

comparison of the SNR values of these images. It can clearly be

seen that the performance of our method is the best.Finally, it can

clearly be seen that our method provides higher SNR and PSNR

values than López’s algorithm, Yang’s algorithm, or Sakurai and

Iiduka’s algorithm.

5 Conclusion

In this article, we propose a new conjugate gradient method

for signal recovery. The superiority of our method lies in its

employment of the ideas of accelerated conjugate gradient

methods with a new adaptive way of choosing the step size.

Under some assumptions, the weak convergence of the designed

method was established. As application demonstrations, we

implemented our method to solve signal-processing and

image-restoration problems. The results of our numerical

simulations verify the effectiveness and superiority of the new

approach. However, in the numerical experiments in this paper,

we always assume that the noise is known. In the future work, we

will devote to signal and image recovery research without prior

knowledge of noise by optimization method.
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