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Metamaterials and metasurfaces have been widely developed recently for

extraordinary acoustic and elastic wave control at a deep subwavelength

scale. Perfect wave absorption as an extreme case to totally absorb the

impinged waves has gained great attention, whereas most existing designs

based on local resonance lack tunabilities, making perfect absorption be

observed at a single frequency. To overcome this drawback, in this work, we

design and fabricate a tunable inductance-resistance (LR) shunted mechanical

resonator via a bonded piezoelectric patch for perfect flexural wave absorption

at low frequency. The LR shunted absorber could be reconfigured to a broad

frequency range for perfect flexural wave absorption. The tunable perfect

absorption performances are validated through experiments and unit

absorption is achieved in experiments. In the end, to further highlight the

advantages of shunted damping we numerically demonstrate that the

absorption spectrum could be enhanced to broadband absorption with a

negative capacitance and an inductance-resistance circuit (NC-LR)

connected in parallel. The approach proposed provides an alternative

solution to achieve perfect wave absorption in the low-frequency range and

enables practical application in complex engineering structures.
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1 Introduction

Recently, elastic metamaterials have gained lots of attention thanks to their

extraordinary dynamic properties [1–3], such as effective negative mass density and/

or stiffness [4–7], that are not directly available in natural materials. By artificially

designing the microstructures at the deep subwavelength scale, elastic metamaterials have

been proven to be good candidates for remarkable wave manipulation [7–12], wave

attenuation [1, 13], etc. Most recently, efforts are more paid to the design of elastic

metasurfaces [14–19], which are a new kind of planar metamaterials, to manipulate

wavefronts via a suitable arrangement of discontinuities on a material interface or

boundary. Perfect wave absorption, an exceptional wave control ability to totally
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absorb incoming waves, has been demonstrated in 1-dimensional

(1D) or 2-dimensional (2D) acoustic and elastic metamaterials/

metasurfaces using passive [20–28] or active [18, 29] approaches.

Examples of the perfect absorption demonstrated in optics,

acoustics, as well as elastic waves, were achieved by satisfying

the critical coupling condition [23–27, 30, 31], in which the

balance between the energy leakage and the inherent losses of the

resonator was fulfilled. Similar to optics [31], by placing a

scatterer at or near a waveguide boundary, i.e., a perfect

reflecting mirror, in a one-port system, the perfect absorption

is observed, through the tuning of loss. The one-port and two-

port near perfect flexural wave absorbers on 1D structures have

also been reported using acoustic black hole (ABH) [30], Willis

coupling [27, 29, 32], coated strip-like beam [26, 28], etc.

However, most of the existing passive perfect absorbers

achieve perfect absorption only at a single frequency point,

which hinders their practical applications. Precisely

controlling the amount of damping in the scatterers also

makes it difficult to design and fabricate the absorbers in

experiments. To tune or broaden the absorption frequency,

actively shunted piezoelectric patches [18, 29] and thermally

controlled shape memory polymer resonators [33] have made it

possible, whereas there are still limitations in the existing designs,

such as degraded low-frequency performance and inconvenient

control strategies.

Using a shunted damping concept proposed by Forward [34],

one can not only accurately control the added damping but also

tune the system parameters. In this work, we design and fabricate

a tunable inductance-resistance (LR) shunted mechanical

resonator via a bonded piezoelectric patch for the

demonstration of perfect flexural wave absorption at the low-

frequency range. By changing the electrical resonance, perfect

absorption can be tuned to various frequencies for perfect

absorption. The tunable perfect absorption performances are

further validated through experiments. In the end, we further

numerically demonstrate that the absorption spectrum could be

enhanced to broadband absorption with an additional negative

capacitance connected in parallel. The approach proposed sheds

light on designs of reconfigurable dynamic control devices and

enables alternative solutions for ultrasonic sensing of complex

engineering structures.

2 Materials and methods

2.1 Design

The concept and a schematic of our designed LR shunted

absorber are shown in Figures 1A, B, respectively. The shunted

resonator is designed with a cantilever-like beam bonded with a

piezoelectric patch (PZT-5H) on its top surface. The piezoelectric

patch with dimensions (Lp ×wp × hp = 10 mm× 5 mm× 1 mm) is

connected to an LR-shunted circuit. For low-frequency wave

absorption, a large value of inductance is required, which will

largely increase the added weight and size to the overall system.

To avoid this bulky design, we implement a synthetic inductor

described in more detail in the next. The LR-shunted resonator is

attached near a free end of a semi-infinite beam with a cross-

section area (w × h = 12.7 mm × 3.1 mm) and material properties

being Young’s modulus (E = 70 GPa), mass density (ρ = 2700 kg/

m3), and Poisson’s ratio (] = 0.33). A cube-shape tip mass made

of stainless steel with Young’s modulus (E = 205 GPa), mass

density (ρ = 7850 kg/m3), and Poisson’s ratio (] = 0.28), is

attached at the end of an aluminum strip. Another identical

cube functions as a support connected to the other end but on the

bottom surface of this beam strip. In our previously investigated

coupled mechanical resonators on a two-port system [27], we

demonstrated that the coupling distance and the mechanical

damping played essential roles in achieving perfect absorption

due to the scattering toward the two ports as well as the

neighboring resonators. Here, in the one port system as

shown in Figure 1, we consider a general case where the

scatterer is placed at x = d away from the free end. The

scattered waves from the resonator will interfere with the

waves reflected from the free boundary and the incident

waves [18]. The effect of the location of the resonator on the

absorption performance is analyzed through a systematic study.

In this analysis, we evaluate the absorption performance as a

FIGURE 1
Design of an LR-shunted tunable perfect flexural wave absorber. (A) Concept of a shunted scatterer for perfect flexural wave absorption. (B)
Schematic of an LR-shunted tunable perfect flexural wave absorber.
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function of resonator location and resonator damping by

considering the mechanical resonator as a damped resonator.

We find that for the current chosen design the optimized location

of the resonator is at d = 17 mm away from the free end of the

beam, which is in the deep subwavelength of the working

frequency. Other geometric parameters can be found in the

Supplementary Material, and the material properties of the

piezoelectric patch can be found in [19]. We use a

commercially available Finite Element Method (FEM)

package, COMSOL MultiPhysics, to validate our design. Both

frequency domain and time domain simulations are performed

and the simulation results are given in the next section.

2.2 Sample fabrication and experimental
setup

In what follows we fabricate our LR-shunted resonator and

characterize its absorption performance through experiments.

The fabricated samples and the experimental setup are illustrated

in Figure 2. To fabricate the mechanical resonator, a aluminum

strip (L1 × w1 × h1 = 21 mm × 5 mm × 1 mm) is bonded with two

identical stainless-steel cubes with side length (wc = 5 mm) on

each side of the beam strip facing each other. One of the cubes

functions as a tip mass, and the other one as a support to interact

with the host beam. A piezoelectric patch is glued on the top

surface of the beam strip with a 1 mm gap to the tip mass. A

photo of the fabricated absorber is shown in Figure 2A. The

bottom electrode of the piezoelectric patch is grounded and the

top one is connected to the external LR circuit. To realize a large

value of inductance without adding too much weight to the

system, we implement a synthetic inductor, Antoniou’s Circuit.

A photo of the fabricated circuit and a schematic of the

Antoniou’s circuit are shown in Figures 2C, D, respectively.

The synthetic inductor consists of two operational amplifiers

(OPA445), four resistors (R1−R4), and a capacitor (C). The

inductance of the synthetic inductor is calculated as, L =

R1R3R4C/R2. One can see that by simply adjusting one of the

circuit parameters the inductance can be tuned. In the

experiment, we use a trimmer to tune the resistor, R1, while

keeping other parameters fixed. In practical application, this

trimmer could be replaced with a digital resistor programmed

by a control system to realize perfect absorption at the required

frequency.

To test the absorption performance of the fabricated LR-

shunted absorber, we carry out the experiments with the setup

as demonstrated in Figure 2B. An additional piezoelectric patch

attached at 0.5 m away from the right free end of the host beam

functions as an actuator to generate incident waves. This

distance could effectively reduce the evanescent waves

generated by the actuator without affecting the measurement

results. A sine-signal sweeping from 1.0 kHz to 2.5 kHz

generated from a function generator is fed to the actuator

via a power amplifier. An artificial absorbing layer made

with high damping materials is carefully placed on the

surface of the left end of the host beam to suppress the

reflected waves from that boundary. A laser vibrometer is

used to scan the pointwise velocity responses of the host

beam in the highlighted orange region with 21 points and a

point distance of 5 mm [27]. The measured responses are

processed to calculate the wave reflection (r) and absorption

(α = 1 − r) coefficients.

FIGURE 2
Fabricated samples and experimental setup. (A) A photo of the fabricated LR-shunted resonator attached near a free end of a beam end. (B) A
schematic of the experimental setup. (C) A photo of the fabricated LR circuit. (D) Schematic of the synthetic inductor.
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3 Results

3.1 Simulation results

3.1.1 Frequency domain simulation
To demonstrate the robustness of our tunable absorber to

achieve perfect absorption at multiple frequencies, we optimize

the circuit parameters, L and R, at each interested frequency. In

the optimization, the Nelder-Mead method [35] is used by

minimizing the wave reflection coefficient, r, as the objective

function with two optimization variables, L and R. Perfect

absorption peaks could be achieved from 1.5 kHz to 2.5 kHz.

Here, we only plot the absorption spectra optimized at

1.5 kHz–2.5 kHz with an increment of 0.25 kHz, as illustrated

in Figure 3A. Still, one could understand that perfect absorption

could be achieved at other frequencies in this range, as well, by

optimizing the circuit parameters. Optimized circuit parameters

are listed in Supplementary Table S1. One can see that as the

electrical resonances increase by decreasing the inductor values

the peaks of the absorption spectra are shifted to higher

frequencies.

The simulated absorption spectra clearly show that perfect

absorption could be achieved from a broadband frequency range.

Note that in the simulation no damping is added to the

mechanical resonator and the perfect absorption is mainly due

to the strong interaction between the mechanical and electrical

resonances as well as the destructive interference due to the

terminal end of the host beam. Also, we notice that when the

electrical and mechanical resonances are strongly coupled the

absorption spectra (purple and green lines) are wider, whereas as

the electric resonance is shifted away from the mechanical

resonance the absorption spectra (blue and red lines) are

much narrower. Here, the mechanical resonance is at about

2.0 kHz. Nevertheless, perfect absorption can be achieved at

various frequencies by tuning the circuit parameters along,

which demonstrates the robustness of our proposed tunable

perfect absorber.

3.1.2 Transient simulation
To further show the effectiveness of our proposed absorber in

flexural wave mitigation, transient analysis is performed. In the

simulation, we choose the target frequency at 1.75 kHz for perfect

absorption by adopting the circuit parameters listed in

Supplementary Table S2. A 5-peak tone-burst signal centered

at fc = 1.75 kHz is excited at the host beam. A displacement probe

is placed on the host beam to capture the out-of-plane response.

The position of the probe is chosen at 1 m away from the shunted

resonator so that the incident and reflected signals can be

separated from each other in the time domain. The recorded

signal is shown in the top panel of Figure 3B, which contains two

main wave packets, the incident response from the incident

waves (middle panel of Figure 3B) and the reflected response

corresponding to the reflected waves (bottom panel of Figure 3B).

The overall amplitude of the reflected signal is largely reduced

and the largest amplitude reduction is observed near the center of

the reflected wave packet, which is corresponding to the perfect

absorption frequency. To further verify this, we calculate the

reflected and incident powers normalized to the maximum

power of the incident wave, as illustrated in Figure 3C. We

can see that almost zero reflected energy is found located near the

optimized frequency, f = 1.75 kHz, in the power spectra, thanks to

the perfect absorption from the LR-shunted resonator.

3.2 Experimental results

Next, we carry out our experiment to characterize the

absorption performance of this proposed tunable absorber.

Before we evaluate the shunting circuit performance, we first

test the absorption performance with an open circuit.

FIGURE 3
Numerical simulation results for the tunable perfect flexural wave absorber. (A) Illustration of perfect flexural wave absorption tuned to different
frequencies. (B) Time domain simulation for perfect absorption at 1.75 kHz. (C) Normalized powers of the incident and reflected signals.
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3.2.1 Open circuit performance
Due to the intrinsic loss in the fabricated resonator, the

mechanical resonator with an open circuit might be able to

dissipate part of the incident energy. Therefore, before

evaluating the absorption performance, we perform a

vibration test from Frequency Response Function (FRF) by

exciting the fabricated mechanical resonator alone on a shaker.

The loss factor is characterized as η = 0.057 from a half-power

bandwidth method [27]. To quantify the absorption due to this

passive damping from the resonator, the measured absorption

coefficient is illustrated by red plus symbols in Figure 4A. Peak

absorption of about 50% can be observed in the experiment at

around 1.5 kHz. To further validate our experimental results, a

3-D numerical model is built by adopting the same loss factor

measured from the experiment for the resonator. In this

simulation, a 0.1 mm thin layer is also added between the

supporting cube and the beam strip to consider the effect of

the supper glue with material properties being Young’s

modulus E = 1.1 GPa, Poisson’s ratio ] = 0.35, and mass

density ρ = 1050 kg/m3. A solid blue line denotes the

simulated absorption spectrum shown in Figure 4A. The

experimentally measured absorption spectrum matches well

with the simulated spectrum.

3.2.2 LR-shunted circuit performance
Our proposed tunable flexural wave perfect absorber is

experimentally tested for its performance. For illustration

purposes, we show two perfect absorption spectra in Figures

4B, C, respectively. Two absorption peaks can be observed in

both of the absorption spectra. The peak at around 1.5 kHz

with a wider bandwidth but a lower absorption coefficient is

due to the intrinsic mechanical damping, which has a similar

shape as the open circuit case. However, the second peak at

about 1.8 kHz (1.32 kHz for Figure 4C) induced by the

coupling between the mechanical and electrical resonances

can almost reach to unit absorption. Interestingly, by varying

the electrical resonance, i.e., re-programming the circuit

inductance and resistance, the unit absorption peaks can be

tuned to different frequencies, which can make our proposed

absorber much more robust for overcoming some

uncertainties in a time-varying environment. For example,

by adjusting the inductance from L = 5.8 H to L = 9.7 H,

and the resistance from R = 1 kΩ to R = 2.9 kΩ, the absorption

peak is tuned from 1.8 kHz to 1.32 kHz. The absorption

performance of the tunable absorber is compared with

numerical simulations. A very good agreement can be

found, as well. The tunable perfect absorber can achieve

almost perfect absorption in a broad frequency range, from

1.5 kHz to 2.5 kHz, and more than 99.8% absorption is

experimentally obtained at various frequencies.

4 Discussion

Negative capacitance shunting circuits have been

demonstrated in acoustic and elastic metamaterials for

broadband damping performance [36–38]. Here, we use a

simple negative capacitor (CNC = −C) connected with a

resistor (R′) in series hybrid with an LR-shunted (NC-LR)

circuit to investigate broadband absorption performance

through numerical simulation. Figure 5A shows the schematic

of the design of enhanced absorption with the hybrid shunting

circuit. In the simulation, we optimize the inductor value (L) and

two resistor values (R and R′), while keeping the value of the

negative capacitor as β = CNC/Cp = −0.8, where Cp is the

capacitance of the piezoelectric patch. A color map of the

absorption spectra optimized from 1.5 kHz to 2.5 kHz with a

step of 0.1 kHz is shown in Figure 5B. Due to the presence of the

negative capacitor, broadband absorption can be observed. The

negative capacitor functions as broadband shunted damping to

FIGURE 4
Experimentally measured absorption spectra (read plus symbols) compared to numerical simulations (blue solid lines). The absorption spectra
with (A) an open circuit and an LR-shunted circuit with (B) L =5.8 H and R =1.0 kΩ (C) L =9.7 H and R =2.9 kΩ.
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the mechanical resonator. Due to the compensation of the

damping from the negative capacitor to the mechanical

resonator, the absorption spectrum originating from the

mechanical resonator starts to approach to the unit

absorption. Note that by using a negative capacitor one can

achieve perfect absorption as well, but the absorption spectrum is

equivalent to a damped mechanical resonator showing a single

absorption peak. Here, in order to show the advantage of the NC-

LR shunted circuit, we combine the NC circuit with the LR-

shunted circuit so that the absorption peaks are merged

together to form a broadband absorption spectrum as the

electrical resonance is close to the mechanical resonance. To

better illustrate the effect of the hybrid circuit, two of the

optimization results optimized at 1.5 kHz (blue solid line)

and 1.7 kHz (red dotted line), respectively, are shown in

Figure 5C compared with the absorption spectrum from an

LR-shunted circuit alone (green solid line). The absorption

spectrum is largely enhanced to a broad frequency range. Two

absorption peaks can be seen in the case with NC-LR1,

whereas the two peaks are merged into a single broadband

peak by properly choosing the optimization parameters. The

circuit parameters for the NC-LR1 and NC-LR2 circuits used

in the simulations are provided in the Supplementary

Material.

5 Conclusion

We have designed and experimentally demonstrated a

tunable absorber for perfect flexural wave absorption at a

broad frequency range. The tunable absorber is composed of

a mechanical resonator with a bonded piezoelectric patch and a

shunted circuit. The critical coupling conditions are fulfilled

through the shunted circuit damping at various frequencies by

varying the circuit parameters. Therefore, unit absorption

peaks are achieved at a broad frequency range, which is

validated through numerical simulations and experiments. In

the end, we numerically demonstrate an enhanced absorption

spectrum with a hybrid NC-LR circuit for broadband

absorption. Thanks to the flexible tunability and enhanced

low-frequency performance, the proposed tunable absorber

could set forth the basis of a markedly distinct approach

toward perfect absorbers of subwavelength wave and elastic

wave cloaking.
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