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The cytoskeleton–a composite network of biopolymers, molecularmotors, and

associated binding proteins–is a paradigmatic example of activematter. Particle

transport through the cytoskeleton can range from anomalous and

heterogeneous subdiffusion to superdiffusion and advection. Yet,

recapitulating and understanding these properties–ubiquitous to the

cytoskeleton and other out-of-equilibrium soft matter systems–remains

challenging. Here, we combine light sheet microscopy with differential

dynamic microscopy and single-particle tracking to elucidate anomalous

and advective transport in actomyosin-microtubule composites. We show

that particles exhibit multi-mode transport that transitions from pronounced

subdiffusion to superdiffusion at tunable crossover timescales. Surprisingly,

while higher actomyosin content increases the range of timescales over

which transport is superdiffusive, it also markedly increases the degree of

subdiffusion at short timescales and generally slows transport.

Corresponding displacement distributions display unique combinations of

non-Gaussianity, asymmetry, and non-zero modes, indicative of directed

advection coupled with caged diffusion and hopping. At larger

spatiotemporal scales, particles in active composites exhibit superdiffusive

dynamics with scaling exponents that are robust to changing actomyosin

fractions, in contrast to normal, yet faster, diffusion in networks without

actomyosin. Our specific results shed important new light on the interplay

between non-equilibrium processes, crowding and heterogeneity in active

cytoskeletal systems. More generally, our approach is broadly applicable to

active matter systems to elucidate transport and dynamics across scales.
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1 Introduction

The cytoplasm is a crowded, heterogeneous, out-of-

equilibrium material through which macromolecules and

vesicles traverse to perform critical cellular processes such as

mitosis, endocytosis, migration, and regeneration [1–4].

Macromolecules and particles diffusing through the cytoplasm

and other similar materials have been shown to exhibit widely

varying and poorly understood anomalous transport properties

that deviate significantly from normal Brownian diffusion. In

particular, the mean-squared displacement,MSD, often does not

scale linearly with lag time Δt, but is instead better described by

MSD ~ Δtα where α< 1 or α> 1 for subdiffusion or

superdiffusion, respectively. The distributions of displacements

(i.e., van Hove distributions) also often deviate from Gaussianity

and can display exponential tails at large displacements [5–8].

The cytoskeleton–an active composite of filamentous proteins

including actin, microtubules, and intermediate filaments, along

with their associated motor proteins–plays a key role in these

observed anomalous transport properties [9–11]. Such

anomalous transport phenomena are not just observed in

cytoskeleton, but are ubiquitous in numerous other active and

crowded soft matter systems, making their characterization and

understanding of broad interest.

In steady-state, the thermal transport of particles through

in vitro cytoskeletal systems exhibit varying degrees of

subdiffusion and non-Gaussianity depending on the types and

concentrations of filaments and crosslinking proteins [5, 6, 12,

13]. For example, single-particle tracking (SPT) of particles in

composites of entangled actin filaments and microtubules, has

revealed increasing degrees of subdiffusion (α decreasing from

~0.95 to ~0.58) as the molar ratio of semiflexible actin filaments

to rigid microtubules increased [6]. The corresponding SPT van

Hove distributions were reported to be non-Gaussian, displaying

larger than expected probabilities for very small and large

displacements, indicative of particles being caged in the

filament mesh and hopping between cages.

Differential dynamic microscopy (DDM), which uses

Fourier-space analysis to measure the timescales over which

particle density fluctuations decay, has also been used to

measure transport and quantify anomalous characteristics

over larger spatiotemporal scales compared to SPT [5, 14, 15].

FIGURE 1
Combining light sheet microscopy with real-space single-particle tracking (SPT) and reciprocal-space differential dynamic microscopy (DDM)
to characterize particle transport in active cytoskeletal composites. (A) We create composites of co-entangled microtubules (blue) and actin
filaments (purple) driven out-of-equilibrium by myosin II minifilaments (green). We track the motion of embedded 1 μm beads (red) in composites
with varying molar fractions of actomyosin, which we denote by the fraction of actin comprising the combined molar concentration of actin
and tubulin (5.8 μM): ϕA � 0. 0.25, 0.5, 0.75, 1. In all cases, the molar ratio of myosin to actin is fixed at 0.08. (B) Schematic of the light-sheet
microscope we use for data collection, which provides the necessary optical sectioning to capture dynamics in dense three-dimensional samples.
(C) Example frame from time-series of 1 μmbeads embedded in a cytoskeleton composite, used to characterize particle transport in active crowded
systems. (D) Cartoon of expected mean-squared displacements (MSD) of embedded particles versus lag time Δt, which we compute via single-
particle tracking (SPT) and fit to a power law MSDΔ̃tα to determine the extent to which particles exhibit normal Brownian diffusion (α � 1, blue),
subdiffusion (α< 1, red), or superdiffusion (α> 1, green). (E)Cartoon van Hove distributionG of x- and y-direction particle displacements Δd � Δx ∪ Δy
for a given lag time Δt computed from SPT trajectories. The distribution shown is described by a sum of a Gaussian and exponential function
G(Δd,Δt) � Ae−Δd2/2σ2 + Be−|Δd|/λ, as is often seen in crowded and confined systems and those that display heterogeneous transport. (F) Cartoon of
expected characteristic decorrelation times τ(q) as a function of wave number q, which we compute by fitting the image structure function
computed fromDDM analysis. We determine the scaling exponent β from the power-law τ(q) ~ q−β to determine if transport is diffusive (β � 2, blue),
subdiffusive (β>2, green), or ballistic (β � 1, red).
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DDM analysis of a time-series of images provides a characteristic

decay time τ as a function of the wave vector q which typically

follows power-law scaling τ(q) ~ q−β [15, 16], with β relating to

the anomalous scaling exponent α via β � 2/α. Specifically, β �
2, > 2, < 2 and 1 correspond to diffusive, subdiffusive,

superdiffusive, and ballistic motion (Figure 1F). DDM analysis

of actin-microtubule composites corroborated the SPT results

described above, with subdiffusive β values tracking with α values

[5, 6]. However, we note that while the relation β � 2/α can be

used to directly compare dynamics measured via SPT and DDM,

α derived from this relation may not match that determined from

SPT, in particular for systems that display multiple dynamic

regimes at different spatiotemporal scales.

Similar SPT and DDM experiments demonstrated that

crosslinking of actin and/or microtubules introduced bi-phasic

transport with the subdiffusive scaling exponents dropping from

α ≈ 0.5–0.7 to α ≈ 0.25–0.4 (depending on crosslinker type) after

Δt ≈ 3 s, due to strong caging and reduced thermal fluctuations of

filaments. At the same time, van Hove distributions were well fit

to a sum of a Gaussian and exponential, and the non-Gaussianity

parameter increased, indicating enhanced heterogeneity [5, 6, 8,

12, 17].

Numerous studies have also investigated transport in non-

equilibrium cytoskeleton networks, in which activity is

introduced via motor proteins, such as actin-associated

myosin II and microtubule-associated kinesin [2, 10, 18–21].

These studies have shown evidence of vesicle movement strongly

tracking with actin movement, microtubule-dependent flow, and

the simultaneous presence of subdiffusive and ballistic transport

dynamics. While the majority of these active matter studies have

been on systems of either actin or microtubules, recent studies

have used DDM and optical tweezers microrheology to

characterize the dynamics of actin-microtubule composites

pushed out-of-equilibrium by myosin II minifilaments

straining actin filaments [14, 22, 23]. These studies showed

that active actin-microtubule composites exhibited ballistic-

like (α ≈ 2) contractile motion, rather than randomly-oriented

diffusion or subdiffusion, with speeds that increased with

increasing fraction of actin in the composites, due to

increased composite flexibility [14, 23]. Myosin-driven

contractile motion and restructuring was also reported to

increase viscoelastic moduli and relaxation timescales and

induce clustering and increased heterogeneity of the initially

uniform mesh [22].

However, particle transport through active actin-

microtubule composites–likely dictated by the complex

combination of active processes, crowding, and interactions

between mechanically distinct filaments—has remained largely

unexplored. The majority of studies that have examined the

combined effect of activity and crowding have been in vivo [1,

24–29], where a large number of conflating variables that are

difficult to tune make teasing out the effect of each contribution

and mechanism highly non-trivial.

Here, we take advantage of the tunability of in vitro

reconstituted cytoskeleton composites to systematically

investigate the coupled effects of non-equilibrium activity,

crowding, and heterogeneity on particle transport. We

combine fluorescence light sheet microscopy (fLSM) with

single-particle tracking (SPT) and differential dynamic

microscopy (DDM) to examine the anomalous transport of

micron-sized particles within active composites of myosin II

minifilaments, actin filaments, and microtubules with varying

molar fractions of actin and tubulin (Figure 1A). We leverage the

optical sectioning and low excitation power of fLSM (Figure 1B)

to capture particle trajectories with a temporal resolution of 0.1s

for durations up to 400 s (Figure 1C). Using both SPT and DDM

provides transport characterization over a broad spatiotemporal

range that spans ~10–1 -102 s and ~10–1 - 10 μm. From measured

SPT trajectories, we compute ensemble-averaged MSDs and

associated anomalous scaling exponents α (Figure 1D), as well

as corresponding distributions of particle displacements, i.e., van

Hove distributions (Figure 1E), for varying lag times Δt. To
expand the spatiotemporal range of our measurements and

provide an independent measure of transport characteristics,

we use DDM to analyze particle density fluctuations in Fourier

space, and evaluate the power-law dependence of decorrelation

times τ on wave vector q, i.e., τ(q) ~ q−β (Figure 1F).

2 Materials and methods

2.1 Protein preparation

We reconstitute rabbit skeletal actin (Cytoskeleton, Inc.

AKL99) to 2 mg/ml in 5 mM Tris–HCl (pH 8.0), 0.2 mM

CaCl2, 0.2 mM ATP, 5% (w/v) sucrose, and 1% (w/v) dextran;

porcine brain tubulin (Cytoskeleton T240) to 5 mg/ml in 80 mM

PIPES (pH 6.9), 2 mM MgCl2, 0.5 mM EGTA, and 1 mM GTP;

and rabbit skeletal myosin II (Cytoskeleton MY02) to 10 mg/ml

in 25 mM PIPES (pH 7.0), 1.25 M KCl, 2.5% sucrose, 0.5%

dextran, and 1 mM DTT. We flash freeze all proteins in single-

use aliquots and store at -80˚C.We reconstitute the UV-sensitive

myosin II inhibitor, (-)-blebbistatin (Sigma B0560) in anhydrous

DMSO and store at -20˚C for up to 6 months. Immediately prior

to experiments, we remove enzymatically dead myosin II from

aliquots using centrifugation clarification, as previously

described [14, 22].

2.2 Composite network assembly

We prepare actin-microtubule composites by mixing actin

monomers, tubulin dimers and a trace amount of 1 µm diameter

carboxylated microspheres (Polysciences) in PEM-100 (100 mM

PIPES, 2 mM MgCl2, and 2 mM EGTA), 0.1% Tween-20, 1 mM

ATP, and 1 mMGTP, and incubating at 37°C for 30 min to allow
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for polymerization of actin filaments and microtubules. We coat

microspheres (beads) with AlexaFluor594 BSA (Invitrogen) to

visualize the particles and prevent nonspecific interactions with

the composite [30, 31]. We fix the combined molar concentration

of actin and tubulin to c � cA + cT � 5.8 µM and the ratio of

myosin to actin to R=0.08, and vary the molar fraction of actin in

the composite (cA/c � ϕA) from ϕA � 0 to 1 in 0.25 increments

(Figure 1A). To stabilize actin filaments and microtubules, we

add an equimolar ratio of phalloidin to actin and a saturating

concentration of Taxol (5 µM) [32, 33]. We add an oxygen

scavenging system (45 μg/ml glucose, 0.005% β-
mercaptoethanol, 43 μg/ml glucose oxidase, 7 μg/ml catalase)

to inhibit photobleaching, and add 50 µM blebbistatin to

control actomyosin activity.

2.3 Sample preparation and imaging

We pipet prepared composites into capillary tubing with

an inner diameter of x=800 μm and length of y=10 mm, then

seal with epoxy. Microspheres are imaged using a custom-

built fLSM with a 10× 0.25 NA Nikon Plan N excitation

objective, a 20× 1.0 NA Olympus XLUMPlanFLN detection

objective, and an Andor Zyla 4.2 CMOS camera [5]. A

561 nm laser is formed into a sheet to image the

microspheres, while a collimated 405 nm laser is used to

deactivate the blebbistatin, thereby activating actomyosin

activity. Each acquisition location is at least 1 mm away from

the previous one to ensure that there is no myosin activity

when the image acquisition begins. For SPT, we collect

≥ 15 time-series consisting of ≥ 2000 frames, each with a

1000×300 pixel (194×58 µm2) field of view (FOV), at

10 frames per second (fps). For DDM, we collect

≥ 3 time-series of ≥ 4000 frames, each with a

768×266 pixel (149×52 µm2) FOV, at 10 fps. The x and y

axes of each FOV are aligned with the cross-section and

length of the capillary sample chamber, respectively.

2.4 Single-particle tracking

We use the Python package Trackpy [34] to track particle

trajectories and measure the x- and y- displacements (Δx,Δy) of
the beads as a function of lag times Δt � 0.1 s–50 s. From the

particle displacements, we use a custom-written Python script to

calculate the time-averaged mean-squared displacement of the

ensemble, MSD(Δt) � 1
2 ([Δx(Δt)]2 + [Δy(Δt)]2), from which

we compute anomalous scaling exponents, α, via MSD ~Δtα for
each Δt range in which we observe a single power-law. We

computeMSDs for lag times Δt≤ 180 s, but limit our power-law

fitting to Δt≤ 40 s for ϕA � 0 and Δt≤ 100 s for ϕA � 0.75 and 1,

as noise from low statistics dominates the data at larger lag times

for these composites.

Additionally, we compute van Hove probability distributions

of particle displacements, G(Δd, Δt) (Figure 1E), where

Δd � Δx ∪ Δy, for 10 different lag times that span Δt � 0.1 s

to 15 s. Following previous works [5–7], we fit each distribution

for a given lag time to a sum of a Gaussian and exponential

function: G(Δd) � Ae−Δd2/2σ2 + Be−|Δd|/λ, where A is the

amplitude of the Gaussian term, σ2 is the variance, B is the

amplitude of the exponential term, and λ is the exponential decay
constant.

2.5 Differential dynamic microscopy

We obtain the image structure function D(q, Δt), where q is
the magnitude of the wave vector, following our previously

described methods [12, 35]. We fit each image structure

function, or DDM matrix, to the following function:

D(q,Δt) � A(q)[1 − exp[ − (Δt/τ(q))γ(q)]] + B(q)

where τ(q) is the density fluctuation decay time, γ is the

stretching exponent, A is the amplitude, and B is the

background [5, 6]. In practice, we fit each D(q,Δt) out to

Δt � 100 s, beyond which noise due to low statistics

dominates the signal. From the fits, we determine the

q-dependent decay time τ(q), which is a measure of the

timescale over which particle density fluctuations decorrelate

over a given lengthscale l � 2π/q. By fitting τ(q) to a power-law

(i.e., τ(q) ~ q−β) we determine the dominant mode of transport,

with β � 2, >2, and <2, indicating normal Brownian diffusion,

subdiffusion and superdiffusion, respectively. We fit τ(q) for q =
1 − 4 μm−1, with the (i) upper and (ii) lower bounds set by the (i)

optical resolution of our setup and (ii) finite image size and Δt
range over which we fit D(q,Δt), respectively. These effects lead
to (i) unphysical upticks in τ(q) curves for q> 4 μm−1 and (ii)

q-independent plateaus for q< 1 μm−1 (Supplementary

Figure S1).

We also examine the stretching exponent γ(q) that we extract
from fitting D(q,Δt) as another transport metric, with γ(q)< 1
indicative of confined and heterogeneous dynamics [5, 36–38]

and γ(q)> 1 indicative of active ballistic-like motion [14, 39–41].

Finally, we evaluate the q-dependence of γ(q) to ensure that the

expected insensitivity to q, necessary for unequivocal

determination and interpretation of the scaling exponent β,

holds for all cases (Supplementary Figure S2).

3 Results and discussion

To elucidate the combined effects of non-equilibrium activity

and steric hindrance on particle transport in crowded active

matter, we leverage the tunability of reconstituted cytoskeleton

composites [42] and the power of coupling real-space (SPT) and
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reciprocal space (DDM) transport analysis, to robustly

characterize particle transport as a function of active substrate

content. Specifically, we tune the composition of actomyosin-

microtubule composites to display a wide range of transport

characteristics by varying the molar fraction of actomyosin,

which we denote by the molar actin fraction ϕA, keeping the

myosin molarity fixed at 8% of ϕA (Figure 1A, Methods).

In Figure 2A, we plot the ensemble-averaged MSD as a

function of lag time Δt for particles diffusing in composites of

varying ϕA. While ϕA � 0 (no actomyosin) exhibits subdiffusive

transport across the entire Δt range, with α ≃ 0.67, all ϕA >
0 composites display multi-phasic transport which is subdiffusive

(α1 < 1) at short Δt and superdiffusive (α2 > 1) at long Δt. To
more clearly show the transition from subdiffusion to

superdiffusion, we plot MSD/Δt versus Δt (Figure 2B), which

is a horizontal line for normal Brownian diffusion with the

Δt-independent magnitude proportional to the diffusion

coefficient. Positive and negative slopes correspond to

superdiffusion and subdiffusion, respectively, with MSD/Δt ~

Δt1 indicating ballistic motion. Corresponding MSD/Δt

FIGURE 2
Actomyosin activity in actin-microtubule composites endows multi-phasic particle transport marked by pronounced subdiffusion at short lag
times and superdiffusion at long lag times. (A) Mean-squared displacements (MSD) plotted versus lag time Δt for myosin-driven actin-microtubule
compositeswithmolar actin fractions of ϕA � 0 (blue), 0.25 (gold), 0.50 (green), 0.75 (red), and 1 (purple). Fits of the data toMSD ~ Δtα over differentΔt
ranges (shown in (B)) determine the anomalous scaling exponents αi that describe the dynamics (see Figure 1). (B)Mean-squared displacements
scaled by lag time (MSD/Δt) plotted versus lag time Δt delineate regions of subdiffusion (negative slopes) and superdiffusion (positive slopes). Color
coding is according to the legend in (A). Black lines indicate fits toMSD ~ Δtα over the short (Δt<Δt1), long (Δt>Δt2) and intermediate (Δt1 <Δt<Δt2)
time regimes where each curve is well-fit by a single power law. (C) Data shown in B plotted versus actin fraction ϕA, with allMSD/Δt values for each
ϕA plotted along the same vertical, with the gradient indicating increasing Δt from light to dark. Themagnitude of each data point is proportional to a
transport rate, with higher values indicating faster motion. (D) Lag time at which each composite transitions out of initial subdiffusive transport (Δt1)
and transitions into superdiffusivity (Δt2). (E) Anomalous scaling exponents αi derived from fits shown in (B) for Δt<Δt1 (i � 1), Δt>Δt2 (i � 2), and
(Δt1 <Δt<Δt2)(i � 1, 2). Dashed line at α � 1 represents scaling indicative of normal Brownian diffusion. Values above and below the line indicate
superdiffusion and subdiffusion, respectively. Note that only ϕA � 0.25 and 0.5 composites exhibit an intermediate α1,2 regime. For both (C) and (D)
error bars indicate standard error of the mean. Color-coding in all subfigures matches the legend in (A).
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magnitudes are proportional to Δt-dependent transport

coefficients. While all ϕA > 0 composites exhibit similar

general trends with Δt, the lag time at which the dynamics

transition from subdiffusive to superdiffusive, along with the

degree to which α1 and α2 deviate from 1, depend non-trivially on

ϕA. Moreover, as clearly seen in Figure 2C, while α values for

active composites (ϕA > 0) transition to superdiffusive at longer

lag times, the magnitudes of the transport coefficients remain

nearly an order of magnitude smaller than that of the inactive

network (ϕA � 0) at any given Δt.
To evaluate the ϕA-dependence of the multi-phasic behavior,

we first compute the lag times at which composites transition out

of initial subdiffusive scaling, denoted as Δt1, and transition into

superdiffusive scaling, denoted as Δt2. We note that the MSDs

for ϕA � 0.75 and 1 both exhibit a continuous transition from

initial subdiffusion (quantified by α1) to a final superdiffusive

regime (quantified by α2), seen as a smooth concave-up curve

between the two power-law regimes. Conversely,MSDs for ϕA �
0.25 and 0.5 exhibit an extended power-law regime in this

transition with weakly subdiffusive scaling exponent α12. To

quantify Δt1, we compute the largest lag time for which linear

regression of logMSD versus logΔt over the range

Δt ∈ [0.1 s, Δt1] yields R2 > 0.99. We define Δt2 as the lag

time at which MSD/Δt exhibits a local minimum (i.e. where

α crosses over from <1 to >1) (Figure 2C). We find that both

timescales decrease with increasing ϕA as does the separation

between the timescales (Δt2 − Δt1), suggesting that the rate of

particle motion mediated by directed motor-driven network

dynamics increases with increasing ϕA. In other words, the

time it takes for the active dynamics to be ‘felt’ by the

particles, driving them out of their confined subdiffusive

motion, decreases with increasing ϕA.

To understand this phenomenon, we consider that active

ballistic transport would only be detectable at timescales in which

the network motion can move a bead more than the minimum

resolvable displacement: Δta ≈ (100 nm)/(network speed).
Using reported speed values of v ≈ 2.2 − 85 nm/s for similar

myosin-driven composites [23], we compute

Δta ≈ (100 nm)/v ≈ 1 − 50s, aligning with our Δt1 and Δt2
values, and thus corroborating that the deviation from sub-

diffusion and transition to superdiffusion is due to myosin-

driven ballistic motion. Moreover, the previously reported

speeds generally decreased with decreasing ϕA, such that Δta
should increase as ϕA decreases, just as we see in Figure 2B.

To determine the extent to which motor-driven transport

and confinement contribute to the particle dynamics, we next

evaluate the anomalous scaling exponents in the short,

intermediate, and long Δt regimes by performing power-law

fits to theMSDs in each regime (Figures 2B,E). Surprisingly, the

scaling exponents in the Δt<Δt1 regime for all active composites

(ϕA > 0) are markedly smaller (more subdiffusive) than the

inactive composite (ϕA � 0), with ϕA-dependent values of

α1 ≃ 0.29 − 0.37 compared to α1 ≃ 0.68 for the ϕA � 0

network. To understand the decrease in α1 with increasing ϕA
for the active composites, as well as the unexpected ~2-fold

reduction in α1 for active composites, we turn to previous studies

[5, 6], that reported that, in the absence of any crosslinking,

steady-state actin-microtubule composites exhibit subdiffusion

with scaling exponents that decrease from α ≈ 0.82 to α ≈ 0.56 as

ϕA increases from 0 to 1. This monotonic ~30% decrease with

increasing ϕA, similar to the ~25% decrease we observe with

increasing ϕA, was suggested to arise from increased composite

mobility that entrains the bead motion as rigid microtubules are

replaced with semiflexible actin filaments [6, 12]. This mobility is

paired with a decreasing mesh size as ϕA increases, which, in

turn, increases composite viscoelasticity and particle

confinement, both of which contribute to decreasing α [6].

To understand the lower α1 values we measure, compared to

those previously reported for steady-state composites, we look to

previous studies on ϕA � 0.5 actin-microtubule composites with

varying types of static crosslinking. In these studies, subdiffusion

is much more extreme (α ≈ 0.33) when actin filaments are

crosslinked to each other compared to no crosslinking

(α ≈ 0.64) [5]. Taken together, our results suggest that the ~2-

fold reduction in α1 between ϕA � 0 and ϕA > 0 composites likely

arises from myosin motors acting as static crosslinkers on

timescales shorter than the timescale over which they can

actively translate the composite. As described above, myosin

acting as a static crosslinker for Δt<Δt1 is consistent with

previously reported speeds for myosin-driven composites [5,

6], as well as reported actomyosin turnover rates [24]. The

weak decrease in α1 with increasing ϕA likely arises from the

decreasing mesh size and increasing mobility of the network as

ϕA increases [43], as described above.

Examining the long-time regime, Δt>Δt2, our results show
that the scaling exponent α2 is largely insensitive to ϕA for all

composites (i.e., 0< ϕA < 1) with an average value of α2 ≃ 1.5,

only modestly lower than α2 ≃ 1.8 measured for ϕA � 1.

However, the lag time at which superdiffusive α2 scaling

emerges is an order of magnitude larger for ϕA � 0.25 and

0.5 composites compared to ϕA > 0.5. Moreover, ϕA �
0.25 and 0.5 composites display nearly identical intermediate

subdiffusive scaling regimes, absent for ϕA > 0.5, with an average

scaling exponent of α12 ≃ 0.83 ± 0.2. Taken together, these

results suggest that the timescale over which motor-driven

dynamics dominates particle transport scales with the fraction

of active substrate [23], while the superdiffusive signature of the

active transport is controlled by the motor:substrate ratio (which

we hold fixed across composites).

To shed further light on the mechanisms underlying the

anomalous transport shown in Figure 2, we compute van Hove

distributions G(Δd,Δt), where Δd � Δx ∪ Δy, for two decades
of lag times (Δt � 0.1 − 15 s) (Figure 3A). From the distributions,

we first compute anomalous scaling exponents α, to corroborate

our MSD analysis, by recalling that the full width at half

maximum, FWHM, for a Gaussian distribution scales with
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FIGURE 3
Asymmetric non-Gaussian van Hove distributions reveal a combination of heterogeneous subdiffusion and advective transport of particles in
active composites. (A) van Hove distributions G(Δd, Δt) of particle displacements Δd � Δx ∪Δy, measured via SPT, for lag times Δt �
0.1, 0.2, 0.3, 0.5, 1, 2, 3, 5, 10, 15 s denoted by the color gradient going from light to dark for increasing Δt. Each panel corresponds to a different
composite demarked by their ϕA value with color-coding as in Figure 2. (B) The square of the full width at half-maximum (FWHM)2 versus lag
time Δt for each composite shown in (A). Solid lines are fits to (FWHM)2 ~ Δtαi . For ϕA >0 composites we fit short (Δt ≤ 1 s) and long (Δt ≥ 1 s) lag time
regimes separately. (C) The scaling exponents α as functions of ϕA determined from the fits shown in B, where α1 (stars) and α2 (triangles) correspond

(Continued )
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the standard deviation σ as FWHM � 2
�����
2 ln 2

√
σ. Because

σ2 ~ Δd2 by definition, and MSD(Δt) ~ (Δd(Δt))2 ~ Δtαi , we
determine αi by computing the FWHM for each distribution and

fitting the Δt-dependent values to the power-law

FWHM(Δt) ~ (Δt)αi/2 (Figure 3B) [7, 44]. As shown in

Figures 3B,C, FWHM(Δt) for ϕA � 0 fits well to a single

power-law, with α ≃ 0.7, nearly indistinguishable from that

computed from the MSD, across the entire Δt range.

Conversely, informed by the multi-phasic MSD scaling we

observe for active composites (Figure 2C), we fit FWHM(Δt)
for each active composite to separate power-law functions over

short (0.15 s<Δt< 1 s) and long (1 s<Δt< 15 s) lag times,

relative to the average Δt1 we determine from MSD fits.

Further, similar to the ϕA-dependence of α1 and α2 values

determined from MSDs, the scaling exponents determined

from FWHM, increase with increasing ϕA, with α1 (for

Δt< 1 s) increasing from ~0.62 to ~0.85, similar to values

reported for steady-state actin-microtubule composites [6],

and α2 (for Δt> 1 s) spanning from subdiffusive to

superdiffusive. Higher α1 values compared to those

determined from MSDs are likely due to the lower Δt
resolution in FWHM fitting and the single Δt value used to

divide the two regimes. Likewise, the lower α2 values for ϕA �
0.25 and 0.5 compared to those measured fromMSDs are a result

of treating all Δt>Δt1 data as obeying a single power-law rather

than separate α12 and α2 scaling.

While our analysis described above assumes Gaussian

distributions, Figure 3A shows that nearly all distributions

have distinct non-Gaussian features similar to those reported

for steady-state actin-microtubule composites [5, 7]. In

particular, G(Δd,Δt) distributions for the inactive network

(ϕA � 0) exhibit pronounced exponential tails at large

displacements. This non-Gaussianity, seen in other crowded

and confined soft matter systems [7], is a signature of

heterogeneous transport and can also indicate caging and

hopping between cages.

The distributions for active composites are even more

complex, with asymmetries and peaks at Δd ≠ 0 (Figure 3A),

not readily predictable from our MSD analysis. The first

interesting feature we investigate is the non-zero mode value

Δdpeak that increases in magnitude with increasing Δt, indicating
directed ballistic-like motion, thereby corroborating our

superdiffusive scaling exponents. Perhaps less intuitive is the

robust asymmetry between the ‘leading (+) edge’ and ‘trailing (-)

edge’ of each distribution, which we define by splitting each

distribution about its peak, Δdpeak. Specifically, the leading edge
is the part of the distribution that has displacements of the same

sign as Δxpeak and greater inmagnitude, while the remaining part

is the trailing edge (Figure 3D). We observe that for most

distributions the leading edge appears more Gaussian-like

while the trailing edge exhibits pronounced large-displacement

‘tails’. To broadly quantify this asymmetry, we evaluate the half-

width at half-maximum (HWHM) for the leading (+) and

trailing (-) edges of each distribution and compute the

percentage increase in HWHM for the trailing versus leading

edge: Δ∓HW � (HWHM− −HWHM+)/HWHM+ (Figure 3E).
We find that Δ∓HW is positive for all active composites and

increases with increasing ϕA, demonstrating that the asymmetry

is a direct result of active composite dynamics which contribute

more to the transport as the actomyosin content increases.

We also note that the asymmetry shown in Figure 3A is

always in the negative direction (to the left). To determine the

directionality of this asymmetry we evaluate the distributions of

Δx and Δy values separately (Supplementary Figure S3), which

show that the asymmetry for G(Δy,Δt) is more pronounced and

negative compared to the smaller positive anisotropy seen in

G(Δx,Δt). This bias is likely due to the geometry of the sample

chamber that has a y-direction length that is >10× the

x-direction width of the chamber.

To determine if this directionality is a reproducible

microscale bias or is an ensemble result of averaging over

trials with positive and negative anisotropies, we evaluate the

van Hove distributions for each trial of the ϕA � 1 case (that

exhibits the most pronounced asymmetry) (Supplementary

Figure S4). We observe that nearly all G(Δx,Δt) and

G(Δy,Δt) distributions skew to +x and −y, respectively, with
G(Δy,Δt) asymmetries being more pronounced, such that

G(Δd,Δt) skews in the negative direction. This systematic

effect corroborates our understanding that the directional bias

is due to the sample chamber geometry that provides more

freedom in the y-direction for the composite to restructure

and flow.

To more quantitatively characterize the rich transport

phenomena revealed in Figure 3, we first fit each G(Δd,Δt) to
a sum of a Gaussian and an exponential (see Methods), as done

for steady-state cytoskeleton composites [5–7]. Figure 4A

compares the distributions and their fits for all composite

formulations at Δt � 0.3 s (top panel) and 10 s (bottom panel),

FIGURE 3 (Continued)
to scalings for the short and long Δt regimes, respectively. The dashed horizontal line denotes scaling for normal Brownian diffusion. (D) A
sampleG(Δd, Δt) distribution (ϕA � 0.75 at Δt � 10 s) showing the asymmetry about the mode value Δdpeak . We divide each distribution into a leading
edge (dark grey, displacements of the same sign as Δdpeak and greater in magnitude) and the trailing edge (light grey, the remaining part of the
distribution). To clearly demonstrate the asymmetry, we mirror each edge about Δdpeak using dashed lines. (E) The fractional difference of the
half-width at half maximum HWHM of the trailing (-) edge from the leading (+) edge, (Δ∓HW � HWHM− −HWHM+)/HWHM+), for each ϕA and Δt.
Color coding and gradient indicate ϕA and Δt, respectively, as in (A). Horizontal bars through each distribution denote the mean.
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and Figure 4B displays zoom-ins of the corresponding leading

and trailing edges. As shown, while this sum describes the

inactive network distributions reasonably well, it overestimates

leading edge displacements and underestimates trailing edge

displacements of the active networks (Figure 4B). This

asymmetry suggests that the leading edges are more Gaussian-

like and the trailing edges are more exponential-like. To account

for this asymmetry, we fit each half of each distribution separately

to a one-sided sum of a Gaussian and exponential and evaluate

the relative contributions from the Gaussian and exponential

terms. As detailed in theMethods, we denote the amplitude of the

Gaussian term and exponential term as A and B, respectively,

such that their relative contributions are a � A/(A + B) and b �
B/(A + B).

As shown in Figures 4C,D, in which a and b are normalized

by the corresponding ϕA � 0 value and plotted for each ϕA, active

composites are more Gaussian-like (a/a(ϕA � 0)> 1) and less

exponential (b/b(ϕA � 0)< 1) than the inactive system for both

leading and trailing edges. This result suggests that the active

processes that induce contraction and flow of the composites

likewise reduce transport heterogeneity and intermittent

hopping, possibly by promoting mixing and advection.

Consistent with this interpretation is the observation that the

Gaussian contribution a increases with increasing ϕA and is

consistently larger for the leading edge, which consists of

displacements oriented with the direction of the myosin-

driven composite motion (Figure 4C).

Conversely, the increased contribution from the exponential

term for the trailing edge, implies that displacements comprising

these exponential tails are dominated by heterogeneous transport

modes such as hopping between heterogeneously distributed

cages [6, 7]. To better understand this effect, we recall that

FIGURE 4
Actomyosin activity reduces heterogeneous non-Gaussian diffusivity and endows Gaussian-like advective transport. (A) Comparing van Hove
distributions of composites with different ϕA (see legend) at lag times of Δt � 0.3 s (top) and Δt � 10 s (bottom). Color-coded solid lines are fits of each
distribution to the sumof a Gaussian and an exponential:G(Δd) � Ae−

Δd2
2σ2 + Be−

|Δd|
λ . Black rectangles indicate regions of the distributions that are shown

zoomed-in in (B). (C) Fractional amplitude of the Gaussian term in each fit, a � A/(A + B), normalized by the corresponding value for ϕA � 0. Fits
are performed separately for the leading (+, triangles) and trailing (-, squares) edges of each distribution. Data shown are the averages and standard
deviations across all lag times for each ϕA. (D) Fractional amplitude of the exponential term in each fit, b � A/(A + B), normalized by the corresponding
value for ϕA � 0. Fits are performed separately for the leading (+, triangles) and trailing (-, squares) edges of each distribution. Data shown are the
averages and standard deviations across all lag times for each ϕA .
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FIGURE 5
DDM analysis reveals ballistic-like transport of particles entrained in active composites at mesoscopic spatiotemporal scales. (A) Sample image
structure functionsD(q, Δt) for composites with actin fractions ϕA indicated in the legend. All curves shown are evaluated at q � 3.92μm−1, and solid
black lines are fits to the data to determine corresponding q-dependent decay times τ(q) and stretching exponents γ, as described in Methods. (B)
Decay times τ(q) for each composite shown in (A). Dashed and dotted black lines show scaling τ(q) ~ q−β for ballistic (β � 1) and diffusive (β � 2)

(Continued )
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particle displacements comprising the trailing edge are lagging

behind the bulk translational motion of the composite. As the

composite moves and restructures, a fraction of the particles

remain caged in the moving composite and thus move along with

it, corresponding to displacements comprising the leading edge,

whereas a fraction of the particles are squeezed out or hop out of

composite cages and into new ‘trailing’ cages. It is also likely that

as the composite contracts and forms more heterogeneous

structures and larger open voids that characteristic ‘hopping’

displacements, as well as displacements withing cages, may

increase and become more heterogeneous, thereby enhancing

exponential tails.

To expand the range of length and time scales over which we

probe the non-equilibrium transport, and provide an

independent measure of the dynamics, we complement our

real-space SPT analysis with Fourier-space DDM analysis, as

described in the Methods and previously [5, 6, 14]. Briefly, we

compute the radially-averaged image structure functionD(q,Δt)
of the Fourier transform of image differences as a function of

wave vector q and lag time Δt. From fits ofD(q,Δt) to a function
with a stretched exponential term (see Methods, Figure 5A), we

determine the q-dependent characteristic decay time τ(q) and
stretching exponent γ(q) for each composite (Figure 5), which

characterize the dynamics. τ(q) typically exhibits power-law

scaling τ(q) ~ q−β where β is related to the anomalous scaling

exponent α via β � 2/α, such that β> 2, β � 2, β< 2 and β � 1

correspond to, respectively, subdiffusive, normal diffusive,

superdiffusive, and ballistic motion. Stretching exponents γ(q)
are typically independent of q (see Supplementary Figure S2),

with q-averaged values of γ � 1 for normal Brownian motion,

γ< 1 for crowded and confined systems [15, 40] and γ> 1 for

active transport [15, 45].

As shown in Figure 5B, τ(q) curves for all active composites

follow scaling indicative of superdiffusive or ballistic transport

while the ϕA � 0 system more closely follows diffusive scaling.

Further, τ(q) for ϕA � 0 is an order of magnitude lower than for

all active composites, indicating that particle transport is faster

for the inactive composite, in line with our results shown in

Figure 2C, despite the displacements exhibiting diffusive rather

than ballistic-like motion. This effect can be more clearly seen in

Figure 5D, which displays the q-dependent distribution of τ(q)−1
values, a measure of dynamic decorrelation rates, for each ϕA. As

shown, τ−1 values for ϕA � 0 are an order of magnitude larger

than those for ϕA > 0 composites. Figure 5D also shows that

decorrelation rates in active composites increase modestly with

increasing ϕA suggesting that transport is dictated primarily by

active restructuring and flow, rather than crowding and

confinement, which increases as actomyosin content increases.

The lack of subdiffusive scaling or crossovers from sub-to super-

diffusive dynamics for active composites (as our SPT analysis

shows) can be understood as arising from the larger length and

time scales DDM probes. Namely, DDM spans lengthscales of

l � 2π/q ≃ 1.6 − 6.28 μm and timescales of τ ≃ 20 − 100 s

(Figure 5A) compared to the ~ 0.1 − 1.5 μm and ~ 0.1 − 100 s

length and timescales accessible to SPT. As we describe in

Methods, the lower bound on measurable lengthscales (upper

bound on q) for DDM is set by the optical resolution limit of our

setup, which is circumvented in SPT by using sub-pixel

localization algorithms. At the same time, SPT is bounded at

larger spatiotemporal scales by the duration of individual bead

trajectories. The different scales that DDM and SPT are able to

accurately probe is exactly the reason we use them both to fully

characterize the dynamics of our system.

To better visualize differences in τ(q) scaling between

composites we plot τ(q) × q2 normalized by

τ(q max) × (q max) (Figure 5C). Diffusive transport manifests

as a horizontal line, as we see for ϕA � 0, while ballistic-like

motion follows a power-law scaling of 1, which roughly describes

the ϕA > 0 curves. To quantify the DDM scaling exponent β that

describes the dynamics, we fit each τ(q) curve to a power-law

(i.e., τ(q) ~ q−β) (Figures 5C,E). For the active composites, we

restrict our fitting range to q> 1.5 μm−1, in which a single power-

law is observed. For smaller q values (larger length and time

scales), we note that ϕA � 0.25 and 1 composites exhibit roughly

ballistic motion whereas ϕA � 0.5 and 0.75 exhibit roughly

diffusive dynamics (Figure 5C) [15, 16]. However, we restrict

further quantification and interpretation of this small-q regime as

it comprises relatively few data points and low statistics. Over the

range that we fit our data, we find that β ≃ 2.02 for the inactive

composite, indicative of diffusive dynamics, whereas active

composites exhibit near-ballistic values of β ≃ 1.03 − 1.26,

which are largely independent of ϕA, similar to our α2 values

measured via SPT (Figure 2E). To directly compare β values to

the anomalous scaling exponents α that we determine from SPT

FIGURE 5 (Continued)
transport. (C) τ(q) × q2, normalized by τ(qmax) × (qmax)2, for the data shown in (B). Horizontal dotted line and unity-sloped dashed line
correspond to scaling indicative of normal diffusion (α � 2/β � 1) and ballistic motion (α � 2/β � 2). Color-coded solid lines correspond to power-law
fits, with the corresponding exponents β and α shown in (E) and (F). For ϕA >0 composites, the fitting range is truncated to q> 1.5μm−1 where a single
power-law is observed. (D) Scatter plot of 1/τ(q), a measure of the transport rate, for all measured q values for each ϕA . Color coding and
gradient indicate ϕA and q, respectively, with light to dark shades of each color indicating increasing q values. (E) DDM scaling exponents β
determined from fits shown in (C). (F) Anomalous scaling exponents α2 determined from τ(q) fits (filled circles, αDDM � 2/β), as well as the large-Δt
regime fits of the MSDs (open triangles, αMSD,2) and van Hove distributions (open triangles, αvH,2) measured via SPT (see Figures 2, 3). Error bars
indicate 95% confidence intervals of fits. (G) Stretching exponent γ(q), averaged over all q values, for each composite ϕA , with error bars indicating
standard error.
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(Figure 2E, Figure 3E), we plot αDDM � 2/β (Figures 5C,F) with

the α2 values we determined from the MSDs and van Hove

distributions in the large Δt regime (>Δt2), which we denote as

αMSD,2 and αvH,2. Scaling exponents determined from all three

methods are broadly similar, with active composites displaying

larger α values than the ϕA � 0 system. We attribute small

differences between αDDM, αvH,2, and αMSD,2, which are most

apparent for ϕA � 0.25 and 0.5, to the different timescales probed

by eachmethod. Namely, all systems tend to subdiffusion at short

lag times and free diffusion or ballistic motion at large lag times.

As such, we expect αvH,2 which spans the shortest lag times

(Δt � 1 − 15 s) to be the lowest while αDDM which spans the

largest timescales to be the largest, which is indeed what we

measure. Likewise, we expect ϕA � 0 to exhibit subdiffusion over

short timescales (measured via SPT) and tend towards free

diffusion at larger timescales (measured via DDM), as shown

in Figure 5F.

Finally, to shed light on the competing contributions from

motor-driven dynamics versus confinement and crowding to

transport at larger spatiotemporal scales, we evaluate the

dependence of the stretching exponent γ on ϕA. Figure 5G

shows that transport in the inactive network is described by

γ ≃ 0.79 ± 0.02, over the q range we examine (Supplementary

Figure S2), indicating that confinement dominates over active

dynamics (i.e., γ< 1), whereas all ϕA > 0 composites exhibit γ> 1,

indicative of transport governed largely by active dynamics.

Moreover, γ generally increases as the actomyosin fraction

increases, corroborating the dominant role that active composite

dynamics plays in the rich transport phenomena we reveal [15].

We note that while other active systems display a return to

Gaussian dynamics at long timescales (e.g., 46), we find no

evidence of this return due to the relatively slow active

network dynamics compared to other active systems.

However, our inactive system (ϕA � 0) exhibits Gaussian

dynamics at the larger timescales probed by DDM, indicating

that the long-time ballistic dynamics we measure in the active

composites (ϕA > 0) are indeed due to motor activity and not

from drift, flow or other experimental artifacts or bias.

4 Conclusion

Here, we couple real-space SPT and Fourier-space DDM to

characterize particle transport across three decades in time

(~10–1–102 s) and two decades in space (~10–1—10 μm) in

biomimetic composites that exhibit both pronounced

crowding and confinement as well as active motor-driven

restructuring and flow. Using our robust approach, we

discover and dissect novel transport properties that arise from

the complex interplay between increasing activity and

confinement as the actomyosin fraction increases. Myosin

motors induce ballistic-like contraction, restructuring and flow

of the composites, leading entrained particles to exhibit similar

superdiffusive, advective and Gaussian-like transport.

Conversely, steric entanglements, connectivity and slow

thermal relaxation of cytoskeletal filaments mediate

heterogeneous, subdiffusive transport of confined particles.

Figure 6 summarizes and compares the key metrics we

present in Figures 2–5 that characterize these complex

transport properties. Importantly, as highlighted in Figure 6,

while there is clear difference between the inactive and active

networks for nearly all of the transport metrics we present, we

emphasize that there are very few clear monotonic dependences

on ϕA for the active composites. This complexity is a direct result

of the competition between motor-driven active dynamics,

crowding and connectivity—all of which increase with

increasing actomyosin content. These intriguing transport

characteristics have direct implications in key cellular

processes in which actomyosin and microtubules

synergistically interact, such as cell migration, wound healing,

FIGURE 6
A robust suite of metrics reveals complex scale-dependent
transport resulting from competition between motor-driven
active dynamics, crowding and network connectivity. The 8-
variable spider plot shows how the key metrics we use to
characterize transport depend on ϕA (color-code shown in
legend). A greater distance from the center signifies a larger
magnitude. α values determined from DDM (αDDM), SPT
MSDs ( αMSD,1 , αMSD,2 , αvH,1 , αvH,2 and SPT van Hove distributions
(αvH,1 , αvH,2) are scaled identically for direct comparison, as are the
two timescales determined from MSD s (Δt1 ,Δt2). The stretching
exponent γ is scaled independently. The table provides the values
with error for each metric plotted.
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cytokinesis, polarization and mechano-sensing [23]. Moreover,

our robust measurement and analysis toolbox and tunable active

matter platform, along with the complex transport phenomena

we present, are broadly applicable to a wide range of active matter

and biomimetic systems of current intense investigation.
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