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Editorial on the Research Topic

Innovative developments in multi-modality elastography

At the crossroads between biomechanics, medical imaging and wave physics,

elastography has been widely developed over the last 30 years. These innovations go

hand in hand with the tremendous expansion of knowledge and technological leaps

medical imaging has undergone in the past decades. Whatever the modality, elastography

relies on three key steps: 1) biological soft tissue is stressed; 2) the resulting displacement,

strain or strain rate fields are encoded on images; 3) mechanical property maps are

reconstructed from the previously encoded fields. Since the initial proposal of static

elastography [1], numerous static [2,3], strain [4–7] and dynamic shear wave [8] imaging

methods have emerged. Today, the most widely deployed, dynamic methods include

vibro-acoustography [9], Acoustic Radiation Force Impulse (ARFI) [10–12], Transient

Elastography (TE) [13–15], Shear Wave Elasticity Imaging (SWEI) [8,16], MRI

Elastography (MRE) [17,18] and Optical Coherence Elastography (OCE) [19,20].

Reference is made here to some of the main founding studies of these different

approaches, many of which have been widely extended subsequently. Each of these

methods has its own advantages and disadvantages with respect to the application to

which they are dedicated, and it is important to emphasize their complementarity. For

example, MRE methods, even if more complex to implement, allow to obtain

measurements with a contrast and an attenuation independent of the penetrated

tissues when using ultrasonic or optical methods which, for their part, provide a

much more “real-time” information. These aspects have been widely compared in the

past in comparative studies and literature reviews [21,22]. However, and as it appears later

via the different articles presented in this topic, the overlapping of these different methods
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allows today to move towards complementary approaches

tending to blur these differences by getting the best of each

method according to the targeted clinical application. We can

mention as an example the use of focused ultrasound for the

generation of shear waves in MRE [23–26].

In addition to developments in imaging methods themselves,

the most notable advances in recent years have focused on both

in vivo soft tissue excitation methods and on methods for

reconstructing mechanical maps. Even if they are not yet the

most important developments, we can for example underline the

emergence passive elastography [27–29] and Deep Learning

[30,31] as excitation and reconstruction methods, respectively.

Through in vivo mechanical characterizations across different

scales and ranges of behavior of biological soft tissues,

elastography enables today the exploration of a very wide

spectrum of medical applications, ranging from diagnosis in

clinical practice to the understanding and modeling of many

healthy and pathological organs.

Current challenges and perspectives
in elastography

From the early days, elastography methods have brought

together physicists, engineers and physicians with diverse and

complementary backgrounds, ranging from medical imaging to

wave physics and mechanics. Recent developments have further

broadened this spectrum of skills by including new fields of

research and applications, such as data science, artificial

intelligence, interventional radiology and organ modeling. The

diversity in researcher profiles involved in elastography calls for

the need of communication channels that facilitate exchanges

and synergies between different scientific communities that

traditionally do not speak to one another.

In this context, the present topic aims to capture the current

elastography landscape, whatever the imagingmodality, and highlight

the transdisciplinary potential of the tools and methods developed by

each of the communities. In order to fully understand these new

developments as well as the issues and applications associated with

them, this topic first proposes five literature reviews on:

- elastic waves generation: on the one hand for MRE

specifically Gnanago et al., and on the other hand for

passive elastography Brum et al.;

- the use of machine learning for model-free mechanical

property mapping Hoerig et al.;

- multi-scale opportunities of ultrasonic and optical

elastography methods Ormachea and Zvietcovich;

- specific clinical applications of MRE for the

characterization of malignant tumors Pagé et al.

In addition, original research papers of this topic focus on

methodological developments for multimodal elastography, with

particular emphasis on reconstruction methods for poroelasticity

Aichele and Catheline, Sowinski et al., Theodorou et al.,

scattering, strain Liu et al., Rippy et al. and multiscale

mechanics Garczyńska et al., Garczyńska et al., as well as on

the development of multimodal numerical models Torres et al.

and experimental phantoms Chatelin et al., Yushchenko et al.

Finally, it was shown in some clinical applications that

multimodal elastography can be leveraged in order to take full

advantage of the complementarities across modalities as

illustrated in some clinical studies Goudot et al., Kreft et al.,

Pan et al., Li et al.

To conclude, this Research Topic successfully highlighted

that despite using different approaches, strong interrelationships

and transfers between different modalities appear most

fundamental and beneficial for the future development of

elastography.
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