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Owing to interference fringes in the multireflective gas cell, the detection

sensitivity of a system in tunable diode laser absorption spectroscopy

(TDLAS) will decrease significantly. In this work, a combined scheme of

complete ensemble empirical mode decomposition with adaptive noise

(CEEMDAN) and wavelet threshold denoising (WTD) is proposed. Theoretical

simulations were performed to validate the effects of the proposed algorithm,

which was also verified via a CO2 detection experiment. After CEEMDAN-WTD

processing, the noisy intrinsic mode function (IMF), pure IMF, and residual

components of the detection signal were identified and reconstructed

successfully. Based on analysis of the simulations, CEEMDAN-WTD algorithm

improved the signal-to-noise ratio by 1.87 times and decreased the root mean-

squared error by 37.6% than the moving average algorithm. For the CO2

detection system, R2 = 0.999 was determined by the calibration experiment.

Additionally, based on Allan variance analysis and a long-time experiment, the

limit of detectionwas estimated to be 3.08 ppm for an average time of 148 s and

measurement accuracy of 0.65%, respectively. The obtained results sufficiently

validate that the CEEMDAN-WTD algorithm can effectively suppress

interference fringe noise in TDLAS.
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Introduction

Carbon dioxide (CO2) is considered to be the main component of greenhouse gases

(GHGs). Anthropogenic excessive emissions of GHGs have caused severe climate and

environmental problems, such as global warming, melting of glaciers, rising sea levels, and

extreme weather incidents [1]. Recently, CO2 emissions have increased annually owing to

continuous developments with energy consumption and industrialization. Therefore,
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accurate measurement of CO2 emissions is of great significance

for developing and implementing mitigation strategies [2–4].

Tunable diode laser absorption spectroscopy (TDLAS) is a gas

detection technology that has been widely used in various fields

[5]. It has the advantages of high sensitivity, real-time

detection, fast response, and noncontact measurements [6,

7]. TDLAS mainly includes the direct absorption spectrum

(DAS) [8] and wavelength modulation spectrum (WMS) [9].

The DAS can be established with a simple structure at very low

cost; however, it is easily affected by noise, resulting in low

detection sensitivity [10].

Detection equipment with both high accuracy and

miniaturization ability have become new topics of research in

certain application scenarios of TDLAS. One way to realize such

equipment is to achieve long path lengths and compact gas

sensors using multireflection gas absorption cells [11].

However, interference fringes caused by multiple reflections of

the laser beam on the optical elements can lead to large deviations

in the inversion of the concentration and severely affect the

accuracy of the detection system. Therefore, suppression of the

interference fringes of gas concentration signals has become a

focus of current research. Luo et al. [12] proposed an adaptive

harmonic feeding generative adversarial network as well as a

novel adaptive weighting scheme for interference fringe

suppression. They realized an average absolute oxygen

concentration inversion of 0.57% for an actual pharmaceutical

production line. Although neural networks are powerful tools,

the learning time and training data required for the algorithms

are considerable. Moreover, local convergence of the minimum

value may lead to training failure. Zhou et al. [13] employed a

multifrequency modulation method to suppress the interference

fringe noise of a residual oxygen detection system in

encapsulated pharmaceutical bottles, achieving a signal

standard deviation of 2.96 and signal-to-noise ratio (SNR) of

36.979 dB. However, subtle differences in the diameters and

thicknesses of different glass bottles can lead to significant

variations in the interference demodulation amplitudes and

spacing, thus limiting the application of their method to

glasses with different parameters.

Kalman filter [14], wavelet transform [15], moving average

[16], Wiener filter [17], and Gabor transform [18] have all been

used to address noise suppression problems. Although these five

methods reduce the influences of interference fringes on the

detected signals, they are computationally intensive and not

conducive to practical applications. Guo [19] and Yu [20]

proposed approaches using empirical mode decomposition

(EMD) and combined variable mode decomposition [21] with

Savitzky–Golay denoising (VMD-SG), respectively; the

computation times of these two methods were less than those

of the Kalman and other methods. However, the EMD algorithm

has problems with mode mixing and endpoint effects.

Furthermore, the EMD algorithm directly removes the high-

frequency intrinsic mode function (IMF), which can cause signal

distortion upon reconstruction. To solve the mode-mixing

problem of EMD, Huang [22] proposed ensemble empirical

mode decomposition (EEMD); taking the characteristic that

the mean value of white noise is zero, EEMD eliminates mode

mixing by adding uniformly distributed Gaussian white noise in

the decomposition process and averaging the decomposition

results. However, the purity of the original signal in inevitably

degraded in EEMD; to overcome this disadvantage, the complete

ensemble empirical mode decomposition with adaptive noise

(CEEMDAN) algorithm was first proposed in 2011 by Torres

et al. [23]. The CEEMDAN algorithm is an improved modified

version of EEMD, where white noise is added at each EMD stage

and its specific residual is calculated to obtain each modal

component; after decomposition, the reconstruction error is

almost zero. Compared to EEMD, it overcomes mode mixing

and effectively reduces reconstruction errors. However, it causes

loss of useful high-frequency information during signal

reconstruction. The wavelet threshold denoising (WTD)

method applied in signal reconstruction is used to address

this concern. Advantageously, WTD adapts to the

requirements of time–frequency signal analysis to focus on

arbitrary details of the signal. However, as the hard threshold

function is not continuous at the threshold, the signal can

easily fluctuate after hard-threshold-function processing. In

contrast, the soft threshold function is coherent, but the signal

loses a part of the high-frequency coefficients above the soft

threshold.

In this work, a CEEMDAN andWTD combined algorithm is

designed for application to direct absorption spectroscopy. The

remainder of this paper is organized as follows. First, we discuss

the causes of interference fringes, how to combine the two

algorithms, and the methods for improvement. Then, the

denoising ability of the combined algorithm is demonstrated

via simulation analysis and comparisons with other filtering

algorithms. Finally, we analyze the stability and detection limit

of the CEEMDAN-WTD algorithm via calibration experiments

and Allan variance analysis.

Theory of TDLAS

When a laser beam passes through a certain gas medium, the

light intensity of the beam decays owing to partial absorption by

the gas. The input and output light intensities (I0 and It,

respectively) satisfy Beer–Lambert law, and the output light

intensity can be described as follows [24, 25]:

It � I0 exp[ − S(T)CPLφ(] − ]0)] (1)

where S(T) is the line strength of the spectral feature, C is the

concentration of the gas to be measured, P is the pressure of the

gas, L is the effective optical path length of the laser passing

through the gas, and φ(]-]0) represents the gas absorption

spectral line shape function.
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Almost all TDLAS systems show optical interference fringes

that are caused by multiple reflections of the laser on the surface of

the optical element; these fringes are also known as the etaloning

effects. The transmitted light intensity can be calculated from the

phase difference betweenmultiple beams of light. According to the

principle of the Fabry–Perot interferometer, the transmitted light

intensity can be expressed as [26]

It � 1

1 + 4R

(1 − R)2 · sin
2(δ

2
)I0

(2)

Here, R is the interface reflectivity (assuming that the two

interfaces have the same reflectivity), δ is the phase difference

between the directly transmitted beam and that after secondary

reflection. For the small surface reflectances of the lenses and

transmission windows used in TDLAS systems, the transmitted

light intensities sinusoidally vary with phase difference. Then, Eq.

2 can be simplified as

It � (1 + 2R cos δ − 2R)I0 (3)

The laser is assumed to be incident in a direction

perpendicular to the parallel glass plate. Then, the distance

between the two parallel interfaces is l, refractive index of the

optical medium through which the laser passes is n, and laser

wavelength is λ. The phase difference in Eq. 3 is given by

δ � 4πnl
λ

(4)

The transmitted light intensity can be calculated by

combining Eqs. 3, 4 as

It � [1 + 2R cos(4πnl
λ

) − 2R]I0 (5)

Optical interfaces, such as laser windows, gas-cell windows,

detector windows, and collimating lenses, are present in TDLAS

systems, and all of these may cause optical interference fringes.

The strength of the optical interference fringe is proportional to the

reflectance of the interface in a direct absorption spectroscopy

detection system. The reflectance of a typical optical quartz-glass

surface is about 0.02 [27]. Theoretically, based on Eq. 3, the

equivalent absorbance fluctuation due to the etalon effect is

0.04. Moreover, the equivalent absorbance corresponding to the

gas detection limit in the current direct absorption spectroscopy

detection system based on TDLAS is 10−3, which is considerably

less than 0.04. Therefore, to utilize the high accuracy and sensitivity

of TDLAS, the direct absorption spectroscopy detection system

needs to be optimized, and optical interference fringes need to be

suppressed.

Principle of the CEEMDAN-WTD
algorithm

CEEMDAN

The CEEMDAN algorithm decomposes a signal (original

signal with Gaussian white noise) into finite IMFs and residual

components [28]. The specific steps are as follows [29]:

1) Add i (i = 1,2,3,4 . . . I) sets of Gaussian white noise to the

original signal, which is defined as x(t) so that the signal to be

processed is obtained as

xi(t) � x(t) + εei(t) (6)
where ε is the amplitude (ratio of standard deviation of the

amplitude of the white noise to that of the original signal), and

ei(t) is the ith content N (0,1) of the added Gaussian white noise.

2) Decompose each xi(t) using EMD to obtain the first IMFs:

IMF1 � 1
T
∑T
i�1
IMFi

1 (7)

The first residual is obtained by subtracting the first IMF

from the original signal x(t):

r1(t) � x(t) − IMF1 (8)

3) Add i sets of white noise to r1(t) to compose a new signal to be

processed:

Ri
1(t) � r1(t) + εei(t) (9)

Decompose each xi(t) by EMD to extract the second mode as

follows:

IMF2 � 1
T
∑T
i�1
IMFi

2 (10)

FIGURE 1
Comparison of different thresholding functions.
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Additionally, the second residual is

r2(t) � r1(t) − IMF2 (11)

4) Repeat steps (1)–(3) until the resulting residual can no longer

be decomposed. Finally, the k modal components, remaining

residual rk(t), and original signal x(t) can be expressed as

x(t) � rk(t) +∑k
i�1
IMFi (12)

WTD

WTD filters the signal to remove noise and extract the

maximum useful signal; it is based on the principle that the

selected wavelet basis function at different scales and a certain

shift are applied by inner product with the original signal. Then,

the result is mapped to the time and frequency domains. Owing

to the different properties of the wavelet coefficients of the signal

and noise, noise can be maximally filtered out by selecting a

threshold value and reconstructing the signal.

Threshold handling, including selection of both the threshold

value and threshold function, is significant for WTD analysis

[30]. The wavelet coefficients of the noise are analyzed to select a

suitable threshold value that is greater than the maximum noise

level. Hard and soft threshold functions are commonly used for

this purpose, which are given in Eqs. 13, 14, respectively:

ωs � {ω |ω|≥ λj
0 |ω|< λj (13)

ωs � { sgn(ω)(|ω| − λj) |ω|≥ λj
0 |ω|< λj

(14)

Here, ωs denotes the set of wavelet coefficients after

decomposition, ω is the set of wavelet coefficients, and λj is

the threshold value. However, both the hard and soft threshold

functions have certain defects, and the denoising results are not

ideal for complex signals. The hard threshold function preserves

the local characteristics of the signal; however, as it is not

continuous at the threshold value, the reconstructed signal

can easily oscillate (pseudo-Gibbs phenomenon).

The soft threshold function is a continuous function; hence,

the smoothness of its signal is better than that of the hard

threshold function. Additionally, wavelet coefficients less than

the threshold are set to 0. However, there is a constant deviation

between the original wavelet coefficients and those after

decomposition. Therefore, to overcome the shortcomings of

the soft and hard threshold functions, we present an

improved threshold function having the following expression:

ωs �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

sgn(ω) · {|ω| − λj
|ω| − λj + 1

exp (|ω| − λj)a } |ω|≥ λj

0 |ω|≤ λj

(15)
where a is the adjustment factor. When a = 0, the improved

threshold function is close to the semisoft threshold function.

FIGURE 2
The flowchart of the CEEMDAN-WTD.

FIGURE 3
Simulation signal.
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When a tends to infinity, the new threshold function can be

approximated to the hard threshold function. Unlike the hard

threshold function, our proposed function is continuous. By

changing the value of a to modify the properties of the

threshold function, abrupt changes can be handled smoothly

and the oversized wavelet coefficients are quantized such that

they are close to the original values, thereby significantly

preserving the true signal. A comparison of the different

threshold functions is presented in Figure 1.

CEEMDAN-WTD

The flowchart of the CEEMDAN-WTD algorithm is given in

Figure 2. CEEMDAN is first performed on the original signal to

obtain multiple groups of IMFs. The correlation coefficient

method is used to determine the IMF component that is

dominated by noise. Then, this IMF component with noise is

handled byWTD to improve the problem of loss of the real signal

during the CEEMDAN process. Finally, the pure IMF

component decomposed by CEEMDAN, noisy IMF

component after wavelet processing, and residual component

are reconstructed to obtain the processed signal.

Simulation and analysis

Simulation

Herein, a CO2 detection system based on the DAS is

employed to verify the CEEMDAN-WTD algorithm. The

simulation parameters are as follows: standard atmospheric

pressure, temperature T = 296 K, and effective absorption

optical path length of the gas L = 200 cm. It is well known

that the interference fringes are usually overlaid on real signals in

the form of periodic sinusoidal functions to yield periodic

fluctuations in the detected signal. Therefore, interference

fringe noise is simulated by adding a sinusoidal signal with a

certain amplitude to the simulated signal and random noise.

Figure 3 displays this simulation signal.

FIGURE 4
Decomposition diagram obtained IMF1-IMF12 using CEEMDAN.
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Analysis of results

Before the signal is processed using the CEEMDAN

algorithm, Gaussian white noise of amplitude Nstd, average

number of signals N, and maximum number of iterations

allowed Maxiter are selected. In this study, Nstd = 0.2, N =

100, and Maxiter = 2000. The 12 IMF components and the

residuals are shown in Figure 4. Spectral analysis was

performed for each IMF component. Figure 5 shows that the

large-amplitude low-frequency mode components are

decomposed precisely and that there is no confusion between

the modes.

Generally, interference fringe noise is a high-frequency

signal. For a signal with such noise, the signal energy is

FIGURE 5
Frequency spectrum of IMF1-IMF12.

TABLE 1 Correlation coefficients between the IMF components and original signal.

IMF Correlation coefficient IMF Correlation coefficient

IMF1 0.0280 IMF7 0.0512

IMF2 0.0186 IMF8 0.0715

IMF3 0.0182 IMF9 0.0906

IMF4 0.0152 IMF10 0.2417

IMF5 0.0113 IMF11 0.2503

IMF6 0.0470 IMF12 0.8708
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FIGURE 6
Comparison of moving average, Kalman filtering, WTD and EMD-WTD methods.

FIGURE 7
Comparison of EEMD-WTD, CEEMD-WTD, VMD-WTD and CEEMDAN-WTD methods.
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mostly concentrated in the IMF component with a relatively large

order. To accurately discriminate the noisy IMF components, the

correlation coefficient R is used herein to reflect the relationship

between the IMF component and original signal to determine the

IMF component with noise [31]. Table 1 presents the calculation

results.

IMF1–IMF9 components are correlation coefficients less

than 0.1, which are considered as components with noise [32].

These components are denoised using the improved WTD

proposed in this work. The Daubechies wavelet (db10) was

chosen as the wavelet basis, and the number of decomposition

layers was set as 7. To verify the steps of the CEEMDAN-WTD

algorithm, the denoising results were compared with those of the

moving average, Kalman filter, WTD, EMD-WTD, EEMD-

WTD, CEEMD-WTD, and VMD-WTD. The comparison

shows that the CEEMDAN-WTD algorithm is significantly

better than the other methods in terms of suppression of

interference fringes and has equally excellent peak value

extraction. The denoised results of the above methods are

compared in Figure 6 and Figure 7.

SNR and root mean-squared error (RMSE) [33] are

considered as two important bases for evaluating the

processing effect; SNR and RMSE are determined using Eqs.

16, 17, respectively.

SNR � 10lg

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣∑N

i�1X
2
i/∑N

i�1(Xi − xi)2
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (16)

RMSE �
���������������∑N

i�1(Xi − xi)2/N√
(17)

whereXi is the original signal, xi the signal after processing, andN

is the number of sampling points of the signal.

SNR represents the ratio of effective power of the signal to that

of the noise; it is proportional to the denoising effect. RMSE reflects

the deviation between the measured and actual values; it indicates

the degree of signal distortion. Contrary to SNR, the smaller the

RMSE, the smaller is the deviation between the two signals and

more satisfactory is the denoising effect. The calculated SNR and

RMSE results of the eight denoisingmethods are shown in Table 2.

Among these methods, the SNR improvement of the signal is

largest after CEEMDAN-WTD processing. The SNR improved by

1.87 times from 17.4605 to 32.6050 and RMSE reduced by 37.6%

from 0.0456 to 0.0080 compared to the moving average approach;

this indicates that CEEMDAN-WTD has the best denoising effect.

Experiments

Experimental setup

The experimentally acquired CO2 concentration signal was

processed using the CEEMDAN-WTD algorithm at temperature

TABLE 2 SNR and RMSE results after applying various denoising
methods.

Denoising method SNR/dB RMSE

Moving average 17.4605 0.0456

Kalman filtering 19.7911 0.0348

WTD 30.6479 0.0100

EMD-WTD 32.0008 0.0091

EEMD-WTD 32.0653 0.0085

CEEMD-WTD 32.1497 0.0084

VMD-WTD 32.3638 0.0082

CEEMDAN-WTD 32.6050 0.0080

FIGURE 8
TDLAS experimental system structure.
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T = 300 K, pressure P = 1 atm, and optical path length L =

200 cm. Figure 8 illustrates the detection principle of the CO2

system. The source uses a distributed feedback (DFB) laser (DFB-

2004-4.5-BF2-FC/APC, Nanosystems and Technologies GmbH,

Germany) with a center frequency of 2004 nm. The laser output

wavelength was controlled through a temperature controller and

laser driver (LDC501, Stanford Research Systems, USA). The

laser wavelength varied with current at a rate of 0.026 nm/mA. A

signal generator (33210A, Keysight, USA) was used to generate a

10 Hz triangular wave signal that was applied to the laser driver

to scan the center wavelength over the CO2 absorption line. The

collimated laser beam entered the gas absorption cell and reached

the photodetector after multiple reflections. The gas absorption

cell employed was a White cell with an effective absorption path

length of 200 cm. The photoelectric detector converted the light

signals containing the gas concentration information into

electrical signals. The data acquisition card (DAQ) (PCL-4472,

National Instruments, USA) captured the electrical signal and

input it to the PC for analysis and processing.

Results and analysis of the calibration
experiment

As shown in Figure 9 and Figure 10, the DAS signal of

300 ppm CO2 was detected, and the results were processed using

various methods. As shown in the figure, the original signal

represented by the black curve was severely disturbed by noise;

obvious interference fringe noise was present, which can result

in errors in the detected absorption peak values. When using

the traditional moving average method, the reconstructed

signal still contained disturbances from the interference

fringe noise. Further, the WTD and other methods were

used for comparison, and the reconstructed DAS signal

showed poor smoothness. In the results from CEEMDAN-

WTD processing, the overall curve was smooth and the

useful signal features were preserved well. From locally

magnified images, we determined that the local signal did

not mutate. In addition, the positions of the features

remained unchanged, and the interference fringe noise was

suppressed well. The results after denoising by various methods

are shown in Table 3. The SNR and RMSE values of the

proposed method are 14.3158 dB and 5.3093 × 10−4,

respectively.

We varied the CO2 concentrations (50 ppm, 60 ppm,

70 ppm, 100 ppm, 200 ppm, and 300 ppm) under the same

experimental conditions (P = 1 atm, T = 300 K, and L =

200 cm) and collected the absorption spectra of CO2 [34].

The peaks of the absorption spectra were extracted using the

noise reduction process proposed herein, and a straight line was

FIGURE 9
DAS signal of CO2 detected in the experiment and the denoising result by using moving average, Kalman filtering, WTD and EMD-WTD.
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fitted based on the concentrations and peaks of the

absorption spectra; the expression of the straight line is as

follows [35]:

γ � 3.76 × 10−5x − 2.9 × 10−4 (18)

Figure 11 illustrates the fitting results, where the peak value of

the DAS signal has a favorable linear relationship with the gas

concentration. The determination coefficient (R2) was calculated

to be 0.999. This demonstrates the excellent linear concentration

response of the CO2 detection system with the CEEMDAN-

WTD denoising algorithm.

Allan variance and system stability
Allan variance is an important tool for quantitatively

analyzing various types of noise; it can be used to visually

observe the variation patterns of noise with integration time

as well as evaluate the sensitivity of the system [36]. In the

experiment, 1000 data points of CO2 at a concentration of

50 ppm were measured with a sampling period of 1 s. The

signal amplitude was converted to concentration using Eq. 16.

The 1000 data points were analyzed via Allan variance. Figure 12

shows the relationship between the Allan deviation and

averaging time τ. From these, the lower limit of detection

(LOD) of the system can be obtained [37]; when the

averaging time was 1 s, the LOD was 7.82 ppm, and when the

averaging time was 148 s, the LOD reached a minimum of

3.08 ppm.

Stability is an important indicator that affects the

sensitivity of a detection system. Theoretically, a perfectly

stable detection system can have extremely high detection

sensitivity if the detected signals are infinitely averaged.

However, various factors can cause system instabilities,

such as changes in the laser wavelength due to ageing,

temperature drift, white noise, and interference fringe noise

from multiple reflections of the laser. Therefore, the actual

experimental detection system is only stable for a limited

FIGURE 10
DAS signal of CO2 detected in the experiment and the denoising result by using EEMD-WTD, CEEMD-WTD, VMD-WTD and CEEMDAN-WTD.

TABLE 3 SNR and RMSE results after denoising the DAS signal.

Denoising method SNR/dB RMSE

Moving average 8.4437 11.2696 × 10−4

Kalman filtering 8.5577 11.1487 × 10−4

WTD 11.7177 8.9817 × 10−4

EMD-WTD 12.2558 8.4423 × 10−4

EEMD-WTD 12.3671 8.3347 × 10−4

CEEMD-WTD 12.4003 8.3029 × 10−4

VMD-WTD 14.3158 6.6597 × 10−4

CEEMDAN-WTD 16.2841 5.3093 × 10−4
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period, which means that the system has an optimal averaging

time. To further evaluate the stability of the system, a one-

hour experiment was carried out in the lab for detecting

50 ppm of CO2 gas continuously. The upper panels of

Figure 13 show the time series of the measured

concentrations of 50 ppm CO2. The distribution histograms

of deviations of the measured concentrations and the fitting

curve of the probability distribution are depicted in the lower

panels of Figure 13. From these, the half-width at half

maximum (HWHM) was calculated as 0.326 ppm. Thus, it

was confirmed that the precision of system measurement was

better than 0.65%. The measured concentration data

obviously resembled a Gaussian distribution. These results

verify that the system has excellent precision and stability.

Conclusion

In summary, a signal processing algorithm combining

CEEMDAN and WTD was proposed herein to suppress the

interference fringe noise of the TDLAS system. Moreover, the

equation and detection procedure of the proposed algorithm are

given. The algorithm reduces large reconstruction errors and loss of

useful signals that occur when using the EEMD algorithm.

Furthermore, the proposed novel threshold function overcomes

the shortcomings of the soft and hard threshold functions. The

CEEMDAN-WTD algorithm was evaluated with both simulation

and experimental signals. The results showed that the CEEMDAN-

WTD algorithm achieved better interference fringe noise suppression

performance than the moving average, Kalman filter, WTD, EMD-

WTD, EEMD-WTD, CEEMD-WTD, and VMD-WTD algorithms.

Additionally, it exhibited excellent peak value extraction performance.

The CEEMDAN-WTD algorithm increased the SNR by 1.87 times

and decreased the RMSE by 37.6% compared to the moving average

algorithm; its R2 was determined as 0.999 through calibration

experiments. Allan variance analysis indicated that the proposed

algorithm had a minimum system detection limit of 3.08 ppm for an

averaging time of 148 s. From the long-time experiment, a

measurement accuracy of 0.65% was verified.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors without undue reservation.

Author contributions

SW: methodology and writing—original draft. WG: software.

ZW: writing—review and editing. YW: validation. YL: formal

FIGURE 11
The fitting result in the calibration experiment.

FIGURE 12
Allan variance plot for time series measurements of pure CO2

and a slope indicating white behavior of the instrument.

FIGURE 13
The measured CO2 concentration data (top) and the
distribution histograms of deviation (bottom). The red line depicts
a Gaussian profile.

Frontiers in Physics frontiersin.org11

Wang et al. 10.3389/fphy.2022.1057519

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1057519


analysis. TZ: project administration and supervision. QZ:

conceptualization. LZ: discussion and suggestions. FS:

proofreading. WZ: resources. TL: funding acquisition.

Funding

This work was supported by the National Key Research and

Development Program of China (Grant No. 2021YFB3201904),

Natural Science Foundation of Shandong Province (Grant Nos.

ZR2020QF098, ZR2020KC012, and ZR2022QF035), Innovation

Team Program of Jinan (Grant Nos. 2020GXRC032 and

2021GXRC037), and Program from Qilu University of

Technology (Grant Nos. 2022JBZ01-04, 2022GH001,

2022PX045, and 2022PT029).

Conflict of interest

TL was employed by Shandong Micro-Sensor Photonics Ltd.

The remaining authors declare that this research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, editors, and reviewers. Any product thatmay

be evaluated in this article or claim that may be made by its

manufacturer is not guaranteed or endorsed by the publisher.

References

1. Zhao YT, Guo JJ, Bao C, Liang CY, Jain HK. Knowledge graph analysis of
human health research related to climate change. Int J Environ Res Public Health
(2020) 17(20):7395. doi:10.3390/ijerph17207395

2. Yu JN, Ming TK, Yin CK, Raima N, Sajid A, Wasim I. Role of solar-based
renewable energy in mitigating CO2 emissions: Evidence from quantile-on-
quantile estimation. Renew Energ (2022) 182:216–26. doi:10.1016/J.RENENE.
2021.10.002

3. Zhang ZH, Zhang FB, Xu B, Xie HQ, Fu BT, Lu X, et al. High-sensitivity gas
detection with air-lasing-assisted coherent Raman spectroscopy. Ultrafast Sci
(2022) 2022:1–8. doi:10.34133/2022/9761458

4. Fu Y, Cao JC, Yamanouchi K, Xu HL. Air-laser-based standoff coherent Raman
spectrometer. Ultrafast Sci (2022) 2022:1–9. doi:10.34133/2022/9867028

5. Werle P. A review of recent advances in semiconductor laser based gas
monitors. Spectrochimica Acta A: Mol Biomol Spectrosc (1998) 54(2):197–236.
doi:10.1016/S1386-1425(97)00227-8

6. Ma YF. Recent advances in qepas and qepts based trace gas sensing: A review.
Front Phys (2020) 8:268. doi:10.3389/FPHY.2020.00268

7. Liu XN, Ma YF. Tunable diode laser absorption spectroscopy-based
temperature measurement with a single diode laser near 1.4 μm. Sensors (2022)
22(16):6095. doi:10.3390/s22166095

8. Razaa M, Ma LH, Yao C, Yang M, Wang Z, Wang Q, et al. MHz-rate scanned-
wavelength direct absorption spectroscopy using a distributed Feedback diode laser
at 2.3 µm. Opt Laser Techn (2020) 130:106344. doi:10.1016/j.optlastec.2020.106344

9. Rieker GB, Jeffries JB, Hanson RK. Calibration-free wavelength-modulation
spectroscopy for measurements of gas temperature and concentration in harsh
environments. Appl Opt (2009) 48(29):5546–60. doi:10.1364/AO.48.005546

10. Lin S, Chang J, Sun JC, Xu P. Improvement of the detection sensitivity for
tunable diode laser absorption spectroscopy: A review. Front Phys (2022) 10:136.
doi:10.3389/FPHY.2022.853966

11. Jiang J, Zhao MX, Ma GM, Song HT, Li CR, Han X, et al. TDLAS-based
detection of dissolved methane in power transformer oil and field application. IEEE
Sens J (2018) 18(6):2318–25. doi:10.1109/jsen.2017.2788871

12. Luo QW, Zhou J, Li WC, Yang CH, Gui WH. Interference fringe suppression
for oxygen concentration measurement using adaptive harmonic feeding generative
adversarial network. IEEE Sens J (2021) 22(3):2419–29. doi:10.1109/JSEN.2021.
3133909

13. Zhou BX, Luo QW, Liu ZH, Yang CH. Multi-frequency modulation method
for optical interference suppression in TDLAS system. In: Proceedings of the 32nd
China Process Control Conference (2021). p. 1602. doi:10.26914/c.cnkihy.2021.
047630

14. Leleux DP, Claps R, ChenW, Harman TL. Applications of Kalman filtering to
real-time trace gas concentration measurements. Appl Phys B: Lasers Opt (2002)
74(1):85–93. doi:10.1007/s003400100751

15. Li CL, Guo XQ, JiWH,MaWG, Qiu X. Etalon fringe removal of tunable diode
laser multi-pass spectroscopy by wavelet transforms. Opt Quan Electron (2018)
50(7):275–11. doi:10.1007/s11082-018-1539-4

16. Zou DB, Chen WL, Du ZF, Xu KX, Qi RB, Li HL, et al. Selection of digital
filtering in the escaping ammonia monitoring with TDLAS. Spectral Anal (2012)
32(09):2322–6. doi:10.3964/j.issn.1000-0593(2012)09-2322-05

17. Kireev S, Kondrashov A, Shnyrev S. Application of the Wiener filtering
algorithm for processing the signal obtained by the TDLAS method using the
synchronous detection technique for the measurement problem of 13CO2

concentration in exhaled air. Laser Phys Lett (2019) 16(8):085701. doi:10.1088/
1612-202X/ab27b9

18. Zhang LF, Wang F, Wei H, Wang J, Cui HB, Zhao GJ. Denoising of digital
filtering based on wavelength modulation spectroscopy. Laser & Optoelectronics
Progress (2021) 58(7):0730001–402. doi:10.3788/LOP202158.0730001

19. Guo XQ, Qiu XB, Ji WH, Shao LG, Li CL Minimization of interference fringes
in tunable diode laser absorption spectrum based on empirical mode
decomposition. Laser & Optoelectronics Progress (2018) 55(11):113001–469.
doi:10.3788/LOP55.113001

20. Liang Y, Liu TG, Liu K, Jiang JF, Li YF. Optimized gas detection method based
on variational mode-decomposition algorithm. Chinese Journal of Lasers (2021)
48(7):0706003–144. doi:10.3788/CJL2021480706003

21. Dragomiretskiy K, Zosso D. Variational mode decomposition. IEEE Trans
Signal Process (2014) 62(3):531–44. doi:10.1109/TSP.2013.2288675

22. Wu ZH, Norden EH. Ensemble empirical mode decomposition: A noise-
assisted data analysis method. Adv Adapt Data Anal (2009) 1(1):1–41. doi:10.1142/
S1793536909000047

23. Torres ME, Colominas MA, Schlotthauer G, Flandrin P. A Complete
ensemble empirical mode decomposition with adaptive noise. In: Proceedings of
the 2011 IEEE International Conference on Acoustics: Speech and Signal Processing
(ICASSP) (2011). p. 4144–7. doi:10.1109/ICASSP.2011.5947265

24. Jia XN, Roels J, Baets R, Roelkens G. A miniaturised, fully integrated NDIR
CO2 sensor on-chip. Sensors (2021) 16:5347. doi:10.3390/s21165347

25. Abitan H, Bohr H, Buchhave P. Correction to the Beer-Lambert-Bouguer law
for optical absorption. Appl Opt (2008) 47(29):5354–7. doi:10.1364/ao.47.005354

26.Werle P. Accuracy and precision of laser spectrometers for trace gas sensing in
the presence of optical fringes and atmospheric turbulence. Appl Phys B (2011)
102(2):313–29. doi:10.1007/s00340-010-4165-9

27. He XY, Su Y. Machined surface microstructure of optical silica glasses.
J Wuhan Univ Techn (2010) 32(13):34–7. doi:10.3963/j.issn.1671-4431.2010.
13.009

28. Xu L, Cai DS. Research on signal processing of fiber optic gyroscope based on
least square smooth filtering and CEEMDAN. J Vibration Shock (2020) 39(10):
269–78. doi:10.13465/j.cnki.jvs.2020.10.037

29. Meng XM, Cai CC, Wang YQ, Wang QJ, Tan LL. Remaining useful life
prediction of lithium-ion batteries using CEEMDAN and WOA-SVR model. Front
Energ Res (2022) 10:1460. doi:10.3389/fenrg.2022.984991

30. Mou XJ, Li HL, Tuo XG. Research on improved wavelet threshold denoising
algorithm and its simulation. Process Automation Instrumentation (2020) 41(08):
46–50. doi:10.16086/j.cnki.issn1000-0380.2019070036

Frontiers in Physics frontiersin.org12

Wang et al. 10.3389/fphy.2022.1057519

https://doi.org/10.3390/ijerph17207395
https://doi.org/10.1016/J.RENENE.2021.10.002
https://doi.org/10.1016/J.RENENE.2021.10.002
https://doi.org/10.34133/2022/9761458
https://doi.org/10.34133/2022/9867028
https://doi.org/10.1016/S1386-1425(97)00227-8
https://doi.org/10.3389/FPHY.2020.00268
https://doi.org/10.3390/s22166095
https://doi.org/10.1016/j.optlastec.2020.106344
https://doi.org/10.1364/AO.48.005546
https://doi.org/10.3389/FPHY.2022.853966
https://doi.org/10.1109/jsen.2017.2788871
https://doi.org/10.1109/JSEN.2021.3133909
https://doi.org/10.1109/JSEN.2021.3133909
https://doi.org/10.26914/c.cnkihy.2021.047630
https://doi.org/10.26914/c.cnkihy.2021.047630
https://doi.org/10.1007/s003400100751
https://doi.org/10.1007/s11082-018-1539-4
https://doi.org/10.3964/j.issn.1000-0593(2012)09-2322-05
https://doi.org/10.1088/1612-202X/ab27b9
https://doi.org/10.1088/1612-202X/ab27b9
https://doi.org/10.3788/LOP202158.0730001
https://doi.org/10.3788/LOP55.113001
https://doi.org/10.3788/CJL2021480706003
https://doi.org/10.1109/TSP.2013.2288675
https://doi.org/10.1142/S1793536909000047
https://doi.org/10.1142/S1793536909000047
https://doi.org/10.1109/ICASSP.2011.5947265
https://doi.org/10.3390/s21165347
https://doi.org/10.1364/ao.47.005354
https://doi.org/10.1007/s00340-010-4165-9
https://doi.org/10.3963/j.issn.1671-4431.2010.13.009
https://doi.org/10.3963/j.issn.1671-4431.2010.13.009
https://doi.org/10.13465/j.cnki.jvs.2020.10.037
https://doi.org/10.3389/fenrg.2022.984991
https://doi.org/10.16086/j.cnki.issn1000-0380.2019070036
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1057519


31. Xie MW. The relation of covariance, correlation coefficient and correlation.
J Appl Stat Manage (2004) 03:33–6. doi:10.13860/j.cnki.sltj.2004.03.008

32. Fei HL, LiuM, Qu GJ, Gao Y. Amethod for blasting vibration signal denoising
based on ensemble empirical mode decomposition-wavelet threshold. Explosion
and Shock Waves (2018) 38(01):112–8. doi:10.11883/bzycj-2016-0148

33. Li GL, Zhang ZC, Zhang XN, Wu YH, Ma K, Jiao Y, et al. Performance of a
mid-infrared sensor for simultaneous trace detection of atmospheric CO and N2O
based on PSO-kelm. Front Chem (2022) 10:930766. doi:10.3389/fchem.2022.930766

34. Qiao SD, Sampaolo A, Patimisco P, Spagnolo V, Ma YF. Ultra-highly sensitive
HCl-LITES sensor based on a low-frequency quartz tuning fork and a fiber-coupled
multi-pass cell. Photoacoustics (2022) 27:100381. doi:10.1016/j.pacs.2022.100381

35. Zhang L, Li YF, Wei YB, Wang ZW, Zhang TT, Gong WH, et al. SNR
enhancement of direct absorption spectroscopy utilizing an improved
particle swarm algorithm. Photonics (2022) 6:412. doi:10.3390/
photonics9060412

36. Luo QW, Yang CH, Song C, Zhou J, Gui WH. TDLAS/WMS embedded
system for oxygen concentration detection of glass vials with variational mode
decomposition. IFAC-PapersOnLine (2020) 53(2):11626–31. doi:10.1016/J.
IFACOL.2020.12.644

37. Lu HB, Zheng CT, Zhang L, Liu ZW, Song F, Li XY, et al. A remote sensor
system based on TDLAS technique for ammonia leakage monitoring. Sensors
(2021) 21(7):2448. doi:10.3390/S21072448

Frontiers in Physics frontiersin.org13

Wang et al. 10.3389/fphy.2022.1057519

https://doi.org/10.13860/j.cnki.sltj.2004.03.008
https://doi.org/10.11883/bzycj-2016-0148
https://doi.org/10.3389/fchem.2022.930766
https://doi.org/10.1016/j.pacs.2022.100381
https://doi.org/10.3390/photonics9060412
https://doi.org/10.3390/photonics9060412
https://doi.org/10.1016/J.IFACOL.2020.12.644
https://doi.org/10.1016/J.IFACOL.2020.12.644
https://doi.org/10.3390/S21072448
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1057519

	Interference fringe suppression in tunable diode laser absorption spectroscopy based on CEEMDAN-WTD
	Introduction
	Theory of TDLAS
	Principle of the CEEMDAN-WTD algorithm
	CEEMDAN
	WTD
	CEEMDAN-WTD

	Simulation and analysis
	Simulation
	Analysis of results

	Experiments
	Experimental setup
	Results and analysis of the calibration experiment
	Allan variance and system stability


	Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


