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The enhancement of fusion reaction rates in a thermonuclear plasma by

electron screening of the Coulomb barrier is an important plasma-nuclear

effect that is present in stellar models but has not been experimentally

observed. Experiments using inertial confinement fusion (ICF) implosions

may provide a unique opportunity to observe this important plasma-nuclear

effect. Herein, we show that experiments at the National Ignition Facility (NIF)

have reached the relevant physical regime, with respect to the density and

temperature conditions, but the estimated impacts of plasma screening on

nuclear reaction rates are currently too small and need to be increased to lower

the expected measurement uncertainty. Detailed radiation hydrodynamics

simulations show that practical target changes, like adding readily available

high-Z gases, and significantly slowing the inflight implosion velocity, while

maintaining inflight kinetic energy, might be able to push these conditions to

those where plasma screening effects may be measurable. We also perform

synthetic data exercises to help understand where the anticipated experimental

uncertainties will become important. But challenges remain, such as the

detectability of the reaction products, non-thermal plasma effects, species

separation, and impacts of spatial and temporal gradients. This work lays the

foundation for future efforts to develop an important platform capable of the

first plasma electron screening observation.
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1 Introduction

For decades, numerous research groups have identified plasma-electron screening as

an important physical process worth pursuing in high-energy-density (HED)

experiments. For example, the National Research Council [1] describes a “raging

debate” surrounding questions related to plasma screening models and that HED
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experiments may be well suited to help. In fact, ideas emerge

periodically from the literature challenging the established

models [2–7], but the debate is hampered by the complete

lack of experimental data. This situation is exacerbated by the

“electron screening puzzle” caused by discrepancies observed in

terrestrial laboratory target experiments [8–15] when compared

to screening theory [5, 6]. This makes measurements made

directly in the plasma environments of stellar interiors

particularly important so that stellar plasma screening models

can be tested against data.

The screening process becomes important when nuclei

undergo a fusion reaction as their kinetic energy overcomes

the repulsive Coulomb force and exploits favorable binding

energy. In many HED environments where these reactions are

occurring, such as in stellar cores or inertial confinement fusion

implosions, the nuclei are embedded in a plasma. The

background electrons in this plasma can lower the Coulomb

barrier, enhancing the fusion reactivity.

Plasma screening of nuclear reactions occurs when ions

within the plasma interact with a Coulomb potential energy

ofU(r) � Z1e2

r . Due to this potential, electrons will cluster around

the ion and reduce the potential by a factor of Uscreen � Z1e2

λD
,

where λD is the Debye length, λ2D � ε0 kBT
n e2 . This results in an

enhancement (appropriate in the weak screening limit) of the

cross section of [2, 7, 16]

σscreened E( )
σ E( ) ≈ exp Z1Z2

~ZΛ0( )
≈ exp

Z1Z2e2

4πε0TλD
( )

where Λ0 is the charge-free plasma parameter,

(4π) 1
2 e3n

1
2/(kT)3/2.

A similar screening effect occurs in accelerators that study

nuclear reactions. In accelerator experiments, the bound

electrons of the target screen the target nuclei and enhance

the reaction rate. In this bound-electron screening scenario,

the targets are not sufficiently hot to fully ionize the target

nuclei. This effect, differing from plasma screening, must be

removed to compute the bare nuclear cross section. This effect is

significant for low center-of-mass energy cross-sections and has

in some cases been observed to be ~1.7–1.8 times larger than

expected [10, 11, 17].

Despite widespread interest, the realization of a nuclear

plasma screening experiment has been elusive because of

several daunting challenges. First, extreme density and

temperature conditions must be produced and diagnosed.

Second, precise nuclear cross-section measurements must be

made where these conditions are produced, implying the

presence of strong density and temperature gradients. Finally,

as the effect on fusion rates is often weak in the regimes that can

be reproduced in the laboratory, care must be exercised to

develop a test where the magnitude of the measurement is

expected to exceed the experimental uncertainties. Significant

progress has recently made resolving the first two of these

challenges by using gas-filled indirect-drive experiments at the

NIF [18]. Likewise, the 3He + T gamma-branch cross-section was

obtained [19] and the emitted 3He + T and 3He+3He reaction

product spectra have been recovered from ICF experiments at

OMEGA [20]. This demonstrates that nuclear physics and cross-

section experiments can be conducted in the complex

environments of ICF implosions, while also carefully

diagnosing the plasma using nuclear diagnostic and neutron

and x-ray imaging. Here, we seek to partly address the third

challenge by assessing whether these ICF implosions can produce

conditions where this screening effect is expected to be large

enough to be measured.

FIGURE 1
(A) Stellar conditions computed for the evolution of stars with
1, 4, 10, and 40 solar mass compared with NIF experiments. (B)
Design space considering various requirements of a potential
screening experiment. The arrow illustrates how current
experiments need to be modified to reach an optimum in design
space (the star) that balances various design constraints.
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This paper is organized as follows, Section 1 introduces the

problem, Section 2 discusses the approach to measuring plasma

screening, Section 3 overviews detailed design considerations and

offers a potential experimental design solution, and Section IV

concludes and summarizes.

2 Approach to measuring plasma
screening

The generation of thermonuclear plasmas at the National

Ignition Facility (NIF) may enable an observation of plasma

screening of nuclear reactions. Inertial Confinement Fusion

(ICF) experiments at NIF use 192 laser beams, with a

maximum 1.9 MJ of energy delivered, to irradiate the inside

of a gold or uranium cylindrical enclosure (“hohlraum”). This

creates an x-ray environment that ablatively implodes a spherical

capsule. When the capsule compresses radially by a factor of

20–40, the central hot-spot typically reaches temperatures of

2–6 keV and densities of 1–100 g/cm3.

Figure 1A shows the stellar-core density and temperature

trajectories of relevant stars with metallicity of Z = 0.02 and with

1, 4, 10, and 40 solar mass (where 1 solar mass or Msun =

1 corresponds to the Sun’s mass) calculated with a 1D stellar

evolution code [21]. These stars spend the majority of their time

in themain hydrogen burning phase of their lifetime, as indicated

by the largest jump in the corresponding color scale that

illustrates the age of the star in years. As the stars begin to

extinguish the hydrogen in their core, they contract and heat to

the point where helium can begin to burn. Likewise, as the star

evolves, hydrogen in regions outside the depleted core (shell

regions) can achieve the conditions that can sustain burn.

Figure 1A also compares these stellar conditions to ICF

implosions by plotting inferences of density and temperature

from a wide range of NIF experiments. The experimental data

from the NIF (points) are plotted in terms of the burn-

averaged temperature, as observed from the width of the

neutron spectrum in time-of-flight measurements [22–24],

and the burn-averaged density, as inferred from the yield, hot-

spot size, and burn-width [25]. Each NIF experiment features

a gas (on the order of 10 mg/cm3
fill density) or an ice-layer

filled capsule (on the order of ~100 μm thick) made of high-

density carbon, plastic, or beryllium. The green “+” symbols

show implosions that have a cryogenically frozen DT ice layer

inside the shell. The cryogenic layer allows the implosion to

achieve higher compression and larger densities. We are more

interested in the other points which are gas-filled capsules

(symcaps) as they provide more flexibility in the gas

composition and because the ratio method requires

multiple reactants that is enabled by mixed species. Mixed

species are especially challenging to field in solid layers

because of differences in species freezing temperatures.

Each solid symbol represents a different gas-fill class

(squares utilize D3He gas, diamonds pure D gas, circles DT

gas, downward triangles deuterated propane, and upward

triangles Kr doped D). The comparison between the NIF

data and the stellar calculations shows that implosion

conditions on NIF are very similar to that of stars during

most of the stellar lifetime.

The 3He + D mixture has some promising features, including

two branches, a gamma (3He +D→5Li+γ) and proton (3He +D→
4He + p) branch and the presence of deuterium enables the

observation of neutrons from the D + D→3He + n (note we

expect the proton branch is not be measurable because of high-

plasma densities) reaction within the same experiment. These

features will be considered in greater detail later in the

manuscript. In following sections, we will detail the feasibility

of fielding D-3He filled capsules, but a couple of other interesting

cases stand out here. The red points show the effect of the

addition of krypton gas (0.01–0.03 atomic percent), which

cools the implosion temperature and increases the effective Z

of the background plasma. A similar effect is seen in the C3D8

(deuterated propane) implosions, which have cooler

temperatures than the other cases. This effect pushes the

screening enhancement up to 3%.

A successful plasma screening experiment requires the

following: 1) the expected screening enhancement is larger than

fusion product yield (proton, neutron, or gamma) measurement

uncertainties, 2) the total yield (proton, neutron, or gamma) is at a

measurable level, and 3) if measuring protons, the areal density

must be low enough that they will escape and reach the proton

detector. At the NIF, wedge-range-filter proton detectors are

routinely employed to detect protons between the energies of

~6–15MeV [26, 27]. A modified step-range filter detector [28] is

also being developed to extend the measurement to lower energies

(~1 MeV), and thus enabling higher ρR measurements.

To find conditions in density-temperature space where a

plausible screening measurement could occur, consider an

inertially confined sphere of plasma with a density ρ,

temperature T, and radius r. The total yield between two

reactants 1 + 2 is Y12 � ∫ f1f2

1+δ12
ρ( r.,t)2

�m2 σv12 d r
.
dt, where f1 and

f2 are the atomic fractions reactants 1 and 2, respectively, �m is

the average reactant mass, and σv12 is the reactivity. This sphere
will disassemble in a timescale τ ~ r/cs, where cs is the speed of

sound. Using this disassembly time as the burn duration, we can

estimate the yield, the areal density (ρr), and screening

enhancement, shown in Figure 1B. The screening

enhancement increases as one travels vertically along a

contour of constant yield. For a measurable proton signature,

the ρR must be kept below ~0.2–0.25 g/cm2. For a yield of 107,

this limits the maximum screening amount to ~15%

enhancement. The arrow in Figure 1B notionally represents

the direction that current experiments need to be pushed in

order to reach the density and temperature where enough signal

will escape the implosion and where the screening impact is

calculated to be non-neglegable (>10%). The star shows our
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plasma screening experiment design goal. It is also worth noting

that increasing the number of plasma electrons by adding a high

Z dopant to the gas can also increase the screening at a given

density and temperature (an effect not accounted for in

Figure 1B).

A. Observation Using the Ratio Method

To observe the impact of screening, we propose to observe

the relative ratio of fusion products from D3He (protons or

gammas) and DD (neutrons) reactions emitted in the same ICF

implosion. Then, following the same procedure developed in [18,

29, 30], we plan to use this to infer the relative reactivities (R is the

D3He/DD reactivity ratio R � σv12/σv11) in the presence of

plasma-electron screening. The procedure developed in [18]

should be modified with the inclusion of an additional term

for very low temperatures where a screening measurement would

likely operate. This term brings in the effect of temporal and

spatial gradients from the temperature dependence of R in the

range of interest, unlike the DT/DD reactivity in the prior study.

The result is: YDD
YD3He

� 1
2

fD

f3He
R0[1 + 1

R0

zR
zT [TD3He − TDD]],

And that

TD3He − TDD � 1
2

1
R0

zR

zT
[ ]−1

1 −

																			
1 − 2

1
R0

zR

zT
σT−D3He( )2

√√⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where σT is the width of the burning temperature distribution,

and the terms R0 and zR
zT are evaluated at TDD. This implies that if

the quantity TD3He − TDD can be measured, the impacts of

gradients can be directly accounted for. However, the second

equation may become important since TD3He may prove difficult

to measure but TD3He − TDD could be inferred if σT−D3He can be

determined from moments of the DD neutron spectrum [31] or

estimated from models of the platform.

If the S-factor is non-resonant within the region of the

reacting nuclei, the term 1
R0

zR
zT can be estimated simply

assuming barrier penetrability and geometric factors dominate

the energy dependance over the burn. The result is:
1
R0

zR
zT � K

9 [ 4
T7/3 + K

T8/3], where

K � −3 (π αf )2/3(mpc2 )1/3
21/3 [(Z1

4 A1
2 )1/3 − ((Z1Z2)2 A1A2

A1+A2
)1/3]. Here, the

subscripts 1 and 2 label each reactant, Z1 and Z2 are the

atomic numbers, A1 and A2 are the atomics masses, T is the

burn averaged temperature of reaction between the identical

reactants 1 + 1 (TDD in the example above), αf is the fine

structure constant, and mpc2 is the rest mass energy of the

proton. This expression is especially useful, because it enables

an estimate of how the relative energy dependance of the cross-

sections burn-weight with the reacting ion energy distributions

without needing to know the absolute cross-sections themselves.
1
R0

zR
zT is shown in the region of interest in Figure 2 below.

B. Estimating the Impact of Gradients on the Ratio Method

To evaluate how spatial and temporal profiles impact burn

weighted quantities like yield and temperature, a simple hotspot

model developed by Betti [32] can be used. Figure 3 shows the results

of reactant distributions in space at peak compression (a and c) and

evolutions in time (b and d) for two example implosions. One

example is representative of the conditions required for a screening

measurement (Figures 3A, B) with burn averaged temperatures of

TD3He � 1.7 keV, TDD � 1.5 keV, a DD yield YDD � 1.1 × 1011,

and a D3He yield of YD3He � 4.0 × 108. The other example is more

typical of experiments that are routinely conducted (Figures 3C, D)

TD3He � 3.9 keV, TDD � 3.3 keV, a DD yield YDD � 9.0 × 1011,

and a D3He yield of YD3He � 4.7 × 1010. This sort of synthetic data

exercise can enable tests of the equations presented earlier and

provides at least some indication on whether the presence of

temperature and density gradients are an issue.

Figure 4A shows the results of comparing the analytic

equation for TD3He − TDD versus a numeric calculation with

the hotspot model. The results show at five different

representative temperatures the analytic equation works very

well if the reactant distribution width σT−D3He is known.

However, σT−D3He is not yet directly measurable and so it may

need to be inferred or estimated from calculations to help

constrain the role of gradients. Figure 4B shows the results of

comparing TDT − TDD versus actual experimental data from a

variety of implosion platforms including gas filled HDT symcap

implosions [33, 34], gas filled indirect drive exploding pusher

implosions [35], and layered DT experiments [36, 37]. Here, the

σT−DT was calculated from 1D radiation hydrodynamic

simulations using the code HYDRA [38] for two

representative cases, an indirect drive exploding pusher [35]

and a DT filled symcap [39]. The curve with predicted σT−DT
(dotted black) appears to be significantly less than the data, an

FIGURE 2
Plot of the temperature dependance of the relative reactant
reactivities (R � σv12/σv11) for DD and D3He.
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observation in line with those of Gatu-Johnson [36]. However, if

σT−DT is increased by a factor of 1.6 (dashed black), then a good

match to the measured trend is reproduced. This indicates that

the gradients are more important in the experiments than the 1D

simulations would suggest. The exact reasons for this are unclear

but it could be due to the enhancement of σT−DT from 2D and 3D

effects not captured by 1D simulations and so high resolution 2D

and 3D simulations are required. This also strongly motivates the

need for specific experiments to determine σT in a future plasma

screening experiment where TD3He cannot be directly. For

FIGURE 3
DD and D3He reactant distribution in space (A,C) and time (B,D) using a numeric hotspot model to estimate the impact of temporal and spatial
gradients on burn-weighted quantities for two different example implosions.

FIGURE 4
(A) Comparison of TD3He − TDD estimated using the analytic calculation of vs. numeric integration assuming a Betti 1D hotspot profile [32]. (B)
Comparison of the analytic TDT − TDD assuming σT simulated by hydra vs. measured data and analytic curve with σT increased by 1.6x.
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example, adding trace tritium in a predominantly D3He gas fill

may allow the measurement of the TDT and TDD in a three-

component plasma providing a constraint on the unmeasured

TD3He.

As a check on how the formula for extracting the reactivity

ratio will work with these predicted gradients, the ENDF

evaluated cross sections were input [40] with a 1D Betti [32]

hotspot profile from which the yields and temperatures were

calculated and used to recover the reactivity input in the

calculation. The results are shown in Figure 5 and indicate

that in the presence of this level of temperature variation, the

extracted reactivity ratio is recovered.

3 Detailed experimental design
considerations

To help understand the design space for a screening

experiment, Figure 6 shows the results of an ensemble of 1D

HYDRA simulations. These start with existing experimental

design features and then perturb in directions to increase the

calculated enhancement of the reaction rate from plasma

screening, which is shown as the background color scale. The

size of each individual point is proportional to the simulated

D3He yield. Markers with solid outlines represent yield and ρR
combinations that are promising for a screening experiment. The

star points are the experimental results from gas-filled

implosions, shown previously in Figure 1A.

To observe screening in an ICF experiment, two principal

design paths are being actively explored. The first would use

D3He protons as the primary measurement that would require

the total areal density to not exceed the ~15 MeV proton range

(~0.25 g/cm2) to be detectable with WRF or step range filters [27,

28] placed near the implosion. Existing data in gas filled

implosions was examined to assess the ability to measure

D3He protons from implosions with moderately high

compression (or areal density) and then determine the

reactivity <σv> D3He in density and temperature conditions

where screening is expected to be weak. This work initially

encountered significant detector analysis challenges with low

energy protons (~7 MeV) and work is ongoing to attempt to

resolve those issues [41]. The points with dark outlined circles are

implosions that have proton yields high enough for a WRF

measurement (>105) and ρRs low enough for the protons to

be detectable (<0.2 g/cm2).

An alternative design path would be to maximize the yield at

high hotspot density for measurements of the D3He gamma ray

(branching ratio ~ 1e-4) [42], since gammas and neutrons can escape

high areal density implosions but carry with it increased uncertainty

due to uncertainties in the gamma branching ratio [42] and reduced

absolute signal levels. Therefore, this measurement would require a

high solid angle Cherenkov detector [43, 44]. Since these detectors

have high systematic uncertainties, we would measure the D3He/DD

yield ratio at both screening-relevant conditions and in a low-density

plasma (exploding pusher) to eliminate systematics. HYDRA

simulations explored the potential parameter space and have

found several interesting designs that look promising in each of

these design directions. In Figure 6, the diamonds with dark outlines

represent designs with D3He yields that are potentially high enough

(>109) for a gamma branch measurement.

The results in Figure 6 show that estimated screening corrections

greater than 10% can be achieved, but most of these simulated

designs would be significantly challenging tomeasure because of high

ρR. Of these, some designs show potential (marked as black-outlined

points). In the next section, we delve into one of the most promising

black-outlined diamond points, to understand what features make

this an interesting potential design to observe plasma screening.

FIGURE 5
Comparison of the reaction ratio for DD and D3He vs. the
extracted reactivity ratio using a synthetic data set calculated using
a Betti 1D hotspot profile [32].

FIGURE 6
Large collection of HYDRA simulations of capsule implosions.
The size of each marker is proportional to the simulated D3He
yield. Several designs show significant screening and the most
promising are outlined in black.
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A. The “Slow-Cooker” Radiative Cooling Design Proposal

One especially interesting HYDRA simulation in Figure 6 is

explored in more detail in Figure 7. This design uses a large

1400 μm inner radius capsule that is 200 μm thick, and initially

filled with a D3He mixture with added Kr. The large capsule

ensures that high areal density will remain to produce a

prominent compression phase. Figure 7B shows that after the

FIGURE 7
(A) HYDRA simulation of radius vs. time for an example screening experiment design candidate. The hotspot density reaches high conditions
~100 g/cm3 (B) Zoom in temperature dynamics showing a brief shock flash and extended compression phase. Also shown are the reaction rate and
screening magnitude of this design.

FIGURE 8
The result of a forward fit model to, (A) the data from shot N160410–001 and (B) of the synthetic neutron time-of-flight spectrum generated in
post-shot Hydra simulation. Included in the forward fit model are the effects of neutron scattering from the CH ablator shell and the compressed
D3He fuel. The “down scatter ratio,” DSR, is fraction of yield for neutrons of energy 1.9–2.2 MeV divided by the yield from 2.2 to 2.7 MeV.
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shock flash, the Kr mixed in with the gas cools the hot spot and so

it reaches an iso-thermal state near 1 keV, lasting for almost

1 ns For perspective, typical NIF implosions are confined for

about a 10th of a nanosecond. This interesting set of implosion

dynamics is established as the temperature and density

conditions are in a radiation dominated energy loss regime,

rather than the more typical thermal conduction dominated

regimes of most hotspot ICF designs. This design is called the

“slow-cooker,” because the conditions are advantageous for

increasing the burn by maximizing the plasma confinement,

while also favoring the conditions for finite screening of

reacting nuclei. Furthermore, the radiation cooling

dominated regime may also result in reduced spatial

temperature gradients because the hotspot becomes nearly

iso-thermal. This radiation dominated isothermal system is

interesting enough to warrant study just to understand this

radiation dominated physics regime for its own sake, but also

to produce conditions where screening becomes non-

negligible, as shown in the subplot of the reaction rate and

time dependent screening magnitude Figure 7.

B. Estimating the Uncertainty of the Yield and Ti at Low Yield

The design space of interest for observing screening is

expected to produce neutron yields from DD fusion of order

107 to 108 neutrons. This low yield also presents a challenge to

the neutron time-of-flight spectrometry that will be used to

measure the yield and ion temperature of the implosions. To

help enable measurements at these challenging yields, the

current analysis process [22] was modified to include

neutron elastic scattering from both the D3He and the

ablator shell, to account for scattering effects on the low-

energy tail. This modified analysis was then performed on

the higher yield shot data from shot N160410-001-999 [note

that NIF experiments have the following naming convention N

(Year) (Month) (day)-(Shot index of that day)-999, where-999

indicates a full system shot], and on the simulated HYDRA

post-shot neutron spectrum. The post-shot spectrum was

transformed into a synthetic neutron time-of-flight including

the various features of the neutron transport, detection, and

digitization. This time-of-flight data was then analyzed and

compared to the shot data. Figure 8 shows the results of this

process. This analysis will allow additional simulation

generated neutron spectra to be generated and analyzed to

investigate the statistical significance of both yield and ion

temperature.

4 Conclusion and next steps

Plasma electron screening is an important fundamental

process in the thermonuclear burn of astrophysical objects,

like stars, but observing it in laboratory plasma experiments is

a significant challenge. In this work, we show that ICF

implosions have already reached the relevant conditions for

stellar burn but that the magnitude of the plasma screening

effect was too weak to directly measure in those experiments.

However, there are clear design directions to increase the

magnitude of the plasma screening effect by utilizing

higher-Z reactions, higher-Z plasmas, reducing the plasma

ion temperature, and increasing the plasma density. The ratio

method is a powerful approach to infer the thermonuclear

S-fact in the presence of strong temperature and density

gradients. We show a simple treatment that includes a

correction to the ratio method for these gradients that is

needed at the very low temperatures for a screening

measurement. Furthermore, to develop a credible

experimental design, an ensemble of HYDRA simulations

was run to increase the calculated level of plasma electron

screening to levels >10%. A promising resultant design, called

the “slow-cooker,” features a very large (1400 μm inner

diameter) and thick ablator (200 μm) filled with a mixture

of Kr/D/3He. The slow-cooker enters the radiation dominated

implosion regime, resulting in a relatively cold (1 keV) and

dense (100 g/cm3) Kr/D/3He plasma that is confined for nearly

1 ns. These conditions are all favorable for plasma electron

screening and are predicted to increase the D+3He reaction

rate relative to D + D to levels that may be measurable on

the NIF.

The present work assessed the issues with respect to a plasma

screening measurement and identifies some credible solutions to

long standing challenges. The next step is to test the null

hypothesis of implosions where screening is expected to be

negligible, an effort that is currently underway in the NIF

discovery science program [45]. The physics of the radiation

dominated “slow-cooker” implosion should also be explored

and tested to see if the required conditions are achieved and

assess whether the reaction products will be measurable. While

substantial challenges remain, we have shown that experiments on

NIF show promise and may enable the first observation of plasma

screening of nuclear reactions, addressing one of the fundamental

questions of high-energy-density physics. This work is performed

under the auspices of the U.S. Department of Energy by LLNS,

LLC, under contract no. DE-AC52-07NA27344.
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