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Over the past 30 years, physical optics has been enriched by the appearance of

singular optics as a new branch approved in scientific classifiers. This review

briefly outlines the main concepts of the singular optics, their role in physical

research and applications, and prospects of further development. The wave

singularities are considered as a sort of structured-light elements and analyzed

based on the generic example of screw wavefront dislocation (optical vortex).

Their specific topological and mechanical properties associated with the

transverse energy circulation are discussed. Peculiar features of the non-

linear optical phenomena with singular fields are exhibited, with the special

attention to generation of multidimensional entangled quantum states of

photons. Optical fields with multiple singularities, especially, the stochastic

speckle fields, are discussed in the context of optical diagnostics of random

scattering objects. The exact and approximate correspondences between

characteristic parameters of the optical-field intensity and phase

distributions are analyzed with the aim of recovering phase information from

the intensity measurements (“phase problem” solution). Rational singularity-

based approaches to informative measurements of the scattered-field

distribution are discussed, as well as their employment for the objects’

diagnostics. In particular, the practical instruments are described for the

high-precision rough-surface testing. Possible enhancements of the

singular-optics ideas and concepts in a wider context, including the

transformation optics, near-field optics (surface waves), partially-coherent

fields, and wave fields of other physical nature, are briefly exposed.
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1 Introduction

During the past years, a special attention of the research and

technology community has been paid to the structured light

fields characterized by highly developed inhomogeneity of the

amplitude, phase, polarization and spectral characteristics. This

vibrant activity resulted in establishment of “structured light” as a

new fruitful paradigm of physical optics [1–6]. The structured

optical fields find interesting and productive applications in

various branches of optical technologies, optical

manipulations, optical communications and data processing as

well as in optical diagnostics [7, 8].

Maybe, the most impressive feature of structured light fields

is the existence of “singular” points (lines, surfaces, etc.) in space

where certain parameters characterizing the field spatial structure

(phase, ellipticity or helicity of polarization) are indeterminate.

Despite the variability of types and sorts of optical singularities

[9–22], they possess many similar features and are inherently

interrelated (for example, the polarization singularities can be

treated as phase singularities of separate orthogonal components

of vector light beams [8, 16, 23]). The main common feature of

optical singularities is their topological nature which makes the

singularity stable with respect to small perturbations [24] and

determines that each singularity qualitatively “organizes” the

whole field in its vicinity, and different singularities combine

and interact according to general laws. As a consequence, the

“singular skeleton” (set of the field singularities with their

positions and morphological characteristics [25–27])

represents a succinct characterization of the whole field [14,

15], which enables, for example, the economy encoding and

representation of optical information [3]. In particular, the

“singular” approach appears to be fruitful in the description

and analysis of stochastic speckle fields [28] which frequently

occur in problems of optical diagnostics of scattering objects and

random surfaces [29].

The unique physical properties, great application potential as

well as the vital interest of the community have inspired a series

of consistent review publications treating various fundamental or

applied aspects of the optical singularities (for example, Refs.

[3–9, 13, 14, 17–20, 25, 30]). In this context, the present work

pursues two main goals. The first one is to show how the optical

singularities, even in their simplest scalar forms, illustrate the

spectacular interrelations between the classical optics, non-linear

optics, and quantum physics, up to the most fundamental ideas

of quantum superpositions and multidimensional quantum

states, and thus disclose the unity of the physical picture of

the world. This task is quite compatible with the second goal,

apparently much more utilitarian: description of some practical

possibilities, offered by singular optics in analysis of chaotic

speckle fields, and their use for reconstruction of scattering

objects generating these fields. By the general approach, this

paper adjoins our previous reviews on the adjacent topics [7, 8],

and may be considered their further development and addition.

Due to their physical affinity, the main features of the

optical singularities can be understood by considering the

generic example of the point-like phase singularity; this is

the topic of Section 2. The associated physical features: the

wavefront dislocation, transverse energy circulation, specific

mechanical properties (orbital angular momentum) are briefly

analyzed, as well as the typical singularity-related

manifestations in the non-linear optical phenomena

(Section 3). Section 4 describes the singular photons in the

context of quantum superpositions and quantum

entanglement. Section 5 presents the concepts and

approaches relevant for the stochastic speckle fields and

their usage for the rough-object diagnostics. In Section 6,

we briefly outline some interesting and important (in our

opinion) features of singular optical fields and prospects of

their studies and applications. The review contents are

accomplished and summarized in Section 7.

2 Screw wavefront dislocations, also
known as optical vortices

Let us consider a scalar light field (properly, a paraxial beam

with the spatially homogeneous polarization [3, 15]). The electric

field of such a beam is described by the function

ε(r, ϕ, z, t) � Re[E(r, ϕ, z) exp(ikz − iωt)] (1)

where (r, ϕ, z) is a cylindrical frame, ω is the radiation frequency,

and k = 2π/λ is the wave number (λ is the wavelength). In the

paraxial approximation [3, 15, 31], the complex amplitude E (r, ϕ,

z) obeys the equation

1
r

z

zr
(r zE

zr
) + 1

r2
z2E

zϕ2 + 2ik
zE

zz
� 0 (2)

whose solutions can be represented in the form of azimuthal

harmonics [9].

E(r, ϕ, z) � A(r, z) exp(ilϕ) (3)

where the coefficient l is called azimuthal mode index. The

characteristic feature of the field (3) is the helical wavefront

(WF) shape illustrated by Figure 1A (whence the term “screwWF

dislocation” originates): after the round trip near the z-axis, the

phase does not return to its initial value but changes by 2πl.

Hence, the mode index l acquires the sense of the topological

charge (TC) of the azimuthal mode (3) [9]. As the solution (3) of

Eq. 2 should be unambiguous, once l ≠ 0, the wave amplitude

A(r, z) = 0 at the axis, and only integer values of l are admissible

(in practice, especially in cases of deliberate optical-field

formation, beams of the form (3) with non-integer l can occur

[32, 33] but these are “non-generic” and unstable: only exist in

the initial cross section but destroy, with formation of a set of

single-charge singularities, upon the beam propagation [34, 35].
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The helical WF stipulates another important property of the

azimuthal harmonics (3). In light beams, local directions of the

energy flow are known to coincide with the WF normals [9, 15],

which, for a helical WF, form 3D spiral lines; consequently, the

energy propagates along the spiral-like trajectories skewed with

respect to the beam axis [36]. Accordingly, there exists the

transverse energy circulation near the phase singularity, which

is the source of the orbital angular momentum (OAM) of light [3,

9, 15] and justifies the term “optical vortex” (OV) widely used for

such singular structures [37].

A well-known example of solution to Equation 1 in the form

of azimuthal harmonic is the family of Laguerre–Gaussian (LG)

modes LGp
l of a stable laser cavity [31]. The LG modes are

circularly symmetric, their intensity distribution consists of dark

and bright rings centered at the axis of propagation z (Figure 1B

[38]). The radial index p specifies the number of dark rings in the

beam cross section, and does not affect the singular properties; so

the condition p = 0 will be assumed below (upper row of

Figure 1B). For the LG0
l mode, the distribution of the

complex amplitude has the form

ELG(r,ϕ,z)�Es
w0

w(z)( r

w(z))|l|
exp(− r2

w2(z))
× exp[i(kz+ kr2

2R(z)+ lϕ−(|l| +1)arctan( z

zR
))]

(4)
where

zR � kw2
0

2
, w2(z) � w2

0(1 + z2

z2R
), R(z) � z2 + z2R

z
. (5)

The mechanical OAM L of such circularly-symmetric OV

beams is described by the universal relation [39].

L � l
W

ω
(6)

where W is the light energy, i.e. each photon with the energy

W � -ω carries the OAM Lp � l-, ħ being the reduced Planck

constant.

The spiral energy flows near the screwWF dislocation manifest

themselves in many physical phenomena, for example, in

photoinduced rotation of particles [40, 41]. But their direct

observations in the OV edge-diffraction phenomena are

especially simple and impressive [42–44] (Figures 2, 3). A

spectacular picture of the intensity-profile evolution is shown in

Figure 2 [43]. Here, the beam parameters and the observation plane

are chosen such that the usual diffraction fringes are almost

unnoticeable while the change of the beam transverse profile can

be easily traced from the initial section immediately behind the

screen (a) to the observation plane distanced from the screen by z =

zR (b). It can be seen that the initial pattern actually rotates in

accordance with the direction of the transverse energy circulation,

and one of the “edges” of the bright semi-ring penetrates into the

shadow region behind the obstacle, while the other moves away

from it. One might expect that the magnitude of the rotation

increases with |l|, but in fact this is not the case; the larger initial

slope of the vortex trajectories is compensated by an increase in the

diffraction divergence, and beams with different |l| generally rotate

the sameway.However, in the case of large TCs, the bright semi-ring

is located farther from the axis and is less distorted by diffraction, so

the rotation itself is more noticeable.

FIGURE 1
(A) The helicalWF of the azimuthal harmonic (3) propagating along axis z; (B) the intensity profiles of the LGp

l beams for different values of l and p
[38]; further explanations see in the text.
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Subsequent works [45–48] have shown that the usual edge

diffraction offers rather informative and picturesque evidence of

internal energy flows in beams with OV. Of particular interest is

the behavior of the diffraction pattern when the screen covers an

insignificant part of the beam “ring”, retaining the pattern of

internal circulation as a whole (Figure 3A). The diffraction

perturbation of the beam causes a shift of the amplitude zero

(singularity “core”) relative to its initial axial location (in the case

of the initial l-charged OV, |l| single-charged OVs are formed

near the axis). Then, as the diffracted beam propagates, the

displaced OVs migrate inside the beam “body” along helical

trajectories that unwind in the direction opposite to the direction

of energy circulation in the incident beam. At small distances

behind the screen, the spirals unwind at a high rate, but with

further propagation, the rotation slows down and stops in the far-

field (Figure 3B). A similar OV migration occurs in a fixed

section of the diffracted beam, when the edge of the screen moves

perpendicular to its axis (Figures 3A, C)—a very spectacular

illustration of the rotational properties of the field singularity.

The topological nature of the screw WF dislocation opens

impressive possibilities for the data encoding and the

information transfer [49–51]. The specific pattern of the

transverse energy flows is responsible for another interesting

phenomenon—rotational Doppler effect [52–59]. Indeed, the

visible phase of the azimuthal harmonic (3) depends on the

mutual angular positions of an observer and the beam with

respect to the axis z (see Figure 1A). As a result, when the beam

(or observer) rotates with the angular velocity Ω, the visible

frequency changes by Δω � lΩ. This effect finds fruitful

applications for the spectral analysis of light beams and the

distant detection of the rotational motion of various objects [55,

58, 59], which are described in detail by recent reviews [59, 60].

For this reason, we do not dwell further upon the rotational

Doppler shifts but proceed to some impressive non-linear effects

involving the optical singularities.

3 Non-linear phenomena with optical
vortices

Naturally, the study of phase singularities was extended to

nonlinear optics, primarily to active schemes, e.g. in

photorefractive laser oscillators. When the angular aperture of

the cavity was compressed to the level of modes with the lowest

transverse indices, a dynamic pattern of nucleation of pairs

(dipoles) of OVs was observed in the output radiation [61].

The effect was then considered in the passive scheme of an

induced nonlinear lens, where it was accompanied by the

appearance of a closed spatial dislocation line in the form of a

“seam on a tennis ball” and a quadrupole of vortices in the beam

cross section [62]. In the stationary case, such closed and open

(going into the far-field zone) “dark lines” of dislocations wrap

around regions with the field intensity maxima, forming three-

dimensional cells, and in the non-stationary case of dynamic light

scattering processes, they create a “light boiling” structure, up to

optical turbulence [63–65].

A number of new effects accompany the singular beams’

propagation in non-linear media. As was shown in [66], the

non-linear medium asymmetry (astigmatism) destroys the

OV with |l| > 1 (this effect is in parallel to the high-order

OV decomposition in linear astigmatic systems [67, 68]);

however, the instability of the cubic non-linear medium

influences the first-order singularity also. Evidently, each

FIGURE 2
Intensity distribution of diffracted LG beams with different
azimuthal indices l (beam waist coincides with the screen plane,
the screen with the rectilinear vertical edge covers exactly half of
the incident beam cross section) [43]: (A) immediately behind
the screen and (B) at a distance z = zR behind the screen. Grey
arrows show the direction of transverse energy circulation, dashed
lines correspond to a rotation angle of 45°, solid vertical lines are
projections of the screen edge (the shadow-area border).
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singularity contains an inevitable amplitude zero, and the

results of the beam self-focusing in the medium with cubic

nonlinearity (positive non-linear refractive index) was

unclear. A series of research works was undertaken that

established the azimuthal instability of the bright ring of an

OV beam and its decomposition into separate solitons [69].

On the other hand, a defocusing cubic medium also creates

conditions for the OV instability and generation of “vortex”

solitons [70, 71]. In the work [72], a beam with the edge WF

dislocation is considered. As is shown in Figure 4, with growing

non-linearity the initial edge dislocation (black line) acquires

waviness and ultimately breaks up into separate “dark” solitons.

Obviously, the nature of the screw WF dislocation

determines the pattern of the second-harmonic generation

with pumping by an OV beam in a medium with quadratic

nonlinearity. In the case of an initial TC l, a vortex with a TC of 2l

should appear in the second-harmonic wave. However, the

emergence of two spatially separated intensity zeros was

experimentally recorded when the frequency of the OV beam

with the TC l = 1 is doubled, which means the influence of the

“irrotational” component in the beam (possibly, as a

consequence of astigmatism) [73].

Further detailed analysis of the second-harmonic generation

has shown that, as the intensity increases, the ring profile of the

OV beam (like those shown in Figure 1B, top row) becomes

unstable in a medium with quadratic nonlinearity, and the bright

ring breaks up into several soliton-like beams of doubled optical

frequency; moreover, the initial OV beam of a unit TC generates

three separate beams [74]. The OAM conservation law “works”

in this situation too, forcing the “combined” intensity profile of

three beams to rotate as a whole in the transverse plane as they

propagate.

4 Optical vortices and quantum
entanglement

A particularly interesting manifestation of nonlinear optical

interactions involving OV beams is the generation of singular

vortex fields in the process of spontaneous parametric scattering

(SPS) [75–79, 82]. In the first experiments [75], azimuthal

harmonics in the form of Bessel beams arose as a result of the

amplification of quantum noise in a lithium triborate (LBO)

crystal 15 mm long under pulse pumping (1 ps, 30 GW/cm2,

527 nm, a focused Gaussian beam with a half-maximum

diameter of 61 μm). Under these conditions, signal beams

were observed with a wavelength of 960 nm; in 45% of cases

they had a profile described by the zero-order Bessel function

(non-vortex), and in 36% vortex Bessel beams with TCs l � ± 1

appeared. In other cases, the signal wave had a complex speckle

FIGURE 3
(A) Scheme of theOV beam diffraction: an opaque screen S is located in the transverse plane z=0, where theWF of the incident beam is flat; the
distance a between the screen edge and the beam axis is adjustable, the diffraction pattern is observed in the z plane furnished with the coordinate
frame (x, y); (B) 3D trajectory of the amplitude zero in the diffracted LG0

−1 beam (l = –1) at a fixed screen position a = 1.4w0 (see Equation 5 and
comments thereto); (C) the trajectory described by the OV core of the same beam in a fixed observation plane z = 0.57zR when the screen is
translated in the diffraction plane from a = 2.1w0 to a = 0.14w0 (view from the positive end of the z-axis). Broad arrows on (A) and (C) show the
direction of energy circulation in the incident beam, all transverse dimensions are given in units of the current radius w � w0












1 + (z/zR)2

√
, the

longitudinal distance on (B) is shown in normalized units, in which the value of the longitudinal coordinate 54 corresponds to the far field (z = ∞).
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structure without apparent regularity. Unfortunately, in [75], the

result of the parametric amplification depended decisively on the

random pattern of “seed” noises, and it was not possible to

achieve stable and reproducible generation of vortex modes.

Another approach was realized in [76–79, 82] where the SPS

process was used for creation and investigation of

multidimensional entangled states of vortex photons.

Therewith, the structures of the idle and signal beams were

not studied immediately but the stress was made on the non-

local connection between them. In these experiments [79], the

pump radiation from an Ar laser (λ = 351 nm) entered the

anisotropic crystal BBO (barium beta-borate) where the signal

and idle waves with equal wavelengths 702 nm were generated,

propagating at angles 4° with respect to the pump beam (see

Figure 5). Herewith, each pump photon generates two scattered

ones which are in the single entangled quantum state. Denoting

the photon state described by the LG0
l mode (4) as |l〉, and if the

pump wave is a Gaussian beam with zero OAM (Equation 4 with

l = 0), this entangled state can be represented as∣∣∣∣ψ〉 � C0,0|0〉1|0〉2 + C1,−1|1〉1| − 1〉 + C−1,1| − 1〉1|1〉2
+ C2,−2|2〉1| − 2〉2 + C−2,2| − 2〉1|2〉2 + ... (7)

where |l1〉1|l2〉2 is the two-photon state in which the idle wave

(channel 1 in Figure 5) is described by the LGl1
0 mode, and the

signal wave (channel 2)—by the LGl2
0 mode (strictly speaking, in

the expansion (7), modes with non-zero radial indices p should

also be present but their contribution is relatively small).

Thus, the photons obtained after the parametric conversion

have no definite OAM and no definite TC; however, the

subsequent measurement of the TC of one of them, which

gave, for example, the value l1 = 1 for an idle wave, leads to

the reduction of state (7): from the entire infinite sum, only the

term remains with |1〉1| − 1〉2. Consequently, the signal photon
also acquires a definite TC l2 = −1, and this occurs instantly

(“teleportation”), despite the fact that at the moment of

measurement it can be spatially removed from the idle one by

a macroscopic distance (“non-locality”). Without going into

details, we can see here how quantum mechanical effects

“work” with OV states obtained from a completely classical

pump field.

In the setup of Figure 5, each of the photons enters the mode

detector, which consists of a hologram with the groove

bifurcation (“fork”) and a single-mode optical fiber. Such

holograms are generally used for the generation of optical

singularities [9, 25, 83, 84]; here they operate in the “reverse

mode.” The fact is that the hologram, which is designed to

generate an OV beam with azimuthal index l from the initial

Gaussian beam with a smooth WF, will create the same Gaussian

beam if it is illuminated (while maintaining the other conditions)

by an OV beam with index − l. In its turn, the next element of the

mode detector, a single-mode fiber, has selective sensitivity

specifically to a Gaussian beam: only a Gaussian beam

obtained after a hologram can “penetrate” a single-mode fiber

(in other cases, higher LG modes are obtained at the hologram

output, whose size of the spatial distribution does not satisfy the

fiber excitation conditions). Therefore, the appropriate choice of

the hologram in the signal or idle channel allows one to

purposefully “check” the presence of a photon state with one

or another TC value in the superposition (7).

FIGURE 4
Transverse beam profile at the exit of a nonlinear defocusing
medium (a cell filled with gas), showing the instability of the edge
WF dislocation (dark line) with an increase in the nonlinearity
parameter (gas concentration) (A-F) (left column) theoretical
calculation, (right column) experimental results. The
concentration of cesium vapor increases from negligible values
with non-linearity absent (A) to approximately 1013 cm−3 (F).
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The connection between photons in channels 1 and

2 is detected via analyzing the coincidences of the

detector signals in both channels in the photon counting

mode. Figure 6A convincingly demonstrates that

when measurements show the presence of a photon with

TC l1 in channel 1, then a photon with l2 = –l1 is formed in

channel 2.

The most convincing evidence for the entanglement of

photon states is obtained when not “pure” LG modes are

detected in the channels, but their superpositions. For

example, state (7) can be represented in the form∣∣∣∣ψ〉 � (a0|0〉1 + a1|1〉1)(a0C0,0|0〉2 + a1C1,−1| − 1〉2) + (a1|0〉1
− a0|1〉1)(a1C0,0|0〉2 − a0C1,−1| − 1〉2)

+C−1,1| − 1〉1|1〉2 + C2,−2|2〉1| − 2〉2 + C−2,2| − 2〉1|2〉2 + ..., (8)
where a0 and a1 are real numbers, and the normalization

condition a20 + a21 � 1 is required (here only the two first

FIGURE 5
Experimental scheme for detection of multidimensional entangled states of photons obtained in the SPS process [79].

FIGURE 6
(A)Diagrams of the relative numbers of coincidences in channels 1 and 2; (B) experimental confirmation of entanglement of the photon states in
channels 1 and 2 [79] (cf. Figure 5).
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summands of (7) are transformed, the rest of the terms remain

unchanged). The expression (a0|0〉1 + a1|1〉1) in the first

summand represents the superposition of a Gaussian and LG1
0

beams, for which the intensity distribution possesses the shape of

a ring with the amplitude zero displaced from the axis [9], see

Figure 6B.

Such a superposition is realized in channel 1 when the

hologram center slightly shifts from the propagation axis of

photon 1 (in Figure 6B, from top to bottom, three stages of

such a shift are shown: with growing shift, the “ring” transforms

into “crescent”). After passing the hologram, the state (8) reduces

to the first summand, i.e. the photon 2 appears in the

superposition state too, (a0C0,0|0〉2 + a1C1,−1| − 1〉2), but here
a Gaussian beam is combined with the mode LG−1

0 . For detection

of this superposition, the hologram is removed in channel 2, and

the mode detector scans the transverse intensity distribution, in

order to determine the position of the second-photon amplitude

zero with respect to the beam center. The coincidence calculation

shows that, indeed, the photon in channel 2 is also in the state of

superposition of the LG and Gaussian modes (Figure 6B).

Classical correlation would give a pattern of coincidences

that is simply a mixture of Gaussian and LG modes: the intensity

minimum would remain at the beam center, but would be

smeared, and the intensity would be everywhere greater

than zero.

Multidimensional entangled quantum states are of interest

for fundamental research of the quantum physics foundations, in

particular, for testing Bell’s inequalities [77–79, 82]. On the other

hand, they make it possible to create quantummemory cells with

more than two states, which leads to an increase in the speed and

reliability of information processing, and thus are promising for

numerous applications in the field of quantum cryptography,

encoding, quantum communication networks, and quantum

computers [80–82]. Pioneering experiments with entangled

OV photons [79, 80, 82] were awarded the 2022 Nobel Prize.

A curious modification of the concept of entangled vortex

photons was realized in the “non-local OV” [85, 86]. In this case,

the OV is observed via the correlations of photons produced

from SPS, and the phase singularity appears in a nonlocal

coordinate plane where one dimension is the usual coordinate

of one photon whereas the second dimension corresponds to the

transverse momentum of the second photon. This idea

demonstrates the power and flexibility of the quantum-

mechanical concepts and supplies their pictorial realization

with intuitively clear macroscopic objects.

We hope that the above sections supply a representative

exposition of some not very well known properties of beams with

screwWF dislocations. Their contents illustrate a relatively small

part of the huge massive of facts and concepts accumulated since

the OV discovery [21, 22, 37], and the works in this direction are

still growing like an avalanche up to the present time. Some

additional aspects will be presented in further sections; a

representative picture of current development of this

fascinating and productive field of research can be traced with

the help of periodic special issues [87–90] and in other reviews,

for example Refs. [5, 6, 30, 33].

Meantime, we proceed to the next step of the present review,

which addresses the fields with multiple singularities formed by

the coherent light scattering by various random objects, and their

applications for the optical-diagnostic purposes.

5 Singularities in speckle fields

5.1 Statistical characteristics of random
objects and speckle fields

The speckle structure is a characteristic feature of laser light

scattered by any diffuse object, and its analysis can be used for

diagnostics of scattering object’s properties [28, 91]. At the dawn

of the singular-optics age, it was recognized that the speckle

structure actually represents a network of optical singularities

[21, 22, 92–97], and this fact opens new possibilities in optical

diagnostics and information processing. Actually, any optical

field formed due to transmission of coherent light through a

diffuse transparency, or reflected by a rough surface, can be

treated as a system of OVs, so that, on the average, each bright

spot in the speckle structure is associated with the adjacent screw

WF dislocation. In 3D space, the phase dislocations form “zero

lines” which do not intersect and constitute the 3D singular

skeleton of the field [14, 97].

It was mentioned above that the singular skeleton supplies

essential characteristics of the scattering object and, as such,

carries specific information of its properties. Accordingly, the

problem of singularities’ detection and evaluation arises. In the

usual way, it is solved imposing an off-axis coherent reference

wave and observing its interference with the speckle field of

interest (the interference technique) [9, 21, 22]. In the vicinity of

the amplitude zeros, the interference fringes bifurcate and form

so-called interference “forklets” (like those presented in Figure 5)

which are easily detected visually. Yet, the accuracy of this

approach is generally limited by the period of interference

pattern, and the precise location of amplitude zeros in speckle

fields is of high importance.

A fruitful approach to this problem involves the optical

correlation technique, and is further applied for studying the

fields scattered by random and fractal rough surfaces [29, 98].

In general, a rough surface is an example of a specific

scattering object with a highly irregular structure.

Normally, it is described by the profilogram—a real

function h(r), r = (x, y), expressing the surface “height”

with respect to a certain nominal plane. For simplicity (and

in compliance with practical needs), we suppose the field h(r)

to be statistically homogeneous, i.e. the statistical properties of

functions h(r) and h (r + ρ) are identical for any relevant shift

ρ, and the same assumption will be kept for other stochastic
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fields considered in this paper. Then, the function h(r) is

characterized by the usual statistical parameters:

autocorrelation function

F(ρ) � 〈h(r)h(r + ρ)〉
〈h2(r)〉 � ∫h(r)h(r + ρ)d2r∫h2(r)d2r

(9)

(〈. . .〉 mean statistical average), angular power spectrum

S(f) � k2 ∫F(ρ)eikfρ d2ρ

(2π)2 (10)

(k is the wavenumber, f = (fx, fy) is the angular frequency), and

their statistical moments such as the correlation length

ρcor �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣∫ρ2F(ρ)d2ρ∫F(ρ)d2ρ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
1/2

, (11)

root mean square (RMS) roughness

Rq �








〈h2(r)〉√ � [1

A
∫ h2(r)d2r]1/2, (12)

as well as other higher-order parameters of statistical

distributions (skewness Sk, kurtosis Ku, etc. [98, 101]). In Eq.

12 A is the surface area, and, for simplicity, the reference plane

h = 0 is chosen such that the mean surface height

〈h(r)〉 � (1/A)∫ h(r)d2r � 0. Note that in practice, the

correlation length can be defined alternatively as the distance

at which the correlation function falls to 1/2 of its maximum,

F(ρcor) � 0.5F(0) (13)

Statistical description of random fields differs from the

above-presented description of rough surfaces in two

important aspects: the field is an essentially 3D object, and, in

contrast to the real function h (x, y), it is characterized by the

complex amplitude (1). The first difference is not crucial if we

consider the fields that can be treated as paraxial [3], and the

distributions in fixed cross sections z = const are of main interest.

In such situations, statistical properties of random fields are

generally characterized by the complex degree of coherence

[107], which is defined similarly to Eq. 9 but applied to the

complex amplitude (1):

FE(ρ) � 〈E(r)E*(r + ρ)〉
〈|E(r)|2〉 � ∫E(r)E*(r + ρ)d2r∫|E(r)|2d2r

. (14)

Since in this definition the longitudinal coordinate z is

supposed constant, the function FE(ρ) characterizes the

“transverse” correlations, which will be implied further in this

review. Together with the correlation function of amplitude (14),

the important characteristic of wave fields is the correlation

function of intensity I � |E|2. As I(r) is a real-valued

function, its expression is, essentially, quite similar to (9):

FI(ρ) � ∫I(r)I(r + ρ)d2r∫I2(r)d2r
. (15)

According to the two correlation functions, (14) and (15), the

two transverse correlation lengths, ρEcor and ρIcor, can be

introduced; for determinacy, let them be defined, like in Eq.

13, by relations

FE(ρEcor) � 0.5FE(0), FI(ρIcor) � 0.5FI(0). (16)

For any physical field, the functions FE(ρ) and FI(ρ) are

mutually related, and their comparative analysis discloses

meaningful information on the optical field properties (see

Section 5.3).

5.2 Fractal objects and fractal properties of
scattered fields

However, real surfaces (or, equivalently, transparent phase

screens which introduce the phase modulations k(n—1)h(r)

where n is the refractive index) may contain various fractures,

sharp peaks, and crevasses. Sometimes it is impossible to

characterize it exhaustively by a single characteristic scale or

correlation length of inhomogeneities like (11). Some of such

structures can be classified as fractals [99–103]. In particular, the

fractal-like surface nature is manifested by the fact that the

correlation length of inhomogeneities grows with an increase

in the surface area under investigation [104, 105]. This fact can be

explained as a consequence of the surface-structure self-

similarity, when a part of the surface of a greater scale is of

identical statistical structure as the parts of the surface with

smaller scales. A characteristic feature of fractal objects is that

their power spectra (10) obey an inverse power law of the form

S(fx) � K]

f]
x

, 1< v< 3 (17)

(see Figure 10). The spectral strength K] and the spectral index ]
supply an alternative fractal-surface characterization often more

consistent than the correlation length (11) or the RMS roughness

(12). In particular, there exists a direct correspondence with the

Hearst index H (] = 2H + 1) and the fractal dimension

(Hausdorff—Besicovitch dimension) Df = (5—])/2 [98, 101].

Relief-height probability density function and the statistical

parameters of random and fractal surfaces are illustrated in

Figure 7 as follows: the arithmetic-mean deviation of the

profile from the nominal surface line, Ra = 〈|h (x,y)|〉, RMS

deviation Rq (12), the asymmetry coefficient of the distribution

(skewness) Sk, and the excess coefficient (kurtosis) Ku. This

example is obtained by simulation with the maximal interval of

the surface inhomogeneity heights (the difference between the

maximal and minimal heights) assumed to be Δhmax = 2 μm.
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The statistical parameters are obtained via the discrete

approximation of the function h (x, y) for which the surface is

covered by the rectangular network (xi, yj), (i, j) = 1, 2, . . .N, with

the step δ = xi+1 –xi = yj+1 –yj, and the values hij = h (xi, yj) are

taken, for example,

Sk ≃
1
R3
q

1
N2

∑N
i,j�1

h3ij, Ku ≃
1
R4
q

1
N2

∑N
i,j�1

h4ij − 3, (18)

F(ρx, ρy) ≃ ∑N
i,j�1hijhi+mx,j+my∑N

i,j�1h
2
ij

. (19)

Formally, the latter expression defines F(ρx, ρy) only in points

where (ρx/δ) = mx and (ρy/δ) = my are integer numbers but the

values of F(ρx, ρy) at the intermediate points can be found via

interpolation. Note that the kurtosis definition of Eq. 18 differs

from the common one by the second summand, for which reason

it expresses, in fact, the kurtosis “excess” above 3 [101].

The next step is to study peculiar features of light fields

scattered by surfaces of different types [98]. An example of the

field scattered from a non-fractal rough surface observed at an

off-surface distance z = 100 μm is shown in Figure 8. In this

example, the surface parameters were as follows: maximum

height deviation hmax = 8 μm; total object size 400 × 400 μm2;

the number of pixels 1,200 × 1,200 (which corresponds to N =

1,200, δ = 0.33 μm, see (Eq. 18)). Figure 8 demonstrates the field

region of the size 5 × 5 μm2, with the resolution determined by

the number of pixels 1,000 × 1,000.

The phase discontinuities are clearly seen in Figure 8B as the

sharp boundaries between black (phase–π) and white (phase +π)

areas; the phase singularities (screw WF dislocations) are at the

ends of the discontinuity lines. In 3D space, the phase

singularities form a set of continuous lines (singular skeleton

of the scattered field) illustrated by Figure 9A (the pattern of

Figure 8 represents the cross section of the same field at z =

100 μm). The phase singularities (amplitude zeros) in a fixed

cross section z = const appear as the points where the singular

lines cross the plane z = const. In Figure 9A, the singularities’

positions are shown in the cross sections z = 10, 40 and 70 μm

(green points), z = 20 and 50 μm (blue points), z = 30 and 60 μm

(red points). The singular lines are continuous; sometimes they

FIGURE 7
Relief, height distribution function and statistical parameters of (A) random non-fractal and (B) fractal surfaces. Sizes in the upper-row images
are indicated in micrometers.
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FIGURE 8
Example of the field scattered off a rough surface: (A) intensity distribution, (B) phase distribution.

FIGURE 9
Examples of the singular lines forming the skeleton of a field scattered by a rough (A) non-fractal and (B) fractal surface.
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go to z = ∞, sometimes closed loops are formed. In the latter

case, numbers of singularities observed in different cross sections

vary: the topological events of the dislocation birth and/or

annihilation occur [14, 106].

Figure 9B illustrates the singular skeleton of the field

scattered by a fractal surface with the same hmax, N, δ,

object size 400 × 400 μm2 and the field size 5 × 5 μm2 as

were accepted for the non-fractal object in Figures 8, 9A.

Locations of the phase singularities in the cross sections

chosen from z = 10 μm to z = 160 μm with the step 10 μm

are shown by points of alternating colors

(yellow—green—blue—red) discriminating the consecutive

cross sections. It was found [98] that the field scattered by

a fractal source shows statistical characteristics different from

those typical for random surfaces. In particular, the fractal

properties are inherent in 3D singularity lines, which can be

seen from the power spectra (17) (Figure 10): in the double-

logarithmic scale, the S(f) dependence is close to linear. For

the function ρs(z), where ρs is the transverse shift of the

dislocation line, the power spectrum (Figure 10A) obeys

the relation S(f) = K] f–]. In the fields scattered by fractal

surfaces with small height intervals (hmax = 2—5 μm), the

spectral index is close to ] = 2, and the Hearst indexH = (] –1)/

2 = 0.5, which is typical for generalized Brownian motion. The

corresponding fractal dimension of different singularity lines

varies in close vicinity of Df = 2—H = 1.5 (see Eq. 17 and the

comments thereby).

Increasing the height interval leads to larger phase delays

between the waves scattered by different points of the surface

and, as a consequence, to stronger chaotization of the phase

fluctuations. This results in a decrease of the Hearst index, H <
0.5, and, correspondingly, the fractal dimension increases,

Df > 1.5.

5.3 Correlation-optics approach for
diagnostics of phase singularities

Optical fields with phase singularities possess an interesting

general property: for them, the amplitude correlation length ρEcor
is higher than the intensity correlation length ρIcor (see (Eq. 16)

and Figure 11A), and the difference essentially depends on the

presence or absence of amplitude zeros within the observed field

fragment [98]. This fact can be used for experimental detection of

phase singularities as well as for the scattering object

characterization.

In particular, in the field scattered by a rough surface, the

ratio of the correlation lengths a � ρIcor/ρ
E
cor gradually saturates

near 0.66–0.7 with growing propagation distance z (green

curves in Figures 11B,C). In case of a random non-fractal

surface, the saturation occurs after the rapid change in the

near-field zone, whereas for a fractal surface, the ratio is

approximately constant on the whole propagation distance.

In the far field, both correlation lengths gradually increase due

to spatial-frequency filtering. For the field scattered by a fractal

surface, the correlation lengths are higher and grow more

articulately than in the non-fractal situation. These features

can be used in experimental practice for estimation of the

number of speckles and the number of singularities (amplitude

zeros) in the observed field area [98]. But the most interesting

is their application for practical detection and diagnostics

of OVs.

The fact is that in the immediately observable intensity

patterns (for example, see Figure 8A or Figure 12A), the

amplitude zeros are hardly distinguishable from the local

intensity minima. Although the physical difference between

these points is significant, it can only be seen via the phase

distribution (i.e. Figure 8B or Figure 12C), whose visualization

requires complex interference techniques and obeys some

limitations in spatial resolution. The problem of the OV

recognition can be solved if, after the preliminary selection

of a small dark area L where the amplitude zero is suspected,

the correlation analysis of the field inside this small area is

performed (Figure 12). In this procedure, the local analogs of

the correlation functions (14) and (15) are experimentally

determined:

FIGURE 10
Power spectra of the singularity lines observed in the fields
scattered by (A) fractal (see Figure 9B) and (B) random non-fractal
(see Figure 9A) objects.
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[FE(ρ)]L � ∫
L
E(r)E*(r + ρ)d2r∫

L
I(r)d2r

, [FI(ρ)]L � ∫
L
I(r)I(r + ρ)d2r∫

L
I2(r)d2r

.

(20)
In practice, the integrals are replaced by sums (as in Eqs 18

and 19), and for the statistical reliability, the number of pixels in

the local area must be sufficient, which implies a high resolution

of the field registration. Note that the shift magnitude |ρ| can,

generally, exceed the size of the area L, provided that it does not

reach the similar local area near another dark point. Then, the

correlation lengths of amplitude ρEcor and of intensity ρIcor for

functions (20) are evaluated similarly to (16):[FE(ρEcor)]L � 0.5[FE(0)]L, [FI(ρIcor)]L � 0.5[FI(0)]L (21)

and if the ratio aL � (ρIcor/ρEcor)L appears to be less than a certain

critical value (0.8 is recommended in [98]), the decision is made

that the OV is present within the analyzed area. The whole

procedure is illustrated by Figure 12. In this way, the singular

FIGURE 11
(A) Correlation functions of amplitude FE(r) (14) and intensity FI(r) (15) probed at a distance z = 100 μm from the object; z-dependencies of the
correlation lengths of amplitude ρEcor (red) and of intensity ρIcor (black) of the field scattered by a (B) random rough surface and (C) fractal rough surface
with hmax = 20 μm.

FIGURE 12
Localization of the amplitude zeros in the field scattered by a rough surface: (A) intensity distribution I(r); (B) preliminary locations of the
intensity minima (shown by bright spots); (C) phase distribution; (D) locations of the amplitude zeros. Red contours in (B) indicate “false” zeros which
are filtered out due to the correlation-length analysis.
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skeleton of an arbitrary speckle field can be detected and localized

with a high accuracy [98].

5.4 Practical schemes for the correlation
analysis of speckle fields

The specific properties of the transverse correlation functions

of random wave fields, and their peculiar features in fields

scattered by surfaces with different structural inhomogeneities,

served as the basis for the development of special instruments for

the rough-surfaces’ diagnostics [29, 108–111]. The general

scheme of such devices is presented in Figure 13.

A plane wave (632.8 nm) produced by the laser source and

telescope T (microscope objective + pinhole diaphragm +

objective lens), undergoes a total reflection in the polarizer

cube PBS, and passes through the quarter-wave plate λ/4, after

which it hits the surface S to be measured. The double pass of the

plane wave through the quarter-wave plate results in a 90°

rotation of the polarization plane. Thus, almost 100% of the

reflected light passes through the polarizer cube. The wedges W

(one of which is stationary, the other movable) are made of

calcyte (birefringent material) in such a way that their main axis

is oriented at 45° with respect to the polarization of the light wave

exiting the PBS. Accordingly, the ordinary and extraordinary

beams are formed with identical transverse profiles but mutually

shifted in the transverse plane; the shift value is regulated by the

movable wedge’s position. In turn, the main axis of the analyzer

A is oriented at 45° to the polarization planes of the ordinary and

extraordinary beams outgoing the wedges, and both of them

obtain the same polarization and equal amplitudes at the

analyzer output. As a result, the light power reaching the

photodetector PD is proportional to

∫
L

I(r)d2r + ∫
L

I(r + ρ)d2r + 2Re[FE(ρ)]L · ∫
L

I(r)d2r (22)

where the area of integration L is determined by the diaphragm

FD, I(r) and FE(ρ) are the intensity distribution and the

correlation function (14) or (20) (regarding the diaphragm

shape and position) of the wave scattered by the sample S,

observed in the FD plane. Analysis of the function (22) may

give meaningful information on the correlation functions (14) or

(20) of the field. To this end, the measurement procedure is

repeated for different displacements of the movable wedge, and

the corresponding electric signals are processed by the electronic

processor unit CU, which reconstructs the correlation properties

of the scattered field, e.g., the correlation length, magnitudes of

the amplitude and phase fluctuations, etc. In particular, the RMS

surface-height deviation (12) can be estimated via relation

Rq � λ

4π
















−lnU max − U min

U max + U min

√
where Umax and Umin are the maximum and minimum of the

signal registered by the photodetector when the beams’ mutual

displacement changes due to the wedge translation.

FIGURE 13
Experimental arrangement for measuring the surface
roughness: (He-Ne) laser, (T) telescope, (PBS) polarizing beam-
splitter, (S) sample, (W) calcite wedges, (M) electromechanical
modulator, (A) analyzer, (FD) field-of-view diaphragm, (PD)
photodetector, (CU) calculation unit.

FIGURE 14
Experimental arrangement for measuring the roughness of
low-reflectance surface, with the components: (He-Ne) laser, (T)
telescope, (BS1, BS2) beam-splitters, (O1, O2) objective lenses, (S)
sample, (M) mirror, (PM) piezoceramic modulator,
(PD) 2×2 position-sensitive photodetector array, (VC) visualization
channel, (EM) electric motors, (AU) automatic zero fringe
adjustment unit, (COM) comparator, (CU) analogue calculation
unit, (DI) digital indicator.
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The stationary and portable versions of the device for the

surface roughness control based on measuring the scattered

field’s coherence function were realized [29]. They are

intended for diagnosing the slightly rough surfaces and enable

measurements of the Rq values over the range 0.002 μm–0.10 μm

with the measurement accuracy 0.002 μm; indication rate is one

measurement per second. The device can be used for arbitrarily

shaped surfaces with the radius of curvature larger than 0.3 m,

which specifies its applicability areas: the photochemical industry

to monitor the quality of crankshaft; space industry to monitor

the quality of mirrors fabricated by diamond micro-sharpening;

polishing machine tools where this device was used for the

surface-quality on-line control.

Another approach for the surface roughness control was

developed based on measuring a phase variance of the

boundary object field (Figure 14). A telescope consisting of

two objective lenses transforms a light beam from a single-

mode laser source into a plane wave, which then undergoes

amplitude splitting into a reference wave and an object wave

using a beam splitter BS1. The object wave is focused by an

objective lens O1 onto the rough surface of a sample S. The

radiation reflected off the sample (object wave) is used to form

the sample surface image in the plane of a 2 × 2 position-

sensitive photodetector array PD. The radiation reflected by

the mirror M forms a coaxial reference wave to interfere with

the object wave, forming an interference pattern with fringes

localized at infinity. The zero-order interference fringe is

automatically kept within the photodetector array PD

active area by means of a transverse displacement of the

microobjective O2 in the reference arm using two electric

motors EM, together with a longitudinal displacement of the

mirror M using a piezoceramic modulator PM. In this

manner, the amplitude modulation of the resulting light

beam is simultaneously performed.

The output signal from the photodetector array PD is fed to

the phase comparators, which generate control signals for the

motors and piezoceramic modulator. The net signal is then

transformed into the Rq value using the analog processing

unit CU, and is displayed on the indicator DI.

The main technical parameters of the device described by

Figure 14 are as follows: the measurable RMS height range

0.002–0.08 μm, the measurement accuracy 0.001 μm,

indication rate is one measurement per 5 s. The device

enables testing the plane and spherical surfaces with the

radius of curvature larger than 0.2 m, and can be used in

polishing machine tool for the surface quality control during

the detail fabrication. Its characteristic feature is the possibility to

analyze rough surface in the wide range of reflectivities (~2%–

100%), which is favorable for transparent optical surfaces of

glass, quartz, etc. This device can be made as a stationary

instrument.

Note that all devices described in this Section 5.4 are based on

the following principal conditions:

- heights of surface micro-irregularities are less than the

probing radiation wavelength, and their transverse scale

is larger than the wavelength, so that the specular

component of the reflected radiation is present;

- the phase variance is measured in the “boundary” scattered

field, which is formed immediately near the sample surface

(the sample surface is imaged at the plane of analysis, so

that the effective propagation length z = 0); the transverse

coherence function of a field can be measured for arbitrary

cross section;

- statistical parameters of the scattered field are measured in

interferometric arrangements, within the zero (infinitely

extended) interference fringe.

5.5 Indirect reconstruction of the singular
skeleton of speckle fields

The physical relevance of the optical-field phase information

stimulates the continuous search for efficient means for its

extraction from the immediately available intensity profiles

[112–118]. Still, most of approaches are complicated and do

not warrant appropriate results in real noisy conditions. Here we

describe a general approximate method for reconstructing the

phase skeleton of complex optical fields from the measured two-

dimensional intensity distribution [119]. The core of the

algorithm consists in locating the saddle points of the

intensity distribution and connecting such points into nets by

the “gradient lines” (GL)—lines of the steepest descent [120] of

intensity. According to [119], the GL are closely associated with

the equi-phase lines of the field, and their network provides a

partial solution to the inverse problem in optics commonly

referred to as the phase problem [97, 112].

The idea of the method is grounded on the empirical fact

that, in stochastic fields, the regions of small intensity gradients

(smooth spatial changes of intensity) are the regions with rapid

change of phase [9]. That is why the GLs, that unite the saddle

points and the minima of intensity, to a high degree (95%–98%)

correlate with the characteristic lines of the phase distribution.

The situation is illustrated by Figures 15A, B. It represents the

simulated speckle-field cross section where the GL (yellow lines),

saddle points (cyan triangles), intensity maxima (cyan rhombs),

amplitude zeros (red and blue squares, discriminating the phase

singularities with positive or negative TC), and the non-singular

intensity minima (green squares) are shown together with the

blue lines ImE (x,y) = 0 and red lines ReE (x,y) = 0. The phase

map (Figure 15B) indicates the regions with relative phase 0 to π/

2 (white), π/2 to π (light-grey), π to 3π/2 (dark-grey), and 3π/2 to

2π (black).

Figures 15A, B illustrate two peculiarities of the GLs: 1)

nonintersecting lines passing the saddle point connect phase

singularities of opposite signs; 2) the most of the GLs

approximately reproduce the equi-phase boundaries between
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the different-color areas of Figure 15B. Perhaps, the pattern of

Figure 15B is not absolutely convincing but an accurate statistical

analysis of the phase variations along the GLs has indicated 95%

coincidence [119]. Note that the choice of boundary phases is

conventional and, with different choice, the mentioned

coincidence between the yellow lines and the equi-phase lines

can be made still more impressive.

Supported by the proper interpolation techniques, the

described approach [119] offers a simple and efficient

algorithm for estimation of the phase distribution of complex

stochastic fields, which are of the main interest in practical

situations (despite that it is not applicable to some special

cases, and one can easily find the corresponding examples).

However, its further implementation needs additional means

for recognition of the significant points and lines of the intensity

distributions, and this task can be fulfilled with the help of new

facilities supplied by the specially designed nanoprobes. To this

purpose, the synthesized carbon nanoparticles [121] of the size

about λ/10 with strong absorption in the yellow-green region

(405 nm), weak absorption at the speckle-field wavelength

(633 nm), and showing the luminescence at 530 nm were

proposed.

According to the method presented in [121], the speckle

field image is projected into the cuvette filled with water, in

which the carbon nanoparticles are suspended (see the

microscopic image of the selected field area 30 × 30 μm2 in

Figure 15C; the “green” particles are seen due to

luminescence). Inside the inhomogeneous optical field, the

particles experience mechanical influences of different natures

[122–124]; normally, their optical properties determine that

the main effect is produced by the gradient force. Under its

action, the particles, being initially at random positions, start

to move, predominantly in the directions of local transverse

gradient of the field intensity (Figure 15D) and tend to the low-

intensity regions (Figure 15E shows the picture observable 5 s

after the speckle field is switched on), and ultimately

FIGURE 15
Top row: (A) Intensity and (B) phase distribution of a speckle field with the marked peculiar points of the intensity and phase profiles [119]
(explanations in text). Bottom row: Views of the luminescent nanoparticles in the tested speckle field [121]: (C) At the moment of speckle field
switching; (D) Recorded tracks of the particles during their field-induced motion; (E) The particles’ positions after their redistribution to the low-
intensity regions (observation time 5 s).
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concentrate in local intensity minima (the whole observation

time is 30 s).

As a result, observing the nanoparticles and their motion in

the field, one obtains the map of the intensity gradients and

intensity minima. Not always the local intensity minima coincide

with the “true” amplitude zeros (phase singularities) but the latter

can be distinguished qualitatively by higher concentration of the

“trapped” particles. The measurement errors in this method are

caused by the Brownian motion, and to avoid the undesirable

temperature effects, the temperature regime and the exposure

time are controlled. In experiments of [121], the luminescence-

exciting beam power was limited by 5 mW whereas the speckle-

beam radiation (633 nm) is weakly absorbed, and its power can

be chosen with some freedom.

Finally, the phase map and the full speckle-field pattern can

be restored from the gradient lines and the phase singularities’

positions using the principles described above. Processing the

optical field scattered by a stochastic object is recorded in real

time and takes several minutes.

The approaches involving the fluorescent probe

nanoparticles are expected to have many applications. First of

all, we mention the recent proposition where the single

fluorescent particle is controllably translated along the probed

surface and is excited by a strongly focused beam [124]. The

lateral position of the particle is dictated by a special optical

tweezer connected to the atomic-force microscope, and can be

controlled with 50–70 nm resolution; in turn, the particle

“vertical” position on the surface is detected via the

luminescence intensity with the accuracy of 3–5 nm, thus

exceeding the usual limitations of the optical-field

measurements by the wavelength order.

Other versions of the probe-particle approach may be

developed which involve the particles of special properties

enabling efficient luminescence excitation and quenching,

depending on the particle position. These special properties

can be attained, for example, by using plasmonic (highly

conductive) particles of a certain size or morphology,

coated by a dielectric layer with embedded fluorophore

clusters, provided that the geometry of the particle is

compatible with the characteristics of its excitation

[125–127]. In such particles, radiation with a fluorophore-

excitation wavelength will excite luminescence, and radiation

with a plasmon-resonance wavelength will quench it. For

example, if the particle is composed of a highly-conductive

nanorod core and a fluorophore shell, the external light,

polarized along the nanorod axis will excite the

fluorescence, whereas when the light is polarized

orthogonally, the transverse plasmon resonance will be

excited, which leads to the luminescence quenching [125].

When such particles are used as the probe particles, their

uniform orientation can be achieved due to their anisotropic

polarizability and intrinsic dipole moments [128–132], e.g., by

means of a properly oriented static electric field.

Light-matter interactions can be essentially enhanced at the

nanoscale [133]. This is of particular benefit for light interactions

with single nanoparticles, such as colloidal quantum dots,

viruses, DNA fragments and proteins. To achieve structured

light at the nanoscale, many researchers have used

nanoplasmonics, shaping metals at the nanoscale to control

the electromagnetic energy concentration. In such cases,

additional degrees of freedom are offered by the light

polarization: e.g., in a strongly focused beam, the electric field

contains a strong longitudinal (z-) component [2, 3, 15], which

can be used for controllable excitation or quenching of properly

oriented anisotropic nanoparticles. Remarkably, due to the

chemical and biological compatibility of the carbon

nanoparticles, the above-discussed ideas and methods can be

relevant for the diagnostics of biological tissues and media, for

example, in the studies of non-stationary processes in cells.

To finalize Section 5.5, exposing the singularity-based rough-

surface profilometry principles, we should add that in the past

paragraphs we have touched on the subject of using the

structured light for the precise profilometry. The associated

concepts and approaches are promising and even inevitable in

many situations where the use of interference methods is

impossible: in the study of sharply focused beams [134]; in

the analysis of dynamic liquid media, including the

restoration of the size distribution function of micro and

nanoparticles in dynamic light scattering technologies [135];

in the studies of turbulent gaseous media [136], as well as for

the solution of problems of digital holographic interference in the

analysis of non-stationary objects and scenes. Additionally to the

approaches presented, in such cases the use of structured light

with discrete spatial modes appears to be helpful [2, 137]. The

corresponding technique is based on the projection (in the

functional meaning) of the beam reflected by the sample onto

a properly tailored spatial mode, which essentially enhances the

signal-to noise ratio. The authors of [137] demonstrate the

measurement of a step height smaller than 10 nm, i.e., (1/80)

of the wavelength with a standard error in the picometer scale,

and substantiate the feasibility of the proposed technique to the

detection of subnanometer layer thicknesses.

6 Ubiquitous phase singularities in
optics and matter waves

In this Section, we consider some additional examples

illustrating the physical productivity and practical relevance of

the ideas and concepts of singular optics. As the first such

example we mention the group of phenomena explicitly

demonstrating the peculiar internal energy flows in the beams

with OV [138–147]. In Section 2, we discussed such

manifestations in the edge-diffraction phenomena but really,

the OV-caused “disbalance” of energy flows comes to light in

every situation where its symmetry is broken [68, 148]. This is the

Frontiers in Physics frontiersin.org17

Angelsky et al. 10.3389/fphy.2022.1060787

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1060787


case, for example, if an “oblique” section of the OV beam is

important. This “orbital” analogue of the geometric spin Hall

effect [149] manifests itself in the deformations of the transverse

beam profile and in the corresponding shifts of the beam “center

of gravity” when the beam experiences reflection or refraction at

a plane interface [140–146]. The effect is especially expressive in

case of non-specular reflection near the critical angle of total

reflection [145], or when the beam undergoes a grating

diffraction into a highly non-geometric order [138, 139]. This

“orbital” Hall effect expresses the interaction between the

“intrinsic” and “extrinsic” degrees of freedom of a singular

light beam, which are discussed in much detail in a series of

topical reviews (see, e.g., Ref. [150]).

Another important enhancement of the phase-singularity

concepts is coupled with their penetration into the near-field

optics, especially, into the vibrant domain of near-surface

evanescent waves [151–156]. In works [151, 152], the singular

evanescent wave is excited during the total internal reflection of

an OV-carrying LGmode (4). The resulting field in the low-index

region possesses vortex properties: it has well-defined OAM,

residing in an azimuthal phase relative to the propagation

direction of the internally reflected light. Such surface modes

are characterized by a small mode volume, they can strongly

couple to atomic or molecular systems in the vicinity of the

surface. In case of counter-propagating, symmetrically incident

LGp
l modes, efficient 3D optical traps with parameters adjustable

via the LG mode indices, can be realized.

Similar singular structures can be realized in the surface

plasmon-polariton (SPP) waves supported by a metal-dielectric

interface [2, 3]; in particular, this situation offers advantages of

remarkably higher light intensity due to plasmonic enhancement

[133]. In [153, 154], the radially propagating vortex SPP was

excited due to coupling of a circularly polarized laser beam via a

coaxial ring-like aperture in the gold film. As a result, near the

metal-vacuum interface, the surface wave appears with the

electric field components

Epr(r) � 0, Epϕ(r) � iσup(r)eiσϕ, Epz(r) � −up(r)eiσϕ (23)

(r and ϕ are the polar coordinates in the interface plane, z-axis is

directed along its normal) where

up(r) � Ae−κz
H(1)

1 (kr)
H(1)

1 (kr0)
, r≥ r0, (24)

r0 is the aperture radius, σ = ±1 is the incident wave helicity, κ

specifies the SPP near-interface confinement, and H(1)
1 is the

Hankel function [157]; the constants κ and A are determined by

the incident laser beam and by the excitation geometry. The field

(23), (24) is characterized by the helical phase but, in contrast to

the usual OVs (3), where the helicity “evolves” in the cross-

section plane, now the plane (r, ϕ) is the propagation plane. The

phase dislocation “strength” (TC) is determined by the incident

field polarization helicity σ. In the field (23), (24), the energy flow

propagates within the (r, ϕ) plane along the spiral lines; the

helical structure can be easily observed in the near field by means

of interference, which is especially evident when multiple vortex

SPPs are formed simultaneously [155, 156]. The phase terms σϕ

in Eq. 22 are analogous to the spiral phase acquired by electron

waves scattered by a cylinder containing a magnetic flux (optical

analog of the Aharonov—Bohm effect [153, 158]). The formation

of such surface waves can be treated as a sort of spin-orbital

interaction, highly sensitive to the incident beam polarization,

which offers a perfect quantum weak-measurement tool with a

built-in post-selection in the SPP mode [154]. The vortex SPPs of

this type show valuable abilities in observation fine light-matter

interaction effects and characterizing the SPP-supporting

interface topology. At this point, we should note that,

generally, the SPP fields serve as efficient instruments for

ultra-sensitive testing the surface properties, up to detection of

single molecules or atomic-size defects [159, 160], as well as the

surface roughness [161–163]. In this context, the unique

properties of the singular SPPs similar to those described by

Eqs 23, 24 may open new prospects due to their specific

topological nature and peculiar polarization features.

Very interesting possibilities arise from the ideas of

“coherence vortices” (CV)—“hidden” phase singularities which

exist in the correlation function rather than in the immediately

observable field distribution (1) [164–183]. Generally, usual

partially-coherent paraxial fields are spatially inhomogeneous

and are characterized by the two-point correlation function

F(r1, r2) � 〈E*(r1)E(r2)〉
〈I(r1)〉1/2〈I(r2)〉1/2 (25)

where I(r) � |E(r)|2 is the local intensity, and angular brackets

denote the ensemble average (this formula can be reduced to (14)

if the field statistical properties in points r1 and r2 are identical,

and F(r1, r2) depends only on the difference ρ = r1—r2).

Actually, the coherence function (25) is four-dimensional

[166, 167] but it can be characterized via its 2D projections.

The most common situations are the following: 1) one point (say,

r1) is fixed and the correlation function (25) depends only on r2
[165, 174–176], and 2) points r1 and r2 are interrelated such that

r1 =—r2 [166, 167, 176]. The CVs are the singularities of the

“reduced” 2D correlation functions F(const, r2) and F(r2,−r2)
which may show the typical singular behavior in the r2-plane

while the observable complex amplitude distribution 〈E (r2)〉 is

everywhere regular at any moment of time.

For example, in the “wandering beam” model, the

propagation of a LG0
l beam (4) is considered while its axis

position in the transverse plane is a random function, and the

cross-correlation function of Eq. 25 can be determined as

〈E*(r1)E(r2)〉 � ∫E*(r1 − r′)E(r2 − r′)q(r′)d2r′, q(r)

� 1
πρ2c

exp( − r2

ρ2c
) (26)
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where ρc is the measure of the transverse coherence. With the

help of this model, it is demonstrated for a time-invariant linear

optical system that there exists a definite connection between the

usual OVs (phase singularities of the field amplitude), which

appear when the system is illuminated by spatially coherent light,

and the CVs of the function F(const, r2) which appear when it is

illuminated by partially coherent light [173–176]. Usual OV

beams can evolve into CVs when the degree of coherence falls

down (ρc → 0): according to the conservation laws, the TC,

associated with the phase singularity, “moves” from the field to

the coherence function, as well as the OAM does.

When the projection 2) is used, the correlation function (25)

F(r2,−r2) contains annular ring-like edge phase dislocations [9]
with the configurations depending on the input partially-

coherent LGp
l beam characteristics [176–179]. The singularity

of the function F(r2,−r2) may exist even in a non-vortex beam

(l = 0) due to the non-zero radial index [178]. Interestingly, the

number of ring dislocations in the far-field correlation function

equals to 2p + |l| for the low-coherence cases. This fact may offer

efficient means for measuring the magnitude and sign of TC of

partially coherent OVs [178, 182], which would be particularly

useful in atmospheric laser communication.

Based on the beam-wander model, investigations of the

partially coherent LG beam propagation for any radial and

azimuthal indices and at any propagation distance have been

performed in [183]. It was shown that, as the coherence

decreases, the correlation function acquires increasing number

of the single-charged vortex-type singularities, and this effect

depends on the radial index of the input LG beam. These

observations indicate that a proper choice of randomization is

favorable for the CVs’ detection and open new possibilities to sort

photons not only by their TC but also by radial indices. During

the beam propagation, the CVs exhibit “self-healing” properties,

which are interpreted as a van Cittert–Zernike-style [28]

evolution that depends strongly on the manner in which the

beam is randomized. Though the total OAM of the beam is

conserved, different distributions of the OAM density can be

realized by adjusting the input radial index and propagation

distance. These features can be applied in optical

communications employing both azimuthal and radial orders

of the OV beams as well as for the fine tuning of the rotation of

particles trapped in OV beams [183].

Besides the beam-wander conditions, the CVs can be

generated when an OV beam passes a random scatterer (e.g.,

rotating ground-glass disc) [179, 180], or due to special

randomization of multiple partially-coherent “source” beams

regularly arranged over the input plane [181]. In the

arrangement of [179], the “regular” large-scale singularity is

“hidden” inside the visually chaotic speckle structure but can

be recovered via the correlation analysis. Notably, such CV

structures are “robust”: After the beam passes through an

obstacle which apparently blocks a noticeable part of the

beam profile, its coherence function experiences essential

changes but with further beam propagation, these changes

disappear and the CV is restored [179, 180]. Together with

the self-healing properties mentioned in the above paragraph

[183], this fact is illustration of the important general feature of

the CV structures: their high stability and low sensitivity to

external perturbations, even when compared with the usual OVs.

Remarkably, this stability can be enhanced by additional

randomization and/or decrease of coherence of the input laser

radiation [179, 181, 183].

All these facts illustrate the exclusive features of CVs as specific

topological entities carrying information in the correlation degree of

freedom, and testify for their bright prospects in applications for the

data encoding, optical communication as well as in formation of

structured fields with special configurations for optical trapping and

manipulation. Remarkably, despite the impressive and sometimes

counter-intuitive properties, the CVs are not so exotic as it seems at

first glance: the correlation functions of black-body radiation are

known to possess an infinite number of phase singularities (related

to the zeros of the spherical Bessel functions [184]).

Since the early days of the “singular era” in optics, optical

communications and data processing remain among the most

important fields of application [49–51]. In the recent years,

employment of the structured-light concepts opens up new

possibilities in fundamental applications, including image

visualization, increasing the throughput of communication

systems through mode-separation multiplexing, high-

dimensional quantum cryptography and the creation of

multidimensional quantum encryption systems [80, 81,

185–188]. However, the usual optical encryption protocols

have been primarily based on the first-order field

characteristics, which are strongly affected by interference

effects and make the systems unstable because of light–matter

interaction. This defect is avoided in an alternative optical-

encryption protocol [189] whereby the information is encoded

into the second-order spatial coherence distribution of a

structured random light beam via a generalized van

Cittert–Zernike theorem. The new approach has two key

advantages over its conventional counterparts: 1) the

complexity of measuring the spatial coherence distribution of

light enhances the encryption protocol security, and 2) the

relative insensitivity of the second-order statistical

characteristics of light to environmental noise makes the

protocol robust against the environmental fluctuations, e.g.,

the atmospheric turbulence.

Optical singularities are essential elements of multiple

applications of structured light for precision material

handling. Manipulating the amplitude, intensity, phase or

polarization leads to new fundamental implementations for

solving a significant range of problems, such as optical

communication technology, data security in information

optics, material nanotechnology, etc. The main principles of

optical manipulation [152, 190–192] are the same as were

outlined in Section 5.5, see Figures 15C–E (a particle is “kept”
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inside the light-intensity minimum or maximum) but, due to the

implementation facility and flexibility of control, specially

tailored structured light fields [193–195] realize the “smart”

optical-trapping technologies enabling the material

engineering at the atomic level. The modern optical traps

minimize the photon-scattering and thermal effects and use

the coherence as an additional control channel. They find

applications in the control of cold atoms, manipulation of the

quantum states of the degenerate gases, generation of non-

conventional states of the matter waves, etc.

The need for new ultra-compact structured-light sources gave

impetus to the development of artificial optical materials, including

metamaterials and metasurfaces, which determined the great

enhancement of the means for purposeful light-field engineering

[196–201]. The discovery of toroidal optical dipole traps made it

possible to realize the conditions for confining a super-fluid

Bose–Einstein condensate by introducing a weak radial barrier

with tunable coupling [202]. The natural next step is associated

with the possibility of manipulating de Broglie atomic waves by

analogy with the manipulation of light waves in optics. Accordingly,

the singular-optics ideas can be generalized to the matter-wave

optics [203], as a complex of concepts and tools formanipulating the

amplitude and phase of the atomic and electron waves.

We cannot exhaustively describe this fascinating emerging

field within the limited frame of this review but merely mention

that it opens new and very promising ways in the material science

and optics. The central concept of the singular atom optics is the

“electron vortex” [204–210] being the electron-wave analog of

the usual screw WF dislocation (azimuthal harmonic (3)). With

all the precautions caused by the different physical nature

(electric charge instead of neutrality, half-integer spin, obeying

the Dirac equation [211] instead of the Helmholtz one (2)), the

electron vortex carries distinct characteristic features of the wave

singularity stipulated by its topological nature. Just like an OV, an

electron vortex is a spiral de Broglie wave carrying a quantized

OAM. However, unlike the photon OAM, electronic OAM can

directly excite dipole transitions in atoms due to the Coulomb

interaction, thereby realizing new applications in nanooptics

also, as well as participate in specific electromagnetic

interactions [209, 210]. Waves of electronic matter have the

ability of coherent transformation, with the possibility of creating

elements analogous to holographic diffractive optics.

Following the optical analogy, electron vortices are promising

candidate for the data encoding and qubits-based quantum

memory elements.

To sum up, the principles of the wave diagnostic and

engineering capabilities, worked out on the example of optical

singularities, are intensively transferring to the wave fields of

other physical nature [30, 212, 213]. In these new fields, they

form powerful grounds and promising prospects for impressive

applications in the huge area of science and technology, from the

subatomic scales to the biological cells and to the world of

galaxies [30, 214, 215].

7 Conclusion

In this review, we tried to expose some selected features of

singular optics which seem to us the most relevant and

interesting in both fundamental and applied aspects. To this

purpose, the generic properties of point-like phase singularities in

scalar fields (OVs) are discussed in detail. This example is

especially useful and demonstrative as it enables, via simple

and intuitively clear models, to show the common features of

vortex motions in different physical systems, from light fields to

tornado storms and spiral galaxies [7, 25] and thus effectively

exposes the unity of physical world and the general character of

physical laws. In particular, the OV diffraction properties are

discussed which reveal the singularity-related energy circulation

in light beams (Section 2). The peculiarities of the OV-beams’

non-linear behavior, associated with their specific intensity

profiles, are described in Section 3. On the other hand, the

spontaneous parametric down-conversion with participation

of the OV photons (Section 4) supplies a picturesque and

instructive illustration of quantum entanglement but also

opens impressive possibilities in advanced data encoding,

quantum encryption, communication and computing.

In Section 5, the main attention is paid to the stochastic

speckle fields that are known [92–97] to contain multiple optical

singularities, which, due to their topological nature, form

coherent and interrelated networks (“singular skeletons”) and

characterize the optical field “as a whole”. In this Section, the

principles of the statistical characterization of random singular

fields are outlined; the specific features of the fields produced by

fractal and non-fractal random scatterers are discussed, as well as

the possibilities for their recognition via optical diagnostic

means. Simultaneously, the methods of the singular-skeleton

detection, and of the combined employment of correlation-

optics and singular-optics approaches for the practical field

diagnostics are presented in Section 5.3 and Section 5.5. In

particular, they supply new solutions to the famous “phase

problem” in optics [112, 114]: non-interference recovering the

“full” field information from the immediately observed intensity

distribution.

Section 6 offers a brief outlook of the singularity-associated

problems and knowledges that are the subjects of continuing

discussions and investigations. In particular, it describes the

singularity-induced beam shifts, stipulated by the internal

energy flows [138, 140, 145]; phase singularities and vortex-

like structures in the surface evanescent waves [151, 153];

“coherence vortices” inherent in the field coherence function

rather than in the complex amplitude distribution “per se” [175].

Advanced applications of the singular optical fields in optical

communication systems and optical manipulation techniques are

discussed. Finally, possible extrapolations of the singular-optics

ideas and concepts on wave fields of other physical nature, such

as acoustic waves, and, especially, matter waves and electron

beams in quantum mechanics, are characterized in brief.
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As a concluding remark, we should emphasize that it is

impossible to exhaustively describe the development of concepts

and applications associated with optical singularities, even

restricted to the simplest case of phase dislocations in scalar

fields, within the framework of one review. We believe that the

data and knowledges, presented above, fairly reflect the current

state of the art in singular optics but these are inevitably restricted

by the experiences and interests of the authors. Many further

impressive results and ideas can be found in other collections, for

example, in topical special issues [87–90], recent reviews [5, 6, 30,

33], etc.
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