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Introduction:Differential equations governedcompartmentalmodels are known for

their ability to simulate epidemiological dynamics and provide highly accurate

descriptive and predictive results. However, identifying the corresponding

parameters of flow from one compartment to another in these models remains a

challenging task. These parameters change over time due to the effect of

interventions, virus variation and so on, thus time-varying compartmental models

are required to reflect the dynamics of the epidemic and provide plausible results.

Methods: In this paper, we propose an Euler iteration augmented physics-

informed neural networks(called Euler-PINNs) to optimally integrates real-

world reported data, epidemic laws and deep neural networks to capture

the dynamics of COVID-19. The proposed Euler-PINNs method integrates

the differential equations into deep neural networks by discretizing the

compartmental model with suitable time-step and expressing the desired

parameters as neural networks. We then define a robust and concise loss of

the predicted data and the observed data for the epidemic in question and try to

minimize it. In addition, a novel activation function based on Fourier theory is

introduced for the Euler-PINNs method, which can deal with the inherently

stochastic and noisy real-world data, leading to enhanced model performance.

Results and Discussion: Furthermore, we verify the effectiveness of the Euler-

PINNsmethod on 2020COVID-19-related data inMinnesota, the United States,

both qualitative and quantitative analyses of the simulation results demonstrate

its accuracy and efficiency. Finally, we also perform predictions based on data

from the early stages of the outbreak, and the experimental results demonstrate

that the Euler-PINNs method remains robust on small dataset.
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1 Introduction

Mathematical models have proved invaluable to

understanding and analyzing the transmission of infectious

diseases, and many efforts have been made in epidemiological

field [1]. Epidemic compartmental models governed by a system

of differential equations can capture epidemiological dynamics

and provide highly accurate descriptive and predictive results.

Thus, the compartmental models served as the most widely

applied modeling approach to analyze the transmission and

evolution of infectious diseases [2, 3]. They also play a critical

role in evaluating the effectiveness of interventions implemented

by authorities in response to epidemic viruses [4]. The

coronavirus disease 2019 (COVID-19) has overwhelmingly

shocked and shaken the entire world continuously and

unexpectedly, the World Health Organization (WHO)

declared COVID-19 as a pandemic on 11 March 2020 [5].

Many people become sick, suffer from the Long Covid, and

even lost their lives after being infected. Various interventions

were implemented to fight the pandemic, specifically to reduce

transmission and its impact on healthcare systems [6]. Epidemic

compartmental models categorized the population into different

compartments based on disease status and subsequently written

mathematical equations to model infectious diseases. The basic

Susceptible-Infectious-Removed (SIR) model was proposed by

Kermack and McKendrick to model the dynamics of the Black

Death in London in the year 1927 [7]. Since the start of COVID-

19, epidemic compartmental models have been at the forefront of

understanding and predicting the situation for supporting

decision-making. Various compartmental models have been

proposed to characterize the evolution of COVID-19 by

adding customized compartments to the classical SIR model,

such as the SEIR model with incubation period (E), the SEAIR

model with the symptomatic carrier (A), the SEIRS model

considering recurrent infection [8–10]. Wang et al use a

modelling approach to reconstruct the full-spectrum dynamics

of COVID-19 in Wuhan between 1 January and 8 March

2020 across 5 periods defined by events and interventions,

identified the high covertness and high transmissibility

features of the outbreak [11]. Wei et al. proposed an extended

SEIR mode to evaluate how the implementation of clinical

diagnostic criteria and universal symptom survey contributed

to epidemic control in Wuhan [12].

Once a compartmental model is constructed to simulate a

given scenario, the key task is to estimate the related parameters

that govern its behavior. Many research efforts focus on

parameter estimation of epidemic compartmental models,

which fall into two main groups: deterministic and

probabilistic, such as maximum likelihood estimation, Markov

Chain Monte Carlo (MCMC)-based Bayesian inference [13–15],

finite element methods [16], and so on. The deterministic

approach uses optimization techniques to find a set of optimal

parameters which satisfy the minimization of the difference

between simulated and real data. The probabilistic approach

especially Bayesian inversion techniques can obtain the

probability distribution for each of those parameters to

measure the uncertainty [17]. However, these methods suffer

from important limitations, such as the problem being non-

unique due to the higher number of unknowns than

observations, and computational cost increasing exponentially

with the complexity of the parameters andmodels, which hinders

their application. Moreover, the fact is that related parameters

may change over time in real-world scenarios due to

interventions implemented by authorities, population

behavioral changes, and/or mutations of the virus.

Accordingly, compartmental models require time-varying

parameters to capture the evolution of COVID-19

epidemiological attributes including time-varying infection,

recovery, and mortality rate. Several research works have

attempted to estimate time-varying parameters of the model

using complex regression methods [18–20]. These methods for

identifying time-varying parameters are in the context of the

regression framework in which the time-varying parameters are

defined as combinations of basis functions. Such a framework

contains numerous parameters and employing intelligent

algorithms to determine the parameters can not guarantee an

optimal solution. In most instances, finding local optimum can

be extremely hard, let alone the global optimum. In addition, the

random initialization and following search strategies of such

algorithms may lead to different solutions for each execution.

Deep learning, also commonly referred to as deep neural

networks (DNNs), has been used for dynamical system

simulations indicating the strong potential of this

computational method to address a wide variety of parameter

identification tasks [21]. Neural networks can be viewed as

discretizations of continuous dynamical systems, making them

well-suited for dealing with dynamic systems. Moreover, the

universal approximation theorem guarantees that arbitrary

continuous functions can be approximated by neural networks

with a sufficient number of hidden units. These two mentioned

reasons facilitate DNNs achieved outstanding performance in

scientific computation and parameter evaluation. It is important

to note that the Physics-informed neural networks (PINNs)

framework was originally developed for time-dependent

partial differential equations (PDEs) and had been widely

used in various domains [22–24]. The PINNs framework

perfectly integrates data and mathematical models, it performs

accurately and efficiently in the context of the dynamical system

when partial spatio-temporal data are available. Recently,

exploring the application potential of the PINNs framework

in compartmental models has received attention, as many

studies have demonstrated the capacity of the PINNs

framework to be stable, efficient, and accurate in parameter

estimation [25–28]. For example, Kharazmi et al analyze

several variations of the classical SIR model through the lens

of PINNs to identify time-dependent parameters for
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compartmental models [29]. Hu et al proposed a modified

PINNs approach to estimate the unknown infected

compartment I, and several unknown parameters [30].

In this paper, by skillfully incorporating the idea of Euler

iteration and the Physics-informed neural networks, we propose

an Euler iteration-based deep neural networks (called Euler-

PINNs) to estimate the time-varying parameters for epidemic

compartmental models. Firstly, we constructed a susceptible-

infected-recovered-deceased (SIRD) compartmental model

following the transmission behaviour of COVID-19. Next,

several separate deep neural networks are built to express

corresponding parameters in the SIRD model, and Euler

iteration is applied to solve the equations. Lastly, we define a

loss as the discrepancy between the predicted and the observed

data of the epidemic in question and try to minimize it. After

that, we applied the proposed Euler-PINNs method to the

COVID-19 reported data from the state of Minnesota, in the

United States. The experimental findings on the synthesized data

have revealed that the proposed Euler-PINNs method can

estimate reliable time-varying parameters that explicitly

depicted the transmission trend of an infectious dynamical

system over time. Specifically, both quantitative and

qualitative analyses of estimated parameters in the context of

the corresponding interventions are consistent with expected

dynamics and previous publications. Furthermore, the proposed

Euler-PINNs method is applied to predict early outbreaks,

demonstrating its reliable prediction as well as robust

performance on a small dataset. The main contributions of

this paper are as follows:

• We proposed an Euler-PINNs method to estimate the time-

vary parameters of the compartmental model. To the best of

our knowledge, it is the first method to explore integrating

compartmental model and Euler iteration into deep neural

networks to model the dynamic of the infectious disease.

Different from directly modeling all the compartments and

parameters using neural networks, leveraging the Euler

iteration in forward process provides more constraints to

the network. As a result, this makes the network easier to

converge and increases the explainability of the network as

well as the plausibility of the results.

• We transform the continuous-time differential equations into

discrete-time difference equations and build corresponding

neural networks for each time-varying parameter in the

equations. Then applying Euler iteration to integrate the

neural networks and the differential equations to estimate

the time-varying parameters in the equations. In addition, we

add Fourier transformation for the input data before feed it to

the network, considering that COVID-19 epidemic-related

data is from real-world report, which is inherently, stochastic,

and noisy.

• We applied the proposed Euler-PINNs method to

2020 COVID-19 data from the state of Minnesota, the

United States, to analyze the effectiveness of the

interventions. The estimated time-varying parameters of

the SIRD compartmental model well explained the

COVID-19 evolution under the light of government

interventions that were taken, showing consistency in

comparison with published works. More importantly,

the proposed Euler-PINNs method can provide a

reliable prediction for an early outbreak.

The rest of the paper is organized as follows. In Section 2, we

briefly introduce Fourier neural networks, including the

fundamental theory of neural networks, activation functions

and Fourier mapping. Section 3 presents the SIRD

compartmental model constructed for a given COVID-19

transmission scenario, and the Eulerian iteration to discretise

the model. Moreover, a detailed description of how to integrate

the compartmental model and Euler iteration into the neural

network and how to design the loss function is provided. In

Section 4, we test the proposed Euler-PINNs method with

2020 COVID-19 data from the state of Minnesota, discuss the

results obtained and perform prediction for early stage outbreaks.

Section 5 wraps up this work with a summary of conclusions,

opportunities, and limitations.

2 Fourier induced deep neural
networks

2.1 Deep neural networks

This section briefly introduces the relevant concepts and

mathematical formulation of DNNs. Mathematically, the DNNs

defines a mapping of functions

F : x ∈ Rd0y � F x( ) ∈ Rc, (1)

where d and c are the dimensions of input and output,

respectively. At first, a standard neural unit of DNNs with an

input x ∈ Rd and an output y ∈ Rm is in the form of

y � σ Wx + b( ) (2)
where W ∈ Rd×m and b ∈ Rm stand for weight matrix and bias

vector, respectively. σ(·) is an element-wise non-linear unit,

generally referred to as the activation function such as

sigmoid, rectified linear units, and hyperbolic tangents

through the DNNs [31]. The DNNs with L layers can be

regarded as the nested composition of sequential standard

neural units. Specifically, we let y[ℓ]
j represent the jth neuron

in ℓ layer, then

y ℓ[ ]
j � ∑N ℓ−1[ ]

k�1
w ℓ[ ]

jk × σ ℓ−1[ ] y ℓ−1[ ]
k( ) + b ℓ[ ]

j , (3)

where
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• y[ℓ−1]
k : the value of kth neurons in ℓ−1 layer

• N[ℓ−1]: the number of neurons in ℓ−1 layer

• σ[ℓ−1]: the activation function in ℓ−1 layer

• w[ℓ]
jk : the weights between kth neuron in ℓ−1 layer and jth

neuron in ℓ layer

• b[ℓ]j : the bias of jth neuron in ℓ-1 layer

We denote the output of the DNNs by y (x; θ) with θ

representing the parameter set of all weights and biases. The

hyper-parameter N[ℓ−1], L and the activation functions σ[ℓ−1]

should be defined before training.

2.2 Activation function

Non-linear activation functions such as ReLU(z) = max{0, z}
and tanh(z) enhance the ability of DNNs to model various non-

linear problems such as non-linear PDEs and classification.

Therefore, selecting the suitable activation function matters

greatly for DNNs applied in all domains. Recent work has

shown that Fourier feature mapping as an activation function

enables the network to learn the objective function better

[32–34]. Since the Fourier feature mapping of sine and cosine

can mitigate the spectral bias or frequency preference

phenomenon of DNNs [35, 36]. It is

σ z( ) � cos κz( )
sin κz( )[ ], (4)

where κ = (a1, a2, /) is a user-specified vector (trainable or

untrainable) that is consistent with the number of neural units in

the first hidden layer of the DNNs. By performing a Fourier feature

mapping of the input data, the input points inΩmay be mapped to

the range [−1, 1]. Then, the following blocks of the DNNs can nicely

handle the feature information, as shown in Figure 1.

Deep neural networks are now consistently used as the non-

linear function approximation method and have shown their

powerful capacity in the fields of scientific computation and

engineering application. Therefore, this paper intends to explore

the application of integrating DNNs into epidemic

compartmental models for modeling the complex dynamics of

COVID-19.

3 Methodology

3.1 Epidemiology model

Epidemic compartmental models enable the simulation of

multi-state population transitions by incorporating domain

knowledge and mathematical assumptions to characterize the

dynamics of the infectious disease. The dynamics of the infection

can be described approximately by a variation of the Kermack-

McKendrick Eq. 7. We consider a geographical region, assumed

as isolated from other regions, and within the such region, we

define a time-dependent SIRD model which covers the most

important features in modeling the dynamics of COVID-19. The

transmission rate determines the dynamic of the epidemic and

reflects the effectiveness of the interventions implemented by the

authorities. The recovery rate and death rate reflect the capacity

of the healthcare system to fight against COVID-19. This

hypothesis is a reasonable assumption when interventions are

well performed.

dS t( )
dt

� −β S t( )I t( )
S t( ) + I t( ),

dI t( )
dt

� β
S t( )I t( )

S t( ) + I t( ) − γI t( ) − μI t( ),
dR t( )
dt

� γI t( ),
dD t( )
dt

� μI t( ),
N � S t( ) + I t( ) + R t( ) +D t( )

(5)

where S(t), I(t), R(t), D(t) denote the number of susceptible,

infected, recovered and deceased individuals over time,

respectively. β ≥ 0 represents the transmission rate of the

disease, which is the average number of contacts of an

infected individual per unit of time, multiplied by the

probability of disease transmission. γ ≥ 0 represents the

recovery rate, which is the proportion of infected individual

that recover from the disease per unit of time. μ ≥ 0 is the

death rate. Note that S(t) + I(t) + R(t) + D(t) = N, where N is the

initial population and remains constant in time (e.g., dN/dt = 0).

The model is initialized at some conventional t = t0 with values S

(t0) = S0 > 0, I (t0) = I0 > 0, R (t0) = R0 ≥ 0, andD (t0) =D0 ≥ 0. R(t)

+D(t) denote the removed individuals that are removed from the

susceptible compartment due to death or immunization.

FIGURE 1
Illustration of the representation of Fourier basis in a neural
network with 3 hidden layers. W[1]

q represents the weight of the
q−th hidden units in the first hidden layer.
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3.2 Euler iteration

Mathematically, the infectious disease transmission

dynamics such as (Eq. 5) are generically represented as the

following non-linear dynamical system

du t( )
dt

� f u t( ), t;Ξ( ), (6)

where u ∈ RD (typically D ≫ 1) is the state variable and Ξ
stands for the parameters of dynamical system. The analytical

solution of non-linear different Eq. 6 are hardly obtained or

even non-existent in many cases. Alternatively, many

numerical simulation algorithms are proposed to deal with

the above system by discretizating it with suitable time-

stepping Δt, such as forward or backward Euler methods.

In the infectious disease transmission scenarios, the real world

observed data are time series reported in units of 1 day, so we

consider the solutions of SIRD model by the forward Euler

method, and take a discretization period of duration 1 day.

Then, (Eq. 5) can be expressed as the following discrete-time

version:

S t + 1( ) � S t( ) − β
S t( )I t( )

S t( ) + I t( ),

I t + 1( ) � I t( ) + β
S t( )I t( )

S t( ) + I t( ) − γI t( ) − μI t( ),
R t + 1( ) � R t( ) + γI t( ),
D t + 1( ) � D t( ) + μI t( ),

(7)

where t = t0, t0+1, t0+2, /. In real-world scenario applications,

these parameters are usually time-varying and unknown, which

would result in an ill-posed inverse problem. Such an ill-posed

inverse problem is a well-known dilemma and poses a significant

challenge for traditional methods. Deep learning, specifically

deep neural networks, as the non-linear function

approximation method has shown its powerful capacity for

solving forward-inverse problems. Here, we consider the

function expressions for time-varying parameters β, γ and μ

utilizing DNNs and provide their high-accuracy estimation

relying on the aforementioned Euler iteration method

according to the given observed data.

3.3 Overview of Euler-PINNs

To this end, we resort to data-driven surrogate βNN(·, θβ),
μNN(·, θμ) and γNN(·, θγ) represented by DNNs as the hypothesis

spaces (denoted as βNN μNN and γNN), then the expression of

time-varying parameters β, μ and γ for SIRD model can be

obtained by minimizing the following loss function:

Loss � ωsLoss2S + ωILoss2I + ωRloss2R + ωDLoss2D

+ ωR θβ, θγ, θμ( ) (8)
with

Loss2S � 1
N

∑N−1

n�0
Sn+1 − Sn + βNN tn( ) SnIn

Sn + In

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣2
Loss2I � 1

N
∑N−1

n�0
In+1 − In − βNN tn( ) SnIn

Sn + In
+ γNN tn( )In + μNN tn( )In

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣2
Loss2R � 1

N
∑N−1

n�0
Rn+1 − Rn − γNN tn( )In
∣∣∣∣ ∣∣∣∣2

Loss2D � 1
N

∑N−1

n�0
Dn+1 −Dn − μNN tn( )In
∣∣∣∣ ∣∣∣∣2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
where the observed data for S(t), I(t), R(t) and D(t) at t = t0, t0+1,

t0+2,/ with a given time interval [t0, T] are denoted as S0, S1, S2,

/, I0, I1, I2,/, R0, R1, R2,/, and D0, D1, D2,/, respectively. In

addition, we introduce five positive relaxing factor ωS, ωI, ωR, ωD

and ω to balance the contribution of Loss2S, Loss2I, Loss2R,

Loss2D and the regularization sum of network parameter in loss

function, respectively. To obtain the ideal θβ*, θγ* and θμ*,

optimization methods such as gradient descent (GD) or

stochastic gradient descent (SGD) are required during

implementation to update the parameters of the DNNs during

the training. In this context, the SGD is given by:

θk+1 � θk − αk∇θkL t; θk( ), t ∈ t0, t1, t2,/{ },

where the learning rate αk decreases with k increasing and θ = {θβ,

θγ, θμ}.

Figure 2 describes the schematic of the Euler-PINNs method.

In this architecture, three separate deep neural networks are

designed to express the corresponding parameters β, γ, and μ in

SIRD compartmental model. Next, Euler iteration is introduced

to perform the forward process, and then the discrepancy

between forward predictions and real-world observations is

defined as the loss function which requires to be minimized.

Specifically, each neural networks comprise 5 layers, the weight

matrixWk and the bias vector bk of the kth layer are:W1 ∈ R1×35,

W2 ∈ R35×50, W3 ∈ R50×30, W4 ∈ R30×30, W5 ∈ R30×20 and

b1 ∈ R35, b2 ∈ R50, b3 ∈ R30, b4 ∈ R30, b5 ∈ R20.

4 Application

In this section, we applied the proposed Euler-PINNs

method for time-varying parameters estimation of SIRD

compartmental model to the real-world data from the state of

Minnesota, the United States, and analyzed its performance on

both parameter estimation and future prediction.

4.1 Data and implementation

4.1.1 Data source
The proposed Euler-PINNs method was applied to real-

world COVID-19 reported data from The COVID Tracking

Project [37], which covered the confirmed numbers of

infected, recovered, and dead cases in the state of Minnesota,
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the United States. Accounting for the first dose of COVID-19

vaccine in the United States was administered on 14 December

2020, we selected the time window range 25 March to

13 December of 2020 to avoid any immunity after the

vaccination. These time series data I(t), R(t), D(t) are

smoothed with a 7-day average due to delays in registering

new cases or updating the status of infected individuals over

the weekend.

4.1.2 Implementation
We trained the proposed Euler-PINNs method on a personal

laptop with an Intel (R) Core (TM) i7-8550U CPU and 1.8GHz,

with the Windows 10 operating system. We developed the Euler-

PINNs based on Python programming language and using the

NumPy [38], Pandas [39] library and the TensorFlow [40]

framework. In this numerical experiments, all neural networks

are trained by the Adam optimizer, the initial learning rate is 2 ×

10–3 with a decay rate 95% for every 2000 epochs. In addition, the

regular factors ω is set as 0.0005, max epoch is set as 100000. The

entire training process took about 10 min to run 10,000 epochs

on all training data, and predictions could be made within

seconds.

4.2 Analysis of the results

4.2.1 Quantitative analysis of the results
In this subsection, we present the evaluation of how well the

estimated parameters fit the SIRD compartmental model on the

available data. Figure 3 shows the fitting of the dynamic of the

SIRD model with time-varying parameters to the available data

(after 7-day smoothing), which demonstrates that the proposed

Euler-PINNs method can accurately fit the different fluctuations

in the data. In addition, the performance of mathematical

modeling is measured by metrics such as mean absolute

errors (MAE) and root means square error (RMSE). The loss

function of the proposed Euler-PINNs method is formulated by

these metrics, which guarantees it can reflect the convergence of

the network and the performance of mathematical models. As

can be seen in the Figure 4, the proposed Euler-PINNs method

has good convergence.

Moreover, we evaluate how the estimated parameters fit the

SIRD compartmental model by comparing the results of previous

publications. The findings demonstrate that the proposed Euler-

PINNs method yields reliable results that are consistent with

those given by other researchers. We compare our results to those

obtained using the methodology of the rolling regression

framework [19], where the order of magnitude of the time-

varying parameters β(t), γ(t) and μ(t) is in agreement and the

trend is almost identical. It is a sensible note that [41] estimate

that the pandemic in the United States presented an estimated

ascertainment rate of 21.6% (95% confidence interval:18.9%–

25.5%). Asymptomatic and undocumented confirmed cases were

not included in our model, which may account for the slightly

lower transmission rate we estimated than in paper [19] to some

extent. Recovery was defined differently in different states in the

United States, in Minnesota it refers to people whose symptoms

have improved. This means that asymptomatic cases or

individuals suffering from symptoms but not hospitalized nor

monitored are not included in the data. As a result, the number of

FIGURE 2
The overview of Euler-PINNs for parameters estimation. Each neural networks comprise 5 layers, the weight matrixWk and the bias vector bk of
the kth layer are: W1 ∈ R1×35, W2 ∈ R35×50, W3 ∈ R50×30, W4 ∈ R30×30, W5 ∈ R30×20 and b1 ∈ R35, b2 ∈ R50, b3 ∈ R30, b4 ∈ R30, b5 ∈ R20.
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FIGURE 3
The fitting of infection, recovery and deaths during training.The squares represent the observed data and the curves represent the predicted
data.

FIGURE 4
Loss of Euler-PINNs method. (A): Loss of susceptible individuals. (B): Loss of infection individuals. (C): Loss of recovery individuals. (D): Loss of
death individuals. (E): Total loss of Euler-PINNs.
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individuals observed as recovered is lower, leading to a lower

estimated recovery rate. Consistent with [42], who report values

of β(t), γ(t) and μ(t) in the United States of orders 10–1, 10–2 and

10–3, respectively, around the middle of May. This is also

consistent with the orders of magnitude of β(t), γ(t) and μ(t)

for Minnesota around that time of the year. Consistent with [43],

who report that the average time a person is infectious, 1/γ(t), to

be 5 days (i.e., γ(t) ~ 0.2), our result of γ(t) is very close to this

estimation. The estimated range of μ(t) and β(t) given by [44] are

approximately 10–3 and 10–1 for the first half of 2020, in the same

order with our results.

4.2.2 Qualitative analysis of the results
The epidemiological parameters in compartmental models

are sensitive to government policies, people’s interactions,

medical resources, and so on. In this subsection, we show the

evolution of the parameters over time and the corresponding key

events during this period. All events and interventions are

available from official websites1 2 3. As shown in Figure 5, the

transmission rate β(t) can fit well with what would be expected

given such events. With the first confirmed cases of COVID-19

detected on March 15 2020, in Minnesota, β(t) increased sharply

to a peak on March 28. The authorities then ordered people

currently living within Minnesota to stay at home from March

28 to April 10. The value of transmission rate β(t) kept falling, but

started to rise rapidly again after April 10 since all restrictive

interventions were lifted. On April 30, the authorities of

Minnesota extended the stay-at-home order until May 17, and

urged people to wear masks in public. On May 13, Non-Critical

businesses could return to work, and retailers could open their

doors to fifty percent capacity. This order affected the average

number of contacts among people, with the transmission rate of

COVID-19 showing an upward trend after this. On May 18, the

new Stay safe Minnesota order that contained a series of

interventions for controlling the pandemic was issued. Night-

time Curfew was imposed in all public places within Saint Paul

between 10:00 p.m. and 4:00 a.m. on June 3. This new order,

along with the effect of masks and social distancing, caused β(t)

to remain reduced until June 12. However, Minnesota entered

reopening phase since June 10, restaurants, gyms, movie theatres,

et al. are permitted to reopen with restrictions. The effect of these

reopen orders were a surge in β(t) a few days later. On July 25,

new order required people to wear a mask in businesses open to

the public. It is evident that wearing a mask is effective in

preventing the transmission of COVID-19, and the

transmission rate β(t) has started to decrease. On August 10,

FIGURE 5
Effect of policy implementations and social interactions on β(t).

1 https://mn.gov/governor/covid-19/news/

2 https://www.stpaul.gov/departments/emergency-management/
coronavirus-covid-19

3 https://ballotpedia.org/Documenting_Minnesota%27s_path_to_
recovery_from_the_coronavirus_(COVID-19)_pandemic,_2020-
2021
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the Minnesota released guidance for reopening long-term care

facilities, causing a slight surge in transmission rate. In addition, a

motorcycle rally was held in western South Dakota during

August 7–16, many event-associated cases were identified

[45]. On August 22, a late-August wedding in southwestern

Minnesota caused the largest social spreader event to date. On

September 12, Minnesota extended the COVID-19 peacetime

emergency order, including allowing the reopen society

strategically. On October 10, the COVID-19 Peacetime

Emergency is extended continue. On October 20, surge in

cases expected from Labor Day weekend gatherings, sporting

events and college student meetups at the start of fall semester.

Minnesota announced new COVID-19 restrictions onNovember

11 to curb the spread of the virus, which apply to social

gatherings, celebrations, receptions, bars and restaurants from

November 13. The new COVID-19 restrictions in Minnesota

apply to social gatherings, celebrations and receptions, and bars

and restaurants from November 13. Since November 21, a new

restriction is a prohibition on all gathering places. However, the

impact of these interventions backfired shortly a few days before

Thanksgiving on November 26 due to gathering. On November

30, Saint Paul declared that a local emergency continues to exist.

The effect of the order of November 23 was a drop in β(t) after

Thanksgiving activities due to it is scheduled to last until

December 18.

Note that the events that have an impact on β(t) have to do

with people’s adaption to preventive interventions and the

interactions among individuals, whereas μ(t) relates to the

availability and effectiveness of healthcare, as well as on the

resource availability in hospitals. γ(t) is known to be disease-

specific parameter (inverse of the infectious period) but is also

affected by the capacity of the healthcare system to accommodate

hospitalization. As far as γ(t) and μ(t), when hospitals and

emergency rooms do not working at full capacity they can

better look after patients and provide better medical service.

This usually results in a decrease in the proportion of individuals

that died from the disease (decrease of μ(t)) and in a decrease in

the recovery time (increase of γ(t)). In the context of COVID-19,

the hospital’s ability to respond to the situation derived from the

pandemic had a considerable impact. Hospitals are at full

capacity in the first months of the outbreak, and as months

went by, healthcare professionals learned more about possible

treatments to treat the disease’s symptoms and effects. The

consequence as shown in Figure 6 and Figure 7, in qualitative

terms, was an increasing trend in γ(t) and a decreasing trend

in μ(t).

4.3 Forecasting

The compartmental model requires determined initial

conditions and model parameters to make predictions. As the

initial conditions can be obtained and the model parameters are

already calibrated, then predictions for the dynamics of COVID-

19 can be made. Modeling results can provide reliable feedback

information for the authorities to make future decisions.

Therefore, it is critical to identify the epidemic parameters of

infectious diseases timely at the beginning of an outbreak.

Additionally, to test the performance of the proposed Euler-

PINNs method on the small data set, we chose to predict the

early-stage dynamics of the COVID-19.

In the prediction part, the value of β(t), γ(t) and μ(t) are

assumed to be their final value of the training time window. Note

that the number of recovered and death state in SIRD model are

terminal states, which means that the changes in the number of

recovered and death people are always non-decreasing. In turn,

the infected people may see periods of increase and decrease due

to it is a state of transition. In addition, the number of susceptible

state is non-increasing, and therefore the change in this

compartment is always non-positive. Training data and 1-

week prediction results on the current infected cases,

cumulative recovery cases and cumulative death cases and are

corresponding ground truth displayed in Figures 8A–C displays

the 1-week prediction based on the reported data from March

25—23 April 2020, and Figures 8D–F displays the 1-week

prediction based on the reported data from March 25—8 May

2020. The interventions to control the COVID-19 keep adjusting,

which may result in uncertainty, simulations illustrate that the

proposed Euler-PINNs has the capability to capture the sudden

change and give reliable short-term predictions.

4.4 Evaluation metrics

By comparing forecasting results and observations, the

performance of the proposed Euler-PINNs can be evaluated. We

use four evaluation metrics to make fair and effective comparisons.

They are mean absolute error (MAE), average absolute percentage

error (MAPE), root mean square error (RMSE) and relative error

(REL). The calculation method is shown in Eqs 9–12.

MAE � 1
n
∑n
i�1

ŷi − yi

∣∣∣∣ ∣∣∣∣, (9)

MAPE � 1
n
∑n
i�1

ŷi − yi

yi
( )*100%, (10)

RMSE �
������������
1
n
∑n
i�1

ŷi − yi( )2√
, (11)

REL � ∑n
i�1

ŷi − yi( )2
ŷi

2 , (12)

To test the effect of the proposed Euler-PINNs method in the

prediction, we did 3-day, 5-day and 7-day experiments. The

experimental results as represented in Table 1 show the highly

accurate forecasting capability of the proposed Euler-PINNs

method.
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FIGURE 6
Effect of health system and hospitalization rates on γ(t).

FIGURE 7
Effect of health system and hospitalization rates on μ(t).
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FIGURE 8
Euler-PINNs prediction for the early stage of COVID-19 in Minnesota. The gray vertical line divides the fitting and prediction window. We have
included the new available data for the prediction period that were not used in the fitting to show that the predictions are correct. (A) and (D): Current
infections. (B) and (E): Cumulative recovery. (C) and (F): Cumulative deaths.

TABLE 1 The prediction performance in 3-day, 5-day and 7-day.

Metrics After 23 April 2020 After 8 May 2020

3-day 5-day 7-day 3-day 5-day 7-day

MAE of I 251.73 359.52 383.61 200.24 300.78 419.99

MAE of R 25.42 75.01 163.23 80.89 110.86 227.0

MAE of D 3.17 7.56 6.88 6.05 20.0 37.33

MAPE% of I 0.0073 0.0104 0.0111 0.0058 0.0088 0.0122

MAPE% of R 0.0007 0.0022 0.0047 0.0024 0.0032 0.0066

MAPE% of D 0.0001 0.0002 0.0002 0.0002 0.0006 0.0011

RMSE of I 285.31 397.03 411.7 228.53 336.04 482.03

RMSE of R 30.31 101.62 225.51 97.05 131.10 298.83

RMSE of D 4.17 9.58 8.56 9.69 27.67 49.36

REL% of I 0.6377 0.9930 0.9159 0.1081 0.2299 0.4646

REL% of R 0.0454 0.4642 2.1383 0.0229 0.0361 0.1688

REL% of D 0.0293 0.1329 0.0958 0.0284 0.2163 0.6549
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5 Discussion and conclusion

In this paper, we proposed an Euler-PINNs method to estimate

the time-varying parameters of the compartmental model and

provide future forecasting based on calibrated parameters. We

discretize the time-continuous compartmental model using

forward Euler iteration, expressing each parameter in the

compartmental model as separate DNNs, and substituting the

predicted values of parameters into the equations. The loss

function of the proposed Euler-PINNs method is formulated

based on the error between prediction and observation, and the

Adam optimizer with a dynamic learning rate is applied to

minimize it.

Experiment results demonstrate that the time-varying

parameters of the SIRD model estimated by the proposed

Euler-PINNs method are consistent with previous published

works. The transmission rate β determines the dynamics of

COVID-19, and the time-varying β(t) estimated by proposed

Euler-PINNs method can accurately capture the changes in

government interventions and individual behaviors, such as

mask wearing and social distancing. The recovery rate γ and

the death rate μ are expected to increase and decrease,

respectively, thanks to the more effective treatments for the

disease. The estimated γ(t) and μ(t) by our proposed Euler-

PINNs method also fit well with the improved capacity of the

healthcare system to fight against COVID-19. The proposed

Euler-PINNs method shows that rather than using several

stage models with piece-wise constant parameters, it is

possible to design one model with time-varying parameters

that are capable of representing the overall evolution of the

infectious disease. More importantly, applying estimated

parameters to the compartmental model to depict the

dynamics of COVID-19, the perfect fitting between model

predictions and observed data also underscores that

parameters yield great fitness.

For different infectious diseases and different transmission

scenarios, different compartmental models are required to model

the dynamics of infectious diseases. The SIRD compartmental

model is not the most complex epidemic model available,

dividing more compartments such as breaking down infected

people into asymptomatic and symptomatic, adding the virus

mutations, or adding the vaccination campaign could be part of

a more complex model. In fact, it is impossible to build a state-of-

the-art epidemiology model that represents all the intricacies of the

current pandemic. Our paper aims to introduce a new intelligent

method for estimating time-varying parameters in epidemic models

and provide a reliable prediction. The proposed Euler-PINNs

method can be implemented easily without any background

knowledge about numerical analysis (for example, stability

conditions, and a priori distribution). Therefore, for applying the

Euler-PINNs method to various compartmental models, the

practitioner only needs to redefine the transformation matrix for

each compartment according to the equations and build DNNs for

the relevant parameters. Lastly, deep learning models do not replace

conventional computational simulations but could assist them in

mitigating some of their common bottlenecks, such as high

computational costs. In future work, we are planning to try to

test some fast PINN frameworks [46, 47] and to try to approximate

the parameters using extreme learning machines (ELM) [48]. More

importantly, we would do more validation experiments on various

extended compartment models and generalize the proposed

method to other infectious diseases.
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