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We present strategies to quantify theoretical uncertainties in modern ab initio
calculations of electromagnetic observables in light and medium-mass nuclei. We
discuss how uncertainties build up from various sources, such as the approximations
introduced by the few- ormany-body solver and the truncation of the chiral effective
field theory expansion. We review the recent progress encompassing a broad range
of electromagnetic observables in stable and unstable nuclei.
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1 Introduction

Uncertainty quantification is an emerging field in nuclear theory. It is nowadays
expected for any theoretical calculation of nuclear observables to have a corresponding
uncertainty bar, which is vital to make progress in our understanding of strongly
interacting systems through the comparison of theoretical modeling with experimental
data. While this is clearly the goal, the specific approach to uncertainty quantification and
its sophistication level strongly depends on the used theoretical method and on the
observables under investigation. In this review, we focus on electromagnetic reactions
and on how they can be calculated with corresponding uncertainty in the so-called ab initio
methods. It is fair to say that the sub-field of quantification of theoretical uncertainties is
just now developing, and while there is still much to be done there has been recent
significant progress. Here, we report on such progress, discuss its philosophy and identify
areas where improvements can be expected in the future.

In the ab initio approach to nuclear theory [1–3] the goal is to explain nuclear phenomena,
including electromagnetic processes, starting from protons and neutrons as degrees of freedom
and to solve the related quantum-mechanical problem in a numerical way, either exactly or
within controlled approximations. To achieve this, one typically solves the Schrödinger
equation for a given Hamiltonian H and then computes transition matrix elements of the
electromagnetic operator Jμ between the eigenstates ofH. Hence, before discussing the approach
devised to quantify uncertainties in electromagnetic observables, we define the dynamical
ingredients (Hamiltonian and currents), as well as the specific observables we want to
investigate.
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1.1 Hamiltonians and currents

The starting point of an ab initio computation of a nucleus
composed of A nucleons is the nuclear Hamiltonian,

H � TK +∑A
i<j

Vij + ∑A
i<j<k

Wijk, (1)

where TK is the intrinsic kinetic energy, Vij is the two-body
interaction and Wijk is the three-body interaction. As opposed to
a phenomenological derivation of nuclear forces, effective field
theories (EFT) offer a more systematic approach [4]. In this
paper, we will use effective Hamiltonians which are derived in
chiral effective field theory (χEFT) [5–7]. In this framework, the
Hamiltonian is expanded in powers of (Q/Λ), where Q is the
typical low–momentum characterizing nuclear physics and Λ is
the breakdown scale of the effective field theory. The various
components relevant for Vij and Wijk are presented in terms of
Feynman diagrams in Figure 1, where ]0 is the first power
entering in the counting. The unresolved short range physics
is encoded in the values of the low energy constants (LECs),
which are usually calibrated by fitting to experimental data.
Different optimization and fitting strategies have been used to
calibrate the LECs [8–11]. Here, we will use only a selected set of
different Hamiltonians obtained from χEFT. Furthermore,
interactions with explicit Δ degrees of freedom are becoming
available [12–17] and should be explored. In the present work we
will present results with both chiral Δ-full and Δ-less
interactions.

The nuclear response to external probes is described by the
interaction Hamiltonian, which depends on nuclear dynamics
through the nuclear current operator. The χEFT expansion exists
also for the electromagnetic four-vector current Jμ = (ρ, J), where
the time-like component is the charge operator and the space-like
component is the three-vector current operator. The first
diagrams entering the χEFT expansion for (ρ, J) are shown in
Figure 1, where we omit the diagrams that contribute to the elastic
form factors. The reader can find more details on our
implementation of the currents in Ref. [18]. While different

authors adopt different power counting schemes for the
currents [19–22], we follow the conventions of Ref. [22].

1.2 Electromagnetic observables

Electromagnetic probes are key tools to study nuclear structure
because measured cross sections are easily related to the few-/many-
body matrix elements of electromagnetic operators via perturbation
theory. Here, we focus on electromagnetic observables that can be
explained to high precision in first order perturbation theory,
i.e., processes where one single photon is exchanged between the
probe and the nucleus. This is the case for the photoabsorption process
and the electron scattering process, see Figure 2. The exchanged
photon can in general transfer energy ω and momentum q. In the
photonuclear process, a real photon with ω = |q| = q is absorbed by the
nucleus, while in electron scattering a virtual photon is exchanged,
where one can vary ω and q independently.

In the cases of the photoabsorption and the electron-scattering
process (see also Sections 3, 5), the cross section can be written in
terms of a so-called response function, which, in the inclusive
unpolarized case, is defined as

R ω, q( ) � ∫∑
0f

〈Ψf|Θ q( )|Ψ0〉
∣∣∣∣ ∣∣∣∣2δ Ef − E0 − ω( ). (2)

Here, Θ(q) is the electromagnetic operator, which can be directly one
of the operators (ρ, J) or can be just a multipole of them. |Ψ0/f〉 are the
ground state and the excited states of the Hamiltonian H, respectively.
The symbol ∑0 indicates an average on the initial angular momentum
projection, while the symbol ∫∑f corresponds to both a sum over
discrete excited states and an integral over continuum eigenstates
of the Hamiltonian. Indeed, |Ψf〉 may include not only bound excited
states, but also states in the continuum where the nucleus is broken up
into fragments.

The calculation of continuum wave functions represents a
challenging task especially in an inclusive process, where one needs
information on all possible fragmentation channels of the nucleus at a
given energy. To avoid the issue, one can use integral transforms, such

FIGURE 1
The χEFT expansion of the nuclear Hamiltonian and
electromagnetic currents. The filled circles, squares and diamond
denote strong-interaction vertices with chiral dimension 0,1 and 2,
respectively. The ⊗ symbols denote the electromagnetic vertices. In
the literature, ]0 is usually taken as 0 for the potential and −3 for the
currents.

FIGURE 2
Feynman diagrams for the photoabsorption process (left), where a
real photon γ is exchanged, and the electron scattering process, where a
virtual photon γ* is exchanged between the probe and the nucleus (cyan
blob).
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as the Lorentz integral transform (LIT) technique [23, 24]. Originally
used in few-body calculations, the LIT technique is based on the
calculation of the following integral of the response function R (ω, q),

L σ, Γ, q( ) � Γ
π
∫dω R ω, q( )

ω − σ( )2 + Γ2, (3)

which can be shown to be the squared norm of the solution of a
Schrödinger-like equation calculated using bound-state techniques.
Once L (σ, Γ, q) is calculated, a numerical inversion procedure allows
one to recover R (ω, q), see Ref. [24] for details.

1.3 Numerical solvers

In order to calculate electromagnetic observables, we first need a
numerical solution of the Schrödinger equation. In the applications
discussed in Sections 3, 4 and 5, we will use either few-body or many-
body solvers depending on the mass range A of the addressed nuclei.

We obtain the bound-state and scattering-state wave functions for
the A = 2 problem by solving the partial-wave Lippmann-Schwinger
equations for the Hamiltonian. The response functions are then
calculated by directly evaluating the matrix elements of the
electromagnetic operator in coordinate space.

To calculate few-body problems with 2 < A < 8 we use
hyperspherical harmonics expansions. In this framework, one
expands the A-body intrinsic wave function in terms of
hyperspherical harmonics HK and hyperradial functions Rn as

Ψ � ∑Kmax

K

∑nmax

n

αnKRn ρr( )HK Ω( ), (4)

where αnK are the coefficients of the expansion and where for the sake
of simplicity we omit spin and isospin degrees of freedom. Here, ρr is
the hyperradius while Ω is a set of hyperangles, on which the
hyperspherical harmonics HK with grandangular momentum K
depend. The expansion is performed up to a maximal value of
hyperradial functions nmax and a maximal value of grandangular
momentum Kmax. Reaching convergence in nmax is typically not
difficult. The expansion in hyperspherical harmonics is instead
more delicate and one needs to ensure that the dependence of the
calculated observables on this truncation is under control. To
accelerate convergence, an effective interaction a la Lee-Suzuki can
be introduced [25], obtaining the so-called effective interaction
hyperspherical harmonics (EIHH) method, which allows to
eventually achieve sub-percentage accuracy in the 4He calculations
of binding energies and electromagentic observables [26].
Hyperspherical harmonics expansions can be conveniently used
also to solve the Schrödinger-like equation obtained when applying
the LIT method described above. The interested reader can consult,
e.g., Refs. [2, 24–28] for more details.

For nuclei with A ≥ 8 we use coupled-cluster theory. In this
framework, for a given Hamiltonian H one starts from a Slater
determinant |Φ0〉 of single particle states and assumes an
exponential ansatz to construct the correlated many-body wave
function as

|Ψ0〉 � exp T( )|Φ0〉. (5)
The operator T is typically expanded in n-particle-n-hole excitations
(or clusters) as T = T1+T2+/ + TA. Coupled-cluster theory is exact

when the expansion of the T operator is considered up to A
particle—A hole excitations (Ap–Ah) within a model space
determined by the number Nmax of oscillator shells considered
[29]. Even though truncations are typically introduced, they can
lead to a result very close to the exact one due to the exponential
ansatz Eq. 5). Because the computational cost of this method scales
polynomially with increasing mass number A, it is a very convenient
solver for medium mass and even heavy nuclei [30].

For closed (sub-) shell nuclei, coupled-cluster theory truncated at
the 2p–2h level, in the so called coupled-cluster singles and doubles
(CCSD) scheme, captures about 90% of the full correlation energy.
When including triples excitation, even at the leading order in the so-
called CCSDT-1 scheme [31], one can obtain almost 97% of the
correlation energy [29, 32]. It has been shown that coupled-cluster
theory can be also used in conjunction with the LIT method, where
one can reduce the problem to the solution of a bound-state like
equation of motion [33].

2 Uncertainty quantification

In each of our computations of electromagnetic observables, the
final accuracy will be controlled on the one hand by the employed
χEFT (determined by Hamiltonian and currents) and on the other
hand by the accuracy to which one can solve the few–body or
many–body problem for a given Hamiltonian and current operator.
Hence, in the following we will divide the sources of uncertainties in
two broad categories:

1) χEFT uncertainties;
2) Numerical uncertainties.

Among the uncertainties in 1), there are possible dependencies on
the employed interaction or current model (including cutoff
dependencies), as well as uncertainties introduced by the truncation
to a given order ] of the employed χEFT, and uncertainties due to
extracting the LECs from experimental data or from lattice calculations.
If the LECs are well constrained by experimental data, the χEFT
uncertainty is typically dominated by the truncation error of the
χEFT expansion. Regarding the latter, if the leading non-vanishing
contribution to a calculated observable O enters at order ]0 and one is
able to perform calculations that include all effects up to order ]0+k, one
can naively expect to incur a relative error of δχEFTO /O ≈ (Q/Λ)k+1 from
the neglected higher-order terms. A more rigorous estimate can be
obtained by using the calculated order-by-order results O] as “data” to
inform the uncertainty analysis. For example, using the simple
algorithm proposed by Ref. [34], the absolute truncation error can
be estimated as

δχEFTO � max
Q

Λ( )k+1
O]0

∣∣∣∣ ∣∣∣∣, Q

Λ( )k

O]0+1 −O]0

∣∣∣∣ ∣∣∣∣, . . . , Q

Λ( ) O]0+k −O]0+k−1
∣∣∣∣ ∣∣∣∣{ }. (6)

More recently, Bayesian methods have been adopted for
quantification of the χEFT truncation error [35–38]. These
methods start from Bayesian priors that encode naturalness of the
coefficients {c]} defined, using a suitable reference Oref , by

O]0+k � Oref ∑k
]�0

c]
Q

Λ( )]

. (7)
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The priors are then updated using the calculated data to arrive at a
Bayesian posterior for the truncation error δχEFTO . A key advantage of
this approach is that the estimates have a statistical interpretation,
which allows us to validate the assumptions made and to easily
combine truncation errors with other sources of uncertainties such
as fitting or random sampling of parameters. This opens a possible
path for a complete and consistent accounting of theory uncertainty
from all dynamical ingredients in the future.

Regarding the uncertainties in 2), the protocol to evaluate them will
depend on the implemented numerical solver. On the one hand, when
performing a few-body calculations with hyperspherical harmonics, one
needs to carefully take the convergence inKmax into account. When using
the LIT method, one also needs to consider the uncertainty of the
inversion procedure. On the other hand, when using coupled-cluster
theory, one needs to account for at least two different patterns of
convergence. First, there is always a truncation on the model space
controlled by the maximum number of harmonic oscillator (HO)
shells Nmax, which, in a sense, is analogous to the Kmax in
hyperspherical harmonics. If convergence in Nmax is reached, the
results should in principle be independent of the underlying HO
frequency ZΩ used for single particle states. However, in practice, one
is always left with some residual ZΩ dependence which should be
explored. Second, in coupled-cluster theory one has a cluster
expansion of the operator T. Here, the most frequently adopted
approximation is CCSD. When possible, one should include higher
order excitations, such as leading order triples corrections with
CCSDT-1. Finally, when using the LIT method, one incurs the extra
numerical uncertainty coming from the inversion procedure.

In general, we expect uncertainties of 2) to be sub–percentage or at
most one percent in light nuclei up to mass number 4, while for
medium–mass nuclei they may increase up to a few percent,
depending on the specific observable. In particular, it is to note
that binding energies, because of their eigenvalue nature, can
usually be obtained with higher precision, while for example
quadrupole transitions are notoriously difficult in methods such as
coupled-cluster theory or in-medium similarity renormalization
group [39]. Beyond the lightest nuclei, whether the uncertainties of
1) dominate over those of 2) may, in principle, depend on the specific
system/observable considered. Experience has shown so far that
uncertainties related to the χEFT 1) are typically the largest. We
will compare the specific contributions in each example below.

3 Photoabsorption cross section

Photoabsorption cross sections have been extensively studied
using ab initio techniques, especially in the sector of light nuclei,
see Ref. [2] and references therein. The photoabsorption cross section
is related to the response function by

σγ ω( ) � 4π2

ω
αRT ω,ω( ), (8)

where RT (ω, ω) is the response function of Eq. 2 where theΘ operator
is the transverse (with respect to photon propagation) part of the
electromagnetic current operator J and where ω = q. In the unretarded
dipole approximation, the cross section can be obtained from

σγ ω( ) � 4π2αωRD ω( ), (9)

where RD(ω) is the response function of the electric dipole operator D
(acting only on the Z protons) in the long wavelength approximation,
defined as

D � ∑Z
i

zi − Zcm( ), (10)

where zi and Zcm are the z-components of the ith particle and center-
of-mass coordinates, respectively.

Below, we will discuss two examples. First, we will deal with the
radiative capture reaction np → γd reaction, which is important for
astrophysics and is related to the photoabsorption reaction γd→ np by
time-reversal. Next, we will discuss the inclusive photoabsorption of
4He, for which we will present new original results obtained with chiral
forces at four different orders, including an analysis of its
uncertainties.

3.1 The n p ↔ γd reaction

The primordial Deuterium abundance, which is very well
constrained by astronomical [44] and cosmological [45]
observations, can also be determined from nuclear physics by
measuring or calculating the rates of the Deuterium production
and burning reactions of the big-bang-nucleosynthesis network.
While there is a reasonable agreement between these at the
moment [46], a higher-precision comparison will search more
rigorously for potential conflict which will be indicative of
missing physics in one or the other and may even hint at new
physics beyond the Standard Model. This elevates the importance
of uncertainty quantification in the primordial Deuterium production
reaction, np → γd.

In the relevant energy regime, M1 and E1 transitions are both
important; we, therefore, evaluate the cross section using the full
response function RT (ω, ω) with the one- and two-body current
operators shown in Figure 1. The uncertainties associated with the
solution of the Schrödinger equation and other numerical
approximations are negligible for this system. We therefore focus
on χEFT uncertainties for this reaction. Working with fixed currents,
we used the semi-local momentum-space-regularized chiral
interactions of Ref. [47] to study the convergence properties of
the χEFT expansion of the nuclear potential in Ref. [48]. We
employed the Gaussian Process (GP) error model developed in
Ref. [49] to perform a Bayesian analysis of the χEFT convergence
for observables that have parametric dependence on a kinematic
variable, which in this case is the np relative momentum. We
performed detailed diagnostic checks to quantitatively assess the
adequacy of the GP model and found that it described the observed
convergence very well, which allowed us to extract reliable Bayesian
posteriors for δχEFTO at various orders.

In Figure 3, we show the 95% degree-of-belief bands for
calculations at next-to-leading order (NLO), next-to-next-to-
leading order (N2LO) and next-to-next-to-next-to-leading order
(N3LO) obtained by using the leading order (LO) result as the
reference Oref (see Eq. 7). We note that the theory uncertainty
from the truncation of χEFT at N2LO and N3LO are much smaller
than experimental errors at the energy range of astrophysical
relevance. The uncertainty from truncation of the current operator
is a subject of future study.

Frontiers in Physics frontiersin.org04

Acharya et al. 10.3389/fphy.2022.1066035

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1066035


3.2 The γ4He → X reaction

The photodisintegration cross section of 4He has been a focus of
several past studies [50–55]. In this work, we provide new original
results for this reaction obtained within the frameworks of χEFT using
the EIHH [25, 56, 57] as a solver. We start from Eq. 9 and keep the
dipole operator fixed, while changing the nuclear interaction in the
Hamiltonian implementing different orders in the chiral expansion.
We work up to N2LO with a maximally local version of the chiral
interaction developed for the first time in Refs. [58–60], which we
previously adapted to the EIHHmethod in Ref. [26]. In the same spirit
of our work in the n p↔ γd reaction, the uncertainty coming from the
numerical solution of the Schrödinger equation is neglected here, since
the EIHH method has been proven to be very precise for three- and

four-body systems, with uncertainties that usually are below the
percent level.

To bypass the explicit calculation of the continuum wave
functions, the electric dipole response RD(ω) of Eq. 9 is obtained
by first computing its LIT and then performing the inversion. This
introduces a numerical uncertainty of the order of 1%–2%, which can
be seen in Figure 4 (left panel), where we present the calculation of
σγ(ω) at LO, NLO, N2LO and N3LO in different colors. The width of
the band is the uncertainty introduced by the inversion.

To assess uncertainty coming from the truncation of the chiral
expansion, we start from the calculations of σγ(ω) at the various chiral
orders and implement the algorithm in Eq. 6, which requires a choice
for the expansion parameter Q/Λ. A reasonable choice for Q is
obtained by a smooth max-function (see Eq. 46 of Ref. [49]) of mπ

FIGURE 3
The product of p (n, γ)d cross section σnp and the neutron speed vn versus the neutron energy En (left panel); and the deuteron photodissociation cross
section σγd as a function of the photon energy ω in the rest frame of the deuteron (right panel). The bands indicate 95% Bayesian degree-of-belief intervals at
the various orders. Experimental data are from Ref. [40] (triangles) [41] (circle) [42] (crosses) and [43] (square). Experimental errors in beam-energy resolution
are not shown.

FIGURE 4
Inclusive 4He photoabsorption cross section calculated at different order in the chiral interaction. Left panel: bands display the numerical uncertainty in
the inversion of the LIT. Right panel: bands display the χEFT truncation uncertainty, estimated using Eq. 6. The experimental data are taken from Ref. [61].
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and prel � ����
2μω

√
, wheremπ is the pion-mass and μ is the reduced mass

of the main photodisintegration channel, for which we take p−3H. For
the breakdown scale Λ we conservatively take 500 MeV, which yields
an expansion parameter for the χEFT consistent with Ref. [62]. When
implementing Eq. 6, we go beyond our calculations with local chiral
interactions which go all the way up to N2LO, and also consider the
partial N3LO calculation from Ref. [54] and use it to estimate the
uncertainty also at this order.

In Figure 4 (right panel), we show the cross section with
corresponding χEFT uncertainty at the NLO, N2LO and N3LO
orders. For every order the threshold energies are shifted to the
experimental value. Clearly, the χEFT errors account for the largest
portion of the overall uncertainty budget with respect to the numerical
inversion uncertainty, which are therefore not even included in the
right panel of Figure 4. The χEFT truncation errors are such that the
calculated photoabsorption cross section at each order is consistent
with the previous order within its uncertainties, as well as with the
experimental data from Ref. [61]. At NLO we get an uncertainty at the
cross section maximum of roughly 30% (half width), while at N2LO it
is 15% (half width). Finally, the N3LO band, which is roughly 5% (half
width), is located slightly below the shown experimental data. To
facilitate comparison of theory with experiment, we have chosen to
show only one representative set of data [61], which covers a wide
range in energy. More data exist than are shown here, see, e.g., Ref. [2]
and references therein.

4 Electromagnetic sum rules

Starting from the nuclear response function, one can compute
electromagnetic sum rules, i.e., the moments of the response function
of Eq. 2 interpreted as a distribution function. These quantities are
defined as

mn q( ) � ∫dω ωnR ω, q( ), (11)

where n is an integer. Sum rules can be calculated directly from the
LIT. Since for Γ → 0, the limit of a Lorentzian corresponds to a delta
function, we get

L σ, Γ → 0, q( ) � ∫dω R ω, q( )δ ω − σ( ) � R q, σ( ). (12)

This means that the moments of R(ω, q) can be obtained from the
following expression

mn q( ) � ∫dσ σnL σ, Γ → 0, q( ). (13)

As illustrated in Ref. [63], this procedure is equivalent to the
computation and subsequent integration of the response. Moreover,
this strategy does not require an inversion, which represents an
additional source of uncertainty.

Among the sum rules, the electric dipole polarizability αD is an
interesting one, as it is correlated to parameters in the neutron-
matter equation of state [64]. The electric dipole polarizability
can be obtained starting from the inverse-energy weighted
sum rule

αD � 2α∫dω RD ω( )
ω

� 2αm−1, (14)

where m−1 is calculated using Eq. 11 and RD(ω) is the response
function of the dipole operator in the long wavelength
approximation. From Eq. 14, it is clear that the polarizability is
dominated by the low-energy part of the response function.

In a recent work [65], we performed coupled-cluster
computations of dipole-excited state properties of the halo
nucleus 8He, focusing on αD and the energy-weighted sum rule
m1 using χEFT potentials derived at N2LO. Our calculations

FIGURE 5
The ZΩ-convergence pattern of αD and m1 for

8He calculated with ΔNLOGO (450) and ΔN2LOGO (450) at fixed Nmax =14. The green and blue bands
indicate the CC truncation uncertainty. The black points are the results obtained including 3p-3h excitations in both the ground- and excited-state
computations.
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included an estimate of the theoretical uncertainty related to the
model space convergence in Nmax and to the truncation of the
coupled-cluster expansion, according to the strategy illustrated in
Ref. [66]. Regarding the first source of uncertainty, the maximum
available model space is Nmax = 14, so we consider the residual ZΩ-
dependence at this Nmax as the uncertainty in the model space
expansion. To assess the uncertainty in the coupled-cluster
expansion, we take two different approximation schemes, the
CCSD and the CCSDT-1, since we have no higher order
coupled-cluster approximations available. The truncation
uncertainty is then estimated taking half of the difference
between the CCSD and CCSDT-1 results. The two
contributions are then summed in quadrature.

To complement our previous analysis, we consider in this work
the dependence on the order of the χEFT expansion in the case of
the Δ-full interaction model, by providing a new calculation at a
lower order (NLO). In Figure 5, we show the ZΩ convergence
pattern of αD and m1 for the ΔNLOGO (450) and ΔN2LOGO (450)
potentials [17], indicating with bands the contribution of the
coupled-cluster truncation uncertainty. In the case of the dipole
polarizability, the theoretical error receives substantial contributions
from both the many-body method and the residual dependence on the
coupled-cluster convergence parameters. The polarizability is sensitive
to the outer part of the nuclear wave function, and this makes the
convergence slower for a loosely-bound system like 8He.ΔNLOGO (450)
predicts a slightly larger polarizability with respect to ΔN2LOGO (450).
Taking into account the uncertainty budget coming from the many-
body solver (around 7%of the central value), the two results come out to
agree within errobars.

The situation changes when turning to the energy-weighted sum
rule. Here the overall uncertainty is dominated by the coupled-cluster
truncation and it is estimated to be below 2%. Also in this case
ΔNLOGO (450) leads to a larger value for m1. However, due to the
smooth convergence of this observable, the difference between the two
chiral orders, amounting to 3%, can be better appreciated than in the
case of the polarizability. At the moment it is possible only to compute
two orders in the χEFT expansion, namely the NLO and N2LO,
therefore we refrain from using the algorithm of Eq. 6 in this case.
Clearly, the uncertainty analysis is then less sophisticated than for the

A = 2, 4 nuclei, but it is reassuring to see that the NLO and N2LO error
bands overlap.

5 Electron scattering cross section

Electron scattering has proven to be a powerful tool to investigate
the nuclear structure and dynamics at various energy scales and for
different systems. Very recently we started investigating the region of
the quasielastic peak which becomes a dominating mechanism for the
momentum transfer of the order of hundreds of MeV, below the pion
production threshold. The inclusive electron-nucleus cross section can
be expressed as

d2σ

dΩdω
� σMott

q2 − ω2

q2
RL ω, q( ) + q2 − ω2

2q2
+ tan2θ

2
( )RT ω, q( )( )

(15)
with the longitudinal and transverse response functions RL/T and the
scattering angle θ. The response functions can be disentangled
experimentally via the Rosenbluth separation technique. From the
theoretical point of view, it is convenient to investigate first the
longitudinal component, which is the response function of Eq. 2
where the operator Θ(q) is the charge operator

ρ q( ) � ∑Z
i�1

eiq zi−Zcm( ). (16)

Typically, then nucleon form factors are folded in (see e.g. Ref. [68]).
The operator structure of ρ is simpler than that of the electromagnetic
current J and two-body contributions appear at a high order in the
chiral expansion (see Figure 1), so that it can be neglected if
performing studies up to N2LO. While the ab initio calculations of
RL in light systems were performed in several theoretical frameworks,
we recently extended these studies to the region of medium-mass
nuclei [69]. We focused on 40Ca, for which Rosenbluth separated
response functions are available, using two different N2LO potentials
[9, 17]. Here, we complement our uncertainty analysis by performing a
new calculation with an NLO potential.

Similarly to the photoabsorption considered in Section 3.2, the
calculation of RL requires computing the LITs which afterwards

FIGURE 6
Longitudinal response functions of 40Ca for the momentum transfer q =300 MeV/c (left panel) and q =400 MeV/c (right panel). Two orders of the chiral
expansion of the nuclear Hamiltonian are shown. The uncertainty band originates from the inversion procedure of the LITs. The experimental data are taken
from Ref. [67].
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have to be inverted, introducing an additional source of uncertainty
with respect to the sum-rule calculation. We obtain the LITs using
coupled-cluster theory within the CCSD approximation. The role
played by 3p−3h excitations will be a topic of the future
investigation. We calculate RL using a single model space of
Nmax = 14 and harmonic oscillator frequency ZΩ = 16 MeV. In
our previous work [69] we varied the frequency of the underlying
harmonic oscillator basis and its size and we found that the LITs are
already well converged. In this situation, the numerical uncertainty
is driven by the inversion procedure which is represented by the
band shown in Figure 6.

To assess the uncertainty coming from the χEFT expansion we
look at the dependence on the order of expansion of the Δ-full
potential [17] at NLO and N2LO. In Figure 6 we present RL for q =
300 MeV/c (left panel) and q = 400 MeV/c (right panel). At q = 300
MeV/c the predictions of ΔNLOGO (450) and ΔN2LOGO (450)
agree to great extent within the uncertainty bands and with the
data. In contrast, at q = 400 MeV, the uncertainty bands of
ΔNLOGO (450) and ΔN2LOGO (450) overlap less and the
agreement with data slightly deteriorates. When comparing the two
interactions, we see that the ΔN2LOGO (450) leads to a slightly higher
and narrower quasielastic peak with respect to the ΔNLOGO (450) (the
difference of around 8% in the peak for q = 400 MeV/c), bringing the
results closer to the data as the chiral order increases. Because a
quantitative analysis would require more than two orders of the
χEFT Hamiltonian, we refrain here from applying Eq. 6, which
would only contain one term.

At the qualitative level, we observe that the size of the uncertainties
of kind 1) and 2) are comparable, and those of kind 1) seem to depend
on the momentum transfer and grow at larger q value. This is, after all,
not surprising, because χEFT is expected to work better at low
momenta than at higher momenta.

6 Conclusion

In this paper, we review the recent progress made in uncertainty
quantification for ab initio calculations of electromagnetic observables
focusing on the one hand on our recent results and on the other hand
providing also new original results to complement the uncertainty
analysis. We show several examples where nuclei of different masses
are scrutinized.

We first showcase the recent computations of the n p ↔ γd
reaction, where an uncertainty analysis of the χEFT truncation with
Bayesian tools was implemented. Then, we show new results for the
photoabsoprtion cross section of 4He computed with χEFT
potentials at LO, NLO and N2LO. The uncertainty
quantification we present is based on the use of Eq. 6 and
pushed to N3LO using the results from Ref. [54]. For both these
examples in the sector of light nuclei, we find that numerical
uncertainties are negligible and the bulk of the error stems from
the truncation of the χEFT expansion. Next, we discuss sum rules in
the exotic 8He nucleus, where we confront the existing calculation
at N2LO with a new computation at NLO in the χEFT expansion
using Δ degrees of freedom. Here, we see that numerical
uncertainties and χEFT truncation errors are comparable in size.
Finally, we show results for the longitudinal response function of
40Ca using the same interactions we used for 8He. Also in this case,
the uncertainty stemming from the χEFT truncation seems

comparable to that coming from the numerical solver. It is
important to note here that we are not yet able to fully account
for the numerical uncertainties, because we have not yet included
3p–3h excitations. Furthermore, we only have two orders in the
χEFT so a quantitative uncertainty cannot yet be reliably estimated.
Interestingly, we qualitatively observe a momentum-transfer
dependence in the difference between the calculation at NLO
and N2LO, which is not unexpected given that χEFT is a low-
momentum expansion. A precise quantitative description of the
dependence of the χEFT expansion on the momentum transfer,
which is obscured by the fact that we use phenomenological form
factors to represent photon-nucleon vertices, is a subject of future
study.

Clearly, the level of sophistication of our uncertainty
quantification is higher for lighter nuclei and decreases as the
mass grows. The most rigorous analysis was performed for A = 2,
where we were able to express the truncation errors as Bayesian
degree-of-belief intervals. For the range of A ≃ 4 one can expect that
a Bayesian analysis will be implemented in the future. A
quantitative analysis of nuclei with A ≥ 8 will need more effort.
We expect LO calculations to be far from experimental data for
these nuclei, but if one wants to go beyond N2LO in the χEFT
expansion, one would need consistent potentials that are soft
enough for many-body calculations to converge. Moreover, to
fully assess uncertainties in electromagnetic observables, one
must also consider the χEFT expansion in the current and in
the interaction simultaneously. Examples of how one can vary
the χEFT expansion in the current operators can be found in the
literature for example in Refs. [2, 70] and reference therein.
Another consideration to take into account in a full uncertainty
quantification is the variation between different χEFTs,
i.e., different regularization schemes [38] or different degrees of
freedom [15]. Here, we have explored only a few options and
obviously more work in this direction needs to be done by the
whole community. Finally, in the future statistical approaches for
the variation of the LECs such as those shown in Ref. [30] should be
applied broadly to the study of electroweak dynamical observables,
such as response functions and cross sections.
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