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We investigated 2 and 2.9 μmmid-infrared fiber lasers passively Q-switched by

MIL-68(Al) and MIL-68(Fe), which were fabricated via the hydrothermal

method. The modulation depth of MIL-68(Al) was found to be 9.12% at

1.99 μm. And the modulation depths of MIL-68(Fe) were found to be 18.89%

and 15.79% at 1.99 μm and 2.87 μm, respectively. We report Q-switching pulse

generation in both Tm3+-doped and Ho3+/Pr3+ co-doped fiber lasers by using

the as-prepared MIL-68 (M, M = Al3+, Fe3+) as SAs. The center wavelengths were

at 1.99 μm and 2.87 μm, respectively. These results indicate that MIL-68(M) has

wideband nonlinear optical properties and promising application prospects in

the field of optical modulators at 2- and 2.9-μm mid-infrared waveband. Work

clearly accessible to a broad readership.
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Introduction

Mid-infrared pulsed fiber laser sources operating in the 2 and 3 μm spectral

regions have remained a research hotspot attributed to their numerous applications

in remote sensing, spectroscopy, free-space communications, and laser surgery

[1–6]. Compared with actively modulated pulsed lasers, the passively modulated

ones with saturable absorbers, such as passively Q-switched and passively mode-

locked lasers, show the merits of low cost and simple structure without the

requirement of high-voltage and RF drivers. In recent years, a variety of

nanomaterials with unique electronic structures and significant nonlinear optical

properties have drawn great attention due to their wide application in areas such as

all-optical switches, photo-detectors, optical modulators and pulsed lasers [7–13].

Among them, two-dimensional (2D) nanomaterials, such as graphene, transition

metal dichalcogenides (TMDs), black phosphorus (BP), topological insulators (TIs),

bismuthene, MXene, and antimonene, with their 2D planar structure, ultrafast

carrier dynamics and broadband absorption, have been widely investigated for
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their excellent optical and optoelectronic properties [14, 15].

Especially in the field of pulsed fiber lasers, they have been

successfully used as saturable absorbers for short pulse

generation at various wavebands, driving the development

of pulsed fiber lasers [16–32]. Some binary chalcogenides

(SnS, PbS, and In2S3) have also shown saturable absorption

properties [33–35]. However, they still have limitations. For

example, the weak absorption of graphene makes it difficult

to ensure a suitable modulation depth for pulse generation

[36]. TMDs is mainly used to implement pulsed fiber lasers in

the visible spectral range while the large direct band gap

limits their application in the mid-infrared region [20, 37].

Although BP is the most stable allotrope of the phosphorus, it

is prone to oxidation and reacts more strongly when it was

exposed to water, limiting its application due to the poor

stability [38]. In recent years, metal-organic frameworks

materials (MOFs), microcrystalline porous materials self-

assembled from metal ions or clusters and organic ligands,

have received increasing attention and research due to their

remarkable advantages including large surface area, ordered

reticular structure, excellent electrical conductivity, excellent

optical transparency [39]. MOFs have been extensively

applied in the fields of chemical sensing, catalytic, gas

storage, molecular magnets and nonlinear optical [40–44].

In recent years, the use of MOFs and their derived

nanomaterials as saturable absorbers in fiber laser pulse

generation is also being gradually investigated, such as

nickel-p-benzenedicarboxylic acid MOFs (Ni-MOFs) [45,

46], zeolitic imidazolate framework-8 (ZIF-8) [47], NiO-

MOF [48], rGO-Co3O4 [49].

As a typical kind of MOF, MIL-68(M) (M = Fe3+, Al3+, In3+

etc.) are built from the infinite chains of corner-sharing metal-

centered octahedral MO4(OH)2 linked through hydroxyl groups

and terephthalate ligands [50, 51]. The organic ligand

(terephthalate) and metal atoms of MIL-68(M) are orderly

assembled in a layer-by-layer manner, exhibiting 2D

crystalline structure. MIL-68(M) has both triangular and

hexagonal pores, demonstrating high chemical stability, high

surface area and sufficient thermal stability up to 500°C

[51–54]. The outstanding properties make them attractive.

Currently, it has been shown that MIL-68(Al) and MIL-68(Fe)

have good nonlinear optical properties at 2.8 μm [55]. However,

the investigation on the nonlinear properties in other wavelength

bands is still lacking.

Herein, MIL-68(Al) and MIL-68(Fe) were prepared by

hydrothermal method and we investigated their nonlinear

optical properties in 2 μm and 2.9 μm regions. Furthermore,

pulse generation was achieved in both Tm3+-doped and Ho3+/

Pr3+ co-doped fiber lasers by using MIL-68(Al) and MIL-

68(Fe) as SAs, operating at 2 μm and 2.9 μm, respectively.

These results indicate that MIL-68(Al) and MIL-68(Fe) can

be developed as promising broadband SAs for mid-infrared

pulses generation.

Preparation and characterization of MIL-
68(Al) and MIL-68(Fe)

The synthesis of MIL-68(Al) and MIL-68(Fe) is the same as

the literature [55]. The morphology of MIL-68(Al) crystals was

observed by transmission electron microscopy (TEM), as shown

in Figure 1A. According to the TEM image, the prepared MIL-

68(Al) are clusters of needlelike crystals with different lengths

[56]. Figure 1B shows the XRD pattern of MIL-68(Al) crystals.

All the characteristic peaks of theMIL-68(Al) material are similar

to those previous literatures [57, 58].

Similarly, the as-prepared MIL-68 (Fe) sample was also

characterized. Figure 2A shows the TEM image and the size

of the as-synthesized MIL-68(Fe) is about 1–3 μm. As shown in

Figure 2B, the positions of the typical peaks of the XRD pattern

matched well with the previous work, indicating that the crystal

lattice parameters (cell length and angle) are the same but differ

in relative intensity. However, the relative intensities are different

influenced by the meritocratic orientation [59].

Figure 3 shows the measurement setup of the nonlinear

absorptions. A self-made laser which generates pulse duration

of 1.42 ps at 1.99 μm was used as one of the laser sources, as

shown in Figure 3A. An optical output coupler with 50:50 fiber-

pigtailed was used to simultaneously detect the reference signal

and absorption. MIL-68(Al) or MIL-68(Fe) were coated on a

CaF2 window plate (F1) and the F2 was an uncoated CaF2
window plate. Two detectors (D1 and D2) were used to

measure the average powers. In addition, we used a

homemade mode-locked fiber laser operating at 2.87 μm as

the other laser source. The repetition rate is 18.39 MHz and a

pulse duration is ~20 ps. The balanced twin detector system was

elaborated in Ref. [19], as shown in Figure 3B.

The parameters of the SAs were fitted with the following

formula: R(I) � 1 − ΔR · exp(− I
Isat
) − Rns, where R(I) indicates

the reflectivity, ΔR is the modulation depth, I is the incident peak
intensity, Isat is the saturation peak intensity and Rns represents

the non-saturable loss [19]. Figure 4A shows the experimental

results. The modulation depth, non-saturable loss, and saturation

peak intensity of MIL-68(Al) were fitted to be 9.12%, 41.47%, and

0.3468 GW/cm2. As shown in Figures 4B,C, the modulation

depth, non-saturable loss, and saturation peak intensity of

MIL-68(Fe) were fitted to be 18.89%/15.79%, 35.51%/52.47%,

and 0.2198 GW/cm2/0.0044 GW/cm2 under 1.99 μm and

2.87 μm laser irradiation, respectively.

Tm: Fiber Q-switched laser

Experiment setup

The experimental setup of the passively Q-switched Tm3+-

doped fiber laser is depicted in Figure 5. An all-fiber-integrated

ring cavity configuration was adopted. The pump source was a
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12 W commercial 793 nm diode laser (BWT). The gain fiber was

a 5.8 m double-clad Tm3+-doped fiber (Coractive, 4 dB/m

absorption at790 nm) which has a diameter of 128 μm and a

numerical aperture (NA) of 0.22. The gain fiber was pumped via

a (1 + 1) × 1 pump combiner. The fiber circulator guaranteed

the one-way light propagation in the ring cavity with definite

light propagation direction (1→2→3). In addition, the port-2

pigtail of the circulator was vertically cut to the fiber axis and

FIGURE 1
(A) TEM image of MIL-68(Al) with a 100 nm scale; (B) XRD pattern of as-synthesized MIL-68(Al).

FIGURE 2
(A) TEM image of MIL-68(Fe) with a 500 nm scale; (B) XRD pattern of as-synthesized MIL-68(Fe).

FIGURE 3
Nonlinear absorption experimental setup, (A) at 1.99 μm, (B) at 2.87 μm.
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positioned closely to the gold mirror coated with MOFs for

optical modulation and feedback. A 25% port of a 25/75 fiber

coupler was used to output the laser from the cavity. The average

output power was measured with a power meter (Laserpoint). A

350-MHz-bandwidth digital oscilloscope was used to record the

pulse trains and waveforms. The spectral profiles of output pulses

were monitored by an optical spectrum analyzer (Yokogawa

AQ6375, Japan).

Results and discussion

The MIL-68(Al)-based passively Q-switched operation self-

stared when the pump power was increased to 2.06 W, as shown

in Figure 6A. A repetition rate of 38.81 kHz and a pulse duration

of 5.73 μs were obtained. As the pump power gradually increased

to 2.57 W, the pulse sequence maintained a stable Q-switched

state with a repetition rate of 42.44 kHz and the minimum pulse

duration of 2.13 μs. Once the pump power exceeded 2.57 W, the

pulse trains started to grow erratic and then faded away.

Nevertheless, stable Q-switching operation could be

recaptured when the pump power was decreased,

demonstrating that the MIL-68(Al) was not damaged by the

photothermal effect [19, 32]. The high optical damage threshold

of MIL-68(Al) was also confirmed [55]. The Q-switched output

power increased from 1.37 mW to 3.08 mW and the maximum

pulse energy was 0.073 μJ, as displayed in Figure 6B. Accordingly,

the highest peak power was calculated to be 0.034 W. The inset

shows that the center wavelength of the pulsed laser is 1988.5 nm.

The repetition rate increased from 38.81 kHz to 42.44 kHz as the

pump power increased, as displayed in Figure 6C. Specifically, the

pulse duration decreased from 5.73 μs to 2.13 μs. As shown in the

inset, the signal-to-noise ratio (SNR) of 41.1 dB was measured at

the frequency of 42.44 kHz, indicating a stable Q-switched

operation.

WhenMIL-68(Al) was replaced withMIL-68(Fe) in the same

experimental setup, the MIL-68(Fe)-based passively Q-switched

operation self-started as the pump power raised to 1.59 W, as

FIGURE 4
Transmittance and reflectance of the samples as a function of pulse peak intensity. (A)MIL-68(Al) at 1.99 μm; (B)MIL-68(Fe) at 1.99 μm; (C)MIL-
68(Fe) at 2.87 μm.

FIGURE 5
Experimental setup of the passively Q-switched Tm3+-doped fiber laser based on the MOFs SA.
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shown in Figure 7A. The repetition rate was 18.89 kHz. Stable

Q-switching operation without any adjustment was sustained

until the launched pump power of 2.79 W. The repetition rate

and pulse duration were 50.32 kHz and 3.37 µs, respectively.

With further increasing the launched pump power, the

Q-switching began unstable and then disappeared. When we

reduced the pump power to less than 2.79 W again, stable

Q-switched operation could be observed again. As the

launched pump power rising from 1.59 W to 2.79 W, the

Q-switched output power and pulse energy both increased, as

shown in Figure 7B. The maximum output power of 13.3 mW

and the maximum pulse energy of 0.26 μJ were received.

Accordingly, the highest peak power of 0.078 W was obtained.

The center wavelength was 1973.3 nm, as shown in the inset.

Figure 7C shows the variation of Q-switched pulses over the same

pump range. The repetition rate raised from 18.89 kHz to

50.32 kHz while the pulse duration decreased from 5.72 μs to

3.37 μs. The measured signal-to-noise ratio (SNR) was 52.5 dB at

the frequency of 50.32 kHz, indicating a stable Q-switched

operation.

Mode-locked operation of the two fiber lasers were not

observed in our experiments. This may be related to the

parameters of SAs and/or the current laser resonator design.

By comparing selected all-fiber Q-switched lasers operating in

the 2 μm region in Table 1, the minimum pulse width of MIL-

68(Al) in this work is better and the maximum pulse energy of

MIL-68(Fe) measured in this system is higher than most of

materials reported previously [20–22, 30, 31]. Compared with

traditional SESAM, MOFs has the characteristics of simple

manufacturing process and compared with low-dimensional

materials like BP and TMDs, MOFs exhibits better

physiochemical stability with high laser damage threshold, as

well as the high temperature stability (~500°C). In addition, the

pulse width obtained by using MIL-68(Al) as SA is narrower and

FIGURE 6
(A)Q-switched pulse trains at the launched pump power of 2.06 W and 2.57 W; (B) Output power and single-pulse energy as functions of the
pump power, inset: optical spectra of the Q-switched pulses; (C) repetition rate and pulse width as functions of the pump power, inset: RF spectra of
the Q-switched pulses.

FIGURE 7
(A) Q-switched pulse trains at the launched pump power of 1.59 W and 2.79 W; (B) Output power and single-pulse energy as functions of the
pump power, inset: optical spectra of the Q-switched pulses; (C) repetition rate and pulse width as functions of the pump power, inset: RF spectra of
the Q-switched pulses.
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the pulse energy is higher compared to the one when using MIL-

68(Fe) as SA, while the average output power and peak power

obtained by using MIL-68(Fe) as SA are both higher compared to

the ones when using MIL-68(Al) as SA.

Ho3+/Pr3+: Fiber Q-switched laser

Experiment setup

We have also studied the optical performance in the 3-

μmwaveband of MIL-68(Fe). We established the MIL-68(Fe)

SAs enabled passively Q-switched mid-infrared fiber laser.

Figure 8 shows the experimental setup of the passively

Q-switched fiber laser based on MIL-68(Fe). The pump

light was a commercial laser diodes (LD) (Eagleyard

Photonics) operating at 1,150 nm. A 5.5 m long Ho3+/Pr3+

co-doped ZBLAN fiber (FiberLabs) was used as the gain

fiber. The core diameter is 10 µm and numerical aperture

(NA) is 0.2. The front end of fiber was vertically cut to the

fiber axis to provide a 4% feedback. A dichroic mirror (DM)

which has a high reflectivity at 2.8 μm and high transparency

at 1,150 nm was 45°placed to be used as the output coupler.

An anti-reflection CaF2 plano-convex lens (L1: f � 20 mm)

was employed to collimate the laser beam. The coupling

efficiency was estimated to be 82% [30]. The output light

beam from the angle-cleaved fiber end was collimated and

focused onto the gold mirror coated through MIL-68(Fe)

with a pair of ZnSe objective lens (L2: f � 12 mm,

L3: f � 6 mm).

Results and discussion

The fiber laser started Q-switching operation when the

incident pump power was increased to 0.46 W, as shown in

TABLE 1 Comparison of this work with other selected 2D-materials for the two-micron region.

Gain
medium

SA Wavelength
(nm)

Output
power (mW)

Pulse
duration (µs)

Repetition
rate (kHz)

Pulse
energy (nJ)

Peak
power (mW)

References

Tm3+ MoSe2 1924 ~0.9 5.5 21.8 42 — [20]

Tm3+ MoWSe2 1964 240 2.4 61.5 85 — [21]

Tm3+ Ho3+ MoWS2 1983 — 2.78 36.3 86.4 31.1 [22]

Tm3+ Ti3AlC2 1980.79 1.43 2.72 32.57 45.23 15.49 [30]

Ho3+ Nb2C-PVA 2079.5 1.2 4.4 20.5 56.6 — [31]

Tm3+ MoS2 2032 47.3 1.76 48.1 ~100 — [37]

Tm3+ MIL-
68(Al)

1988.5 3.08 2.13 42.44 73 34 This work

Tm3+ MIL-
68(Fe)

1973.3 13.3 3.37 50.32 26 78 This work

FIGURE 8
Experimental setup of the passively Q-switched Ho3+/Pr3+-doped ZBLAN fiber laser based on the MOFs SA.
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Figure 9A. The repetition rate and pulse duration were 182.0 kHz

and 1.26 μs. The Q-switching operation can be maintained until

the pump power of 1.26 W. The shortest pulse width of 497 ns

was obtained with a repetition rate of 189.9 kHz. Figure 9B shows

the Q-switched average output power and pulse energy over the

same incident pump power. The output power increased linearly

with the pump power and the maximum output power was

107.2 mW. The maximum pulse energy of 0.56 μJ and peak

power of 1.14 W were obtained. The inset shows the

Q-switched pulse spectrum and the center wavelength locates

at 2,864.3 nm. The full width at half maxima (FWHM) was

1.6 nm. The repetition rate raised from 182.0 kHz to 189.9 kHz

while the pulse width decreased from 1.26 μs to 497 ns, as

displayed in Figure 9C. The radio-frequency (RF) spectrum

with a signal-to-noise ratio (SNR) of 33.1 dB was measured at

the repetition rate of 189.9 kHz, as shown in the inset of

Figure 9C.

In contrast to the output characteristics of 2.9 µm

Q-switched Ho3+ and Ho3+/Po3+ co-doped fiber lasers

modulated by the typical 2D materials, a stable passive

Q-switched laser with a short pulse width of 497 ns, which

is the shortest one, as far as we know, was investigated based

on a novel MIL-68(Fe)-SA. As can be seen in Table 2, The

generated pulse peak power manifested the advantages

compared with materials like graphene [17], PtSe2 [19],

WS2 [23], antimonene [32] etc. In addition, the MIL-

68(Al) and MIL-68(Fe) SAs used in our experiments were

stored in the thermostat for two to 3 months and then the

Q-switched laser experiments were repeated. Stable

Q-switching pulses can still be achieved, although the

pulse performances are slightly different at a given pump

power. The results show that MIL-68(Al) and MIL-68(Fe) are

SA materials with long-term stability in the mid-infrared

spectral range.

Conclusion

In summary, MIL-68(Al) and MIL-68(Fe) were fabricated

by hydrothermal method and the saturable absorption

FIGURE 9
(A)Q-switched pulse trains at the launched pump power of 0.46 W and 1.26 W; (B)Output power and single-pulse energy as functions of the
pump power, inset: optical spectra of the Q-switched pulses; (C) repetition rate and pulse width as functions of the pump power, inset: RF spectra of
the Q-switched pulses.

TABLE 2 Comparison of this work with other selected 2D-materials for the three-micron region.

Gain
medium

SA Wavelength
(nm)

Output
power
(mW)

Pulse
duration
(µs)

Repetition
rate
(kHz)

Pulse
energy
(nJ)

Peak
power
(W)

References

Er3+ graphene 2780.0 62.0 2.90 37 1,670 0.58 [17]

Er3+ BP 2771.5 18.4 3.32 22.2 820 — [25]

Er3+ MXene-
Ti3C2Tx

2786.2 1,090 1,040 78.12 13,930 19,130 [29]

Ho3+/Pr3+ PtSe2 2865.0 93.0 0.62 238.1 389 0.63 [19]

Ho3+/Pr3+ WS2 2865.7 48.4 1.63 131.6 420 0.21 [23]

Ho3+/Pr3+ antimonene 2868.0 112.3 1.74 156.2 720 0.41 [32]

Ho3+/Pr3+ MIL-68(Fe) 2864.3 107.2 0.497 189.9 560 1.14 This work
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properties were characterized under 1.99 µm and 2.87 µm

laser irradiation, respectively. We developed Tm3+-doped

fiber laser operating at 1988.5 nm using MIL-68(Al) as SA.

In addition, we developed MIL-68(Fe) Q-switched Tm3+-

doped and Ho3+/Pr3+ co-doped fiber lasers, operating at

1.98 µm and 2,864.3 nm, with pulse durations of 3.37 µs

and 467 ns, respectively. Our results show the potential of

MIL-68 (M, M = Al3+, Fe3+) with excellent optical properties

and extraordinary opportunities for application in mid-

infrared spectral region.
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