
Research progress and
development trend of smart
metamaterials

Yongju Zheng1,2, Huajie Dai1*, Junyi Wu3, Chuanping Zhou1*,
Zhiwen Wang1*, Rougang Zhou1,4* and Wenxin Li1

1School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, China, 2College of
Environmental Science and Engineering, Tongji University, Shanghai, China, 3Sanmen Sanyou
Technology Co., Ltd., Taizhou, China, 4Wenzhou Institute of Hangzhou Dianzi University, Wenzhou,
China

The development of smart metamaterials has brought changes to human

society, and various new products based on smart metamaterials are

emerging endlessly. In recent years, smart electromagnetic metamaterials,

smart acoustic metamaterials, smart mechanical metamaterials, smart

thermal metamaterials and machine learning have attracted much attention

in metamaterials. These fields share similar theories, such as multiphysics

coupling fields, novel artificial cells and programmability. Through theoretical

and technical research, smart metamaterials will show exquisite applications in

many fields, such as antenna and optical communication systems, microwave

imaging, acoustic stealth, thermal camouflage, etc. In particular, the

characteristics of the personalized microstructure design of smart

metamaterials perfectly match the characteristics of 3D printing. The

combination of them leads the development of metamaterials, which are

undoubtedly of great value. In this paper, focusing on the representative key

technologies, we review the development history, main research directions and

latest applications of smart metamaterials. Finally, the possible development

direction of metamaterials is predicted.
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Introduction

Changing the properties of materials by changing their composition is the way in

which materials science has been developed in the past. The physical properties of natural

materials depend on the basic units and structures which make them up, such as atoms,

molecules, lattices, etc. These basic units and structures are interrelated, and many

complex factors need to be considered when designing materials. Unfortunately, these

factors influence and restrict each other, and limit the upper limit of material properties.

In 1968, Veselago first proposed the concept of “medium with negative refractive index”

[1], which refers to the medium with negative permittivity and permeability. He also

theoretically proved some physical phenomena that contradict common sense, such as the
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inverse propagation of electromagnetic waves, inverse Doppler

effect and inverse Cherenkov radiation in negative refractive

index media. However, as there is no medium with negative

permittivity and permeability in nature, Veselago’s theory cannot

be verified experimentally, so people do not pay enough attention

to his discovery. It was not until 2001 that Smith et al. [2] from

the University of California, San Diego, made media with

negative permittivity and permeability in the microwave band

with copper composite materials. They used the brilliant design

method which id proposed by Professor John Pendry [3–5] from

Imperial College London, United Kingdom. Thus, the

phenomenon of negative refraction was experimentally

confirmed for the first time. The result of this research has

stimulated the research enthusiasm for metamaterials.

Smart materials are materials that respond to stimuli in

the environment. Differing from traditional functional

materials, smart metamaterials can not only possess the

above characteristics but also control electromagnetic and

elastic waves through special microstructure design, which

enables the materials to display novel force, thermal, acoustic

and optical properties. In the early days, the design of

metamaterials was mainly based on the equivalent medium

theory. The core idea is to break through the limitations of

natural laws through the well-designed microstructures, so as

to obtain extraordinary physical properties that natural

materials do not have [6], such as negative refractive index,

negative mass density, negative Poisson ratio, negative

dielectric constant, negative permeability, negative bulk

modulus, anti-sign thermal expansion coefficient, etc. [7,

8]. Compared with the physical properties of the

constituent materials, these features are mainly determined

by the topology and deformation of the artificial

microstructures [9–11]. Although this concept has appeared

in the electromagnetic field as early as the last century, it is

only in the last decade that the research and development of

electromagnetic wave control has been started to achieve

novel functions. A Fiber-Metamaterials solution addresses

the light in- and out-coupling issues and can provide

fundamentally new solutions for photonic-on-a-chip

systems for sensing, subwavelength imaging, image

processing, and biomedical applications (Figure 1A). As

shown in Figure 1B, the structure of a fishnet metamaterial

is demonstrated. To be able to precise its effective parameters,

an alternative optical vortex based interferometric approach

for the characterization of the effective parameters of optical

metamaterials (OMMs) is reported by directly measuring the

transmission and reflection phase shifts from metamaterials

according to the rotation of vortex spiral interference pattern.

The results will pave the way for the advancement of new

spectroscopic and interferometric techniques to characterize

OMMs, metasurfaces, and nanostructured thin films in

general. Electromagnetic stealth is also one of the hot

research directions in recent years. By adjusting the

physical parameters of the stealth material or changing the

FIGURE 1
(A) A fiber-coupled magnetic metamaterial structure schematically [12]. (B) Schematic diagram of a fishnet metamaterial made of metal-
dielectric multilayer stack and top scanning electron microscope image of its structure. The scale bars are 1 µm and 500 nm, respectively [13]. (C)
Schematic diagram and surface plasmon polariton excitation of the dual-band perfect absorber. The Metal–insulator–metal structure is composed
of Ag and polyimide (PI) layers having thicknesses of t1, t2, and d, and a unit cell period of a0. Unit cell of the circular ring-disk structure, where the
disk radius is r1 and the inner and outer radii of the ring are r2 and r3, respectively. Incident light (red line) with polar angle θ encounters a 2D array
consisting of circularmetal disks and rings. The first Brillouin zone is defined by connecting the perpendicular bisectors of the reciprocal lattice, and a
portion of the incident light propagates in the plane containing the periodic pattern with azimuthal angle φ [14].
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structure, the resonance can be achieved and the frequency of

the signal response can be changed, so as to reduce the signal

detection and achieve low observability (Figure 1C).

With the advancement of advanced manufacturing

technology, Metamaterials have also been extended to other

control fields. Acoustic metamaterials have the ability to

control the acoustic energy flow. With this unique ability,

acoustic metamaterials have been used in many applications,

such as acoustical absorption [15], acoustical holography [16],

acoustical switching [17], energy harvesting [18], and hyperlens

[19]. The basic concepts for these applications often rely on

subwavelength resonance structures in the form of spatial helices,

Helmholtz resonators, membrane resonators, and porous

metamaterials. Although these common design methods have

great acoustic manipulation capabilities, these methods are

mainly passive, resulting in fixed spatial structures that can

only yield limited performance and cannot adapt to changing

environmental conditions. Therefore, tunable acoustic smart

structures are desirable because their acoustic response can be

actively controlled according to requirements. The block of

mechanical metamaterial is a superatom, which deforms,

bends, rotates and breaks under the action of external force,

and its design enables the adjacent block to produce the desired

collective behavior [7]. In recent years, with the continuous

development of advanced manufacturing technologies such as

3D printing and laser selective melting, the research scope of

mechanical metamaterials has expanded from dynamic

properties to static elastic mechanical properties, such as

elastic modulus, Poisson’s ratio, stiffness, strength and other

mechanical parameters. It is possible to prepare mechanical

metamaterials with more complex microstructures [20]. Based

on the microstructure design, mechanical metamaterials can

achieve abnormal and singular mechanical properties such as

negative Poisson’s ratio [20], lightweight [21], and negative

stiffness [22]. The invention of locally resonant acoustic

materials has created the field of acoustic metamaterials [23].

Their work has directly inspired metamaterial research beyond

electromagnetic wave systems, including acoustic, elastic, or

mechanical studies. In 2008, Fan et al. extended the concept

of transform optics from wave systems to diffusion systems [24].

In the past decade, thermal metamaterials have been rapidly

developed and applied in human daily life, such as thermal

stealth [25], thermal camouflage [26] and thermal

concentration [27].

This review investigates applications of smart metamaterials

in different fields with similar theoretical foundations, such as

multiphysics coupling mechanisms, novel artificial cell design,

and programmability research. We summarize the fields of

technology that have received priority attention from scientists

and scholars to achieve smart metamaterials. These fields are

smart electromagnetic metamaterials (SEMs), smart acoustic

metamaterials (SAMs), smart mechanical metamaterials

(SMMs), smart thermal metamaterials (STMs) and smart

metamaterials and machine learning (SMML). After

summarizing the key technologies and development of these

smart metamaterials, we briefly discuss the development trend of

smart metamaterials in recent years. Due to limited space, this

review cannot cover all aspects, and relevant excellent work can

be read from other reviews in recent years.

Development and research of smart
metamaterials

Smart electromagnetic metamaterialss

SEMs, also known as information metamaterials, can be

classified into digitally programmable metamaterials [28],

computing metamaterials [29], and optically switchable

metamaterials [30]. Among many research directions, digital

coding and programmable metamaterials have become an

important research direction. In 2014, Giovampaola and

Engheta proposed a method to construct “metamaterial bytes”

by spatially mixing “metamaterial bits” [31]. The “metamaterial

bits” that they used are made up of particles of materials with

different electromagnetic properties, such as silicon with positive

permittivity and silver with negative permittivity. However, these

metamaterial bytes are still constructed from the equivalent

medium. As shown in Figure 2, the concepts of digital

metamaterials, programmable metamaterials and metasurfaces

were first proposed by Cui et al. in 2014 [28]. The programmable

properties of metamaterials mean that they can achieve different

functions through digital control and realize real-time regulation

of electromagnetic waves. Inspired by the binary representation

of digital circuits, digital metamaterials first found a way to

design metamaterials from binary. By encoding the phase

response of the meta-atom as “0” and “1,” the electromagnetic

parameters are simply related to the digital expression [32]. In

fact, the method of constructing digital expressions using

opposed phase before coding digital metamaterials has been

widely used in antenna and optical communication fields. For

example, combine a thin artificial magnetic conductor with

perfect electric conductor cells into a chessboard like

configuration. Around the operational frequency of the

artificial magnetic conductor elements, the reflection of the

artificial magnetic conductor and perfect electric conductor

have opposite phase, so for any normal incident plane wave

the reflections cancel out, thus reducing the radar cross-section.

The same applies to specular reflections for off-normal incidence

angles [33]. Similarly, by designing metamaterial resonant cells,

spatial light modulators based on metamaterial absorbers can

also be realized in the terahertz-band [34–36].

Traditional metasurface patterns have been completely

replaced by digital coded patterns. Digital metamaterials

introduce ideas from information science to simplify the

design process and create more functionality. At present,
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digital metamaterials and programmable metasurfaces have been

widely used in microwave imaging [37], information processing

[38], and wireless communication [39]. More importantly,

programmable metasurfaces build a bridge between the

physical and digital world, which enables researchers to

explore metasurfaces from the perspective of information

science, forming a research system for information

metasurfaces [40].

Smart acoustic metamaterials

Since both electromagnetic wave and acoustic wave meet the

wave equation and have common parameters, such as wave

vector, wave impedance and energy flow density, researchers

have extended the design idea of electromagnetic metamaterials

to the acoustic field and designed acoustic metamaterials that can

have various strange effects on acoustic waves [41]. In 2000, Liu

first proposed the construction of acoustic metamaterials by

using structural cells of the locally resonant type [23], which

opened a new way for the research of acoustic metamaterials.

Similar to electromagnetic metamaterials, acoustic metamaterials

are constructed by artificial design of two or more materials to

form periodic/aperiodic geometric structures. The cell size of the

structure is much smaller than the wavelength. Corresponding

effective elastic parameters of the artificial structural functional

materials can be obtained through the long-wave limit. As shown

in Figure 3, in addition to local resonance acoustic metamaterials,

there are tunable acoustic hypersurfaces [42], labyrinth or space

coiled acoustic metamaterials [43] based on the generalized

Snell’s law, and porous acoustic metamaterials [44] that use

different apertures and subwavelength holes of arbitrary shape

to obtain high refractive index.

Over the past decade, various acoustic structures have

been successfully developed to control acoustic waves,

bringing new strategies for noise reduction and energy

harvesting. Although these common design methods have

great acoustic manipulation capability, they are mainly

passive. Most acoustic metamaterials with subwavelength

scale show good performance around certain frequency

bands. Once the structure is established, it cannot adapt to

changing circumstances. Using smart materials to design

FIGURE 2
The 1-bit digital metasurface and coding metasurface. (A) The 1-bit digital metasurface is composed of only two types of elements: “0”and “1.”
(B) A square metallic patch unit structure (inset) to realize the “0” and “1” elements and the corresponding phase responses in a range of frequencies.
(C,D) Two 1-bit periodic coding metasurfaces to control the scattering of beams by designing the coding sequences of “0” and “1” elements: (C) the
010101 . . . /010101... code and (D) 010101 . . . /101010... code.
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structures has proved to be an effective and promising

approach. Smart materials are materials that change shape

or properties when exposed to changes in external physical

fields, such as light, electric, magnetic, and pressure. Smart

materials include electroactive polymers, piezoelectric

materials, shape memory materials and magnetic sensitive

materials. Due to their inherent advantages such as sensitivity

and biocompatibility, smart materials have been widely used

in soft robots, actuators, sensors and biomedicine. Modulating

external stimuli to manipulate physical properties has

attracted increasing interest in the study of smart materials

in tunable acoustic structures. Among the currently available

works, electrically tuned [45] and magnetically tuned [46]

acoustic absorbing smart metamaterials have attractive

properties and good design potential.

The fusion of smart materials with acoustic metamaterials

offers the opportunity for anomalously effective material

properties at tunable frequencies and has great potential.

Potential applications that have been identified include

acoustic manipulation [47], acoustic absorption [48], acoustic

focusing [49], and acoustic stealth [50], which are well beyond

traditional materials. A SAM consisting of a mechanical

resonator and a piezoelectric element can generate a local

resonant band gap near a mechanical or electrical resonance

[51]. The main advantage of these electromechanical hybrid

resonators over ordinary acoustic metamaterials is that they

allow tunable effective mass and stiffness characteristics. Akl

has carried out pioneering research on piezoelectric SAMs,

especially the analysis and experiments on the composite

acoustic resonator with piezoelectric membrane as sensor and

actuator [52–55].

Smart mechanical metamaterials

The research of mechanical metamaterials includes design

and manufacturing. And structural design is the core of

mechanical metamaterials. In recent years, machine learning

has developed rapidly. It provides a powerful tool for the

automated design of mechanical metamaterials, especially with

diverse objective functions [56]. Increasingly complex geometries

of mechanical metamaterials pose serious challenges to the

material manufacturing technology. And the traditional

material reduction manufacturing method is no longer

applicable, especially for the structures at the micro or nano

scale. So the researchers used additive manufacturing to achieve

special complex geometries. Recent developments in additive

manufacturing also allow for the manufacture of stimuli-

responsive materials, creating structures that can change their

geometry, properties, or function. This is often referred to as 4D

printing, and the fourth dimension is time.

4D printing is based on 3D printing, but the object is no

longer static. Under the external stimulus, the shape, property or

function of the object will change with time. Stimulus-responsive

shape memory materials based on 4D printing have the

advantages of simple manufacturing process, large

FIGURE 3
(A) Acoustic wave impinges a surface with nonzero phase gradient [42]. (B) Horn-like space-coiling metamaterial unit cell and its equivalent
model [43]. (C) Composition of three-dimensional honeycomb porous frequency modulation acoustic metamaterial [44].
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deformation capacity and various stimulus forms. Common 4D

printing stimulus-responsive shape memory materials include

shape memory alloys [57], shape memory polymers [58] and

shape memory hydrogels [59]. SMMs is an emerging discipline

with the continuous development of mechanical design and

materials science, and has great application prospects in the

fields of engineering and science. 4D printing technology is an

optimized rapid prototyping technology. Its integration with

SMMs provides new vitality for the development of SMMs. If

mechanical metamaterials are reconfigured by replacing

traditional materials with stimuli-responsive materials, they

will be able to automatically deform, move and change their

structural properties or functions in response to external

stimulus, such as photothermal effect [60], thermal effect

[61], electro mechanical effect [62] and compressive

response [63]. To take full advantage of the unique

advantages of different material systems, researchers will

select appropriate stimuli-responsive materials according to

different and application needs. Therefore, SMMs can also be

called active mechanical metamaterials. The metamaterial

shown in Figure 4 can adaptively switch mechanical

properties and shapes without continuous external

excitation of the physical field [64].

SMMs have gradually become a new protagonist in the

field of materials and have been endowed with richer

functional properties, including reconfigurable [65, 66],

programmable [67], elastic wave propagation control [68,

69] and mechanical computing [70, 71]. et al. In the future,

the functional properties of natural materials will gradually

diminish. In more cases, they will be used as components of

functional metamaterials in the form of raw materials.

Combined with machine learning and advanced

manufacturing processes of 4D printing, SMMs can take

full advantage of their flexible design.

Smart thermal metamaterials

Thermal metamaterials are thermal materials with

artificial structures, and their novel structures enable them

to possess thermal properties or functions that natural

materials do not have. It belongs to the emerging Frontier

cross-research direction of thermodynamics and statistical

physics, thermophysical properties and heat transfer [72].

Since the 21st century, metamaterials have made vigorous

progress in the fields of acoustics, optics, elastic wave control

and mechanics, which is mainly caused by the huge

application demand in these fields. Metamaterials did not

make great progress in thermal field until the Fan et al. first

introduced the concept of electromagnetic invisibility cloak

into thermal field in 2008 [24]. Drawing on the theory of

transformation optics, they put forward the theory of

transformation heat and predicted the cloak of thermal

stealth. At the same time, the phenomenon of heat flow

FIGURE 4
(A) 3D printer principle. (B) Dynamic mechanical analysis result of shape memory polymer. (C) Schematic of shape memory effect [64].
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inversion in the system is predicted, which is completely

different from the traditional view of “heat flowing to low

temperature,” and the concept of negative thermal

conductivity is proposed. After more than 10 years of

development, thermal metamaterials have achieved various

functions, such as thermal stealth [73], thermal transparency

[74, 75], thermal camouflage [26], and macroscopic diodes

and temperature capture [76], etc.

STMs are artificial composite materials that can sense

external heat sources and respond actively, and have the

potential to be applied to thermoelectric conversion of micro-

nano structures. So far, the basic theories of STMs can be

classified into two categories [72]: macroscopic

phenomenology theory and microscopic phonon/thermal

photon theory. The former controls heat flow and utilizes

thermal energy, while the latter utilizes thermal photons for

information transmission. Therefore, the application of thermal

metamaterials has been developed in a macroscopic and

microscopic manner, respectively. The emergence of nonlinear

transform thermology makes thermal metamaterials develop

towards smart. In addition to linear devices, the effect of this

STM is dynamic and changes with the environment. Therefore,

following this philosophy, it is crucial to find materials that can

change their properties when the external environment changes.

Park et al. introduced tunable thermal metamaterials that use the

assembly of unit-cell thermal shifters for a remarkable

enhancement in multifunctionality as well as

manufacturability as show in Figure 5 [77]. In addition, Shen

et al. designed and manufactured a thermal cloak concentrator

device [78] and a non-energy thermostat [76]. Some of the

attractive operations can be achieved by combining nonlinear

transformation theory with multi-physical function design. Yang

et al. researched the nonlinear responses of thermal

metamaterials with 2D or 3D core-shell structures. By

calculating the effective thermal conductivity, the nonlinear

modulation of the nonlinear magnetic core is derived.

Using this theory, a smart thermo-transparent device that

can respond to the direction of the thermal field is designed

[79]. Wang et al. designed a thermoelectric thermostat cloak

with double-layer structure, confirmed the effect predicted by

theory with finite element method, and discussed the

possibility of experimental demonstration with natural

materials [80].

Thermal camouflage or illusion is another important

application that has direct military applications. Yang et al

proposed simulation and experimental results of thermal

invisibility and illusion in single-particle structured materials.

By appropriately adjusting the shape factors of individual

particles, thermal invisibility and illusion can be achieved

simultaneously with a single device. This work not only opens

a way for the design of thermal materials based on single-particle

structures, but also applies to other physical fields such as

FIGURE 5
Scheme of tunable multifunctional thermal metamaterials [77].
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electrostatics, magnetostatics and particle dynamics [81].

Compared with static thermal camouflage, dynamic thermal

camouflage has greater practicability and prospect in future

military applications. For this purpose, the required dynamic

thermal camouflage requires an adaptive material that can be

initiated in response to external stimuli such as electricity, light,

temperature, moisture, machinery, steam, etc. [82].

Smart metamaterials and machine
learning

With the development of computer science, computer-aided

design and computer-aided engineering are playing an important

role in the development ofmetamaterials [83]. Machine learning has

debuted in material and structure studies as the symbol method

since the 1990s, such as high-throughput screening approaches

enable both simulation and experimental databases to be

compiled, with the data used to build models that enable

property prediction, determine feature importance, and guide

experimental design between the material and structure

parameters and the mechanical performance for the fibre/matrix

interfaces in ceramic-matrix composites [84]. In order to capture

subtle knowledge among the existing data, machine learning

performs superior to the traditional statistical methods in terms

of the computational efficiency for a significant class of

computationally hard problems in materials science, which,

therefore, has been extensively used to address different problems

in new materials discovery and material property prediction.

When designing metamaterials, numerical simulation can

effectively predict the feasibility of the scheme. The design of

materials can use data-driven artificial intelligence and other

methods to shorten the development cycle and improve the

efficiency by training the computational model through

experimental data. Both genetic algorithm and neural networks

model are adopted to execute the designing process. The method

starts from selection of the structural bases based on the existing

studies and then combines performance evaluation together with

structural evolution to construct meta-atoms with specified

properties [85]. Data-driven design of the metamaterial concept is

then summarized in Figure 6. A computational data-driven approach

is followed for exploring a newmetamaterial concept and adapting it

to different target properties, choice of base materials, length scales,

and manufacturing processes [86]. Training convolutional neural

networks to predict the electromagnetic response of metal-dielectric-

metal metamaterials, including complex freeform designs, can be

explained to reveal deeper insights into the underlying physics of

nanophotonic structures [87].

Machine learning uses computers to mine potential value

from data, and learns patterns and characteristics of targets. But

it is important to note that whether a machine learned model

remains accurate outside of the dataset is always known after

validation. Therefore, the independent variables should be kept

in the training data space to ensure the correctness of the model.

Summary and prospect

To sum up, this review briefly makes a systematic

classification and scientific review of smart metamaterials, but

there are many kinds of smart metamaterials and many excellent

works that cannot be mentioned. Possible directions for smart

metamaterials are listed below. This discussion is intended to be

the beginning of a conversation, not the final word.

(1) SEMs can realize real-time regulation of electromagnetic

waves, opening up a new way for beam scanning, and can

be applied to new field programmable radars in the future.

FIGURE 6
Data-driven design of supercompressible metamaterial building block using seven design variables [86].
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Compared with traditional phased array antennas, it has the

advantages of simplicity, efficiency and low cost. We believe

that SEMs will have broad development prospects and huge

application potential in signal processing, digital

communication, information theory, electromagnetic

imaging and other fields in the future.

(2) SAMs possess extraordinary physical properties not found in

natural materials. Lightweight, low frequency, broadband,

small size and strong attenuation are still the goals which are

constantly pursued in the research of SAMs.

(3) SMMs regulate elastic waves based on complex topologies. A lot

of basic research work remains to be carried out, especially

how to transform the traditional theory in the field of

condensed matter physical crystallography into the design

and characterization of artificial microstructure.

(4) Most of the existing device functions are presented at the

macroscopic scale. In order to improve the application value

of STMs, nanoscale-based thermal metamaterials need to be

designed. Thus, the existing functions of thermal

metamaterials will be realized at the micro-nano scale.

(5) One of the most important problems in predicting

metamaterial responses. The next step in smart

metamaterials and machine learning is to obtain the ideal

structures by directly considering the desired response.
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