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Multiclass classification is of great interest for various applications, for example,

it is a common task in computer vision, where one needs to categorize an image

into three or more classes. Here we propose a quantum machine learning

approach based on quantum convolutional neural networks for solving the

multiclass classification problem. The corresponding learning procedure is

implemented via TensorFlowQuantum as a hybrid quantum-classical

(variational) model, where quantum output results are fed to the softmax

activation function with the subsequent minimization of the cross entropy

loss via optimizing the parameters of the quantum circuit. Our conceptional

improvements here include a new model for a quantum perceptron and an

optimized structure of the quantum circuit. We use the proposed approach to

solve a 4-class classification problem for the case of the MNIST dataset using

eight qubits for data encoding and four ancilla qubits; previous results have

been obtained for 3-class classification problems. Our results show that the

accuracy of our solution is similar to classical convolutional neural networks

with comparable numbers of trainable parameters. We expect that our findings

will provide a new step toward the use of quantum neural networks for solving

relevant problems in the NISQ era and beyond.
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1 Introduction

Quantum computing is now widely considered as a new paradigm for solving

computational problems, which are believed to be intractable for classical computing

devices [1–5]. The idea behind quantum computing is to use quantum physics

phenomena [2], such as superposition and entanglement. Specifically, in the quantum

gate-based model, quantum algorithms are implemented as a sequence of logical

operations under the qubits (quantum analogs of classical bits), which comprise the

corresponding quantum circuits terminated by qubit-selective measurements [3].
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Examples of the problems, for whose quantum speedups are

expected to be exponential, are prime factorization [4] and

simulating quantum systems [5], for example, modelling

complex molecules and chemical reactions [6]. The amount of

computing power for such applications, however, significantly

exceeds the resources of currently available quantum computing

devices. For example, factoring RSA-2048 bit key requires

20 million noisy qubits [7], whereas currently available noisy

intermediate-scale quantum (NISQ) devices have about

50–100 qubits [8]. Quantum computing can be also

considered in the context of data processing [9] and machine

learning applications [10], where the required resources for

solving practical problems are expected to be not so high. Still

the caveats of quantummachine learning are related to the input/

output problems [11]: Although quantum algorithms can

provide sizable speedups for processing data, they do not

provide advantages in reading classical input data. The cost of

reading the input then may in some cases dominate over the

advantage of quantum algorithms. One may note that various

approaches have been suggested, specifically, amplitude encoding

[12], but the problem of the conversion of classical data into

quantum data in the general case remains open [11].

The use of NISQ devices in the context of the quantum-

classical (variational) model has emerged as a leading strategy for

their use in the NISQ era [13, 14]. In such a framework, a classical

optimizer is used to train a parameterized quantum circuit [13].

This helps to address constraints of the current NISQ devices,

specifically, limited numbers of qubits and noise processes

limiting circuit depths. An interesting link between the quantum-

classical (variational) model and architectures of artificial neural

networks opens up prospects for the use of such an approach for

machine learning problems [15–22]. The workflow of

variational quantum algorithms, where parameters of circuit

are iteratively updated (optimized), resembles classical learning

procedures [19].

A cornerstone problem of various machine-learning-based

approaches is classification, that it why it has been widely

considered from the view point of potential speedups using

quantum computing. As it has been demonstrated in Refs. [9,

23], kernel-based quantum algorithms may provide efficient

solutions for the classification problem. Specifically, the

quantum version of the support vector machine [9] can be

used as an optimized binary classifier with complexity

logarithmic in the size of the vectors and the number of

training examples. A distant-based quantum binary

classification has been proposed in Ref. [24]. Alternative

versions of binary quantum classifiers have been considered in

Refs. [25–29] (for a review, see also Ref. [30]). A natural next step

is to consider the multiclass classification, which has been

addressed recently in Ref. [31] with the demonstration of the

performance on the IBMQX quantum computing platform. This

method uses single-qubit encoding and amplitude encoding with

embedding of data, so the obtained results are of quite high

accuracy for the 3-class classification task. Very recently, an

approach based on quantum convolutional neural network

(QCNN) [32] has been used for binary classification and a

method to extend it to the multiclass classification case has

been discussed. We also note that some of the proposed

quantum machine learning algorithms have been tested in

practically relevant settings, for example, analyzing NMR readings

[33, 34] with the trapped-ion quantum computer, learning for the

classification of lung cancer patients [35] and classifying and ranking

FIGURE 1
General structure of the proposed quantum neural network structure consisting of several steps: Preliminary scanning using n-qubit filters,
pooling, and regular layers.
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DNA to RNA transcription factors [36] using a quantum annealer,

weather forecasting [37] on the basis of the superconducting

quantum computer, and many others [38].

In this work, we present a quantum multiclass classifier that is

based on the QCNN architecture. The developed approach uses

traditional convolutional neural networks, in which few fully

connected layers are placed after several convolutional layers.

The corresponding learning procedure is implemented via

TensorFlowQuantum [39] as a hybrid quantum-classical

(variational) model, where quantum output results are fed to

softmax cost function with subsequent minimization of it via

optimization of parameters of quantum circuit. Then we discuss

the modification of a quantum perceptron, which enables us to

obtain highly accurate results using quantum circuits with a

relatively small number of parameters. The obtained results

demonstrate successful solving of the classification problem for

the 4-classes of MNIST images.

Our paper is organized as follows. In Section 2, we present the

general description of the proposed quantum algorithm that is

used for multiclass classification. In Section 3, we provide in-

detail discussion of the layer of the proposed quantum machine

learning algorithm. In Section 4, we demonstrate the results of

the implementation of the proposed algorithm for multiclass

image classification for hand-written digits from MNIST and

clothes images from fashion MNIST datasets. We conclude in

Section 5.

2 General scheme

The core concept that we use here is the hybrid (variational or

quantum-classical) approach (for a review, see Refs. [13, 14]). This

approach uses parametrized (variational) quantum circuits, where

the exact parameters of quantum gates within the circuit can be

changed. The general structure of our variational circuit is shown

in Figure 1. Below we describe the proposed approach for

multiclass classification based on the classical-quantum approach.

At the first step, we realize an amplitude encoding of input

data, in our case, MNIST images. In fact, due to the high cost of

this step [11], we generate a set of encoding circuits, and store

their parameters and structures in a memory, thus generating a

quantum dataset. We consider MNIST images, which are

rescaled from 28 by 28 to 16 by 16 pixels, and, thus, 8 qubits

are needed. In terms of the corresponding qubit states, encoded

images can be expressed as follows:

Ψk � ∑
N

m�0
Ck

m|m〉, (1)

where k is the index of image and |m〉 is a qubit register of

8 qubits, which encode indexm, andN = 255. Coefficients Ck
m are

equal to elements of normalized flatten vectors of images. In

general, this approach enables us to pack vector of N double-

precision numbers into log2(N) qubits, and, thus, significantly

reduce the size of processed data. It should be noted however that

FIGURE 2
Quantum circuits for preliminary scanning: In (A) the 4-qubit filter with 4-qubit entanglement is shown; in (B) the stack of 3-qubit filters with 4-
qubit entanglement is presented; in (C) the 2-qubit filters with 4-qubit entanglement is demonstrated.
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existing algorithms for amplitude encoding scale exponentially

with N; further study is needed to overcome this problem.

We first employ the amplitude encoding procedure [12], where

ancilla qubits are used for one-hot encoding of the class of target

images. Preliminary analysis of encoded images is performed with

3 convolutional layers with the sizes of filters, equal to 4, 3, and 2,

respectively. Each such layer consists of 2 sublayers that are needed

to maintain translational invariance (at least, partially), and all the

filters of the same size contain identical trainable parameters as is the

case for classical convolutional neural networks (CCNN). We note

that for filters with the size of 3 we need a virtual qubit, which is

always set to zero; such a method is needed to fit the filter into 8

qubits in the translationally invariant manner. The convolutional

layer with pooling is then placed after preliminary layers; at this step

the first reduction of the required qubit number is realized.

As in the classical setup, several fully connected layers are added

after convolutional layers (9 layers in our case). The further reduction

of qubit numbers is realized after regular layers and subsequent pooling

are done (in the same way as it is done after convolutional filters).

The final filter is needed for mixing the information from two

parts of divided circuit. In the process of learning the output of final

filter would contain the codes of classes: |00〉, |01〉, |10〉, and |11〉.
Output cascade contains four Toffoli gates, which activate the

corresponding ancilla qubit; at the end of the quantum circuit we

have one-hot encoded by ancillas class of image.Measurement results

of ancilla qubits are passed to the softmax activation function. The

categorial cross-entropy is then used as the cost function. The

subsequent calculations of gradients of the cost function with

respect to the parameters of gates are done using parameter shift

rule New parameters of quantum gates obtained by the gradient

descent step. The detailed structure of all layers is described below.

3 Structure of layers

Here we present the detailed description of the layers that are

used in our quantum machine learning algorithm.

3.1 Preliminary scanning using n-qubit
filters

The structure of 4-qubit filters is presented in Figure 2A. First of

all, RY(Θ1), RY(Θ2), RY(Θ3) and RY(Θ4) rotations are added in

order to rotate each of the four qubits separately. We propose to use

controlled parameterized rotations RY(Φ) for the entanglement,

which is an essential new element in the structure of quantum

perceptron. We note that in Ref. [31] authors use the standard

controlled X gates for this purpose. Here, as we demonstrate, the

parameterized entanglement scheme provides higher accuracy of

image classification due to the more flexible learning algorithm.

In classical machine learning, the linear perceptron is passed

through a certain non-linear function, which is essential for the

learning process. In the quantum case, instead of summations of

neurons we use entanglement of qubits. The degree of entanglement

is controlled by the parameters Φ, which makes the learning process

more flexible, and, thus, the classification procedure may become

more accurate. In fact, many classical activation functions like sigmoid

or tanh behave akin to switches, so their values change from0 or from

−1 to 1 in a certain region. In the quantum domain, we can switch

from separable (nonentangled) to entangled states, that play the role

of non-linearities in classical learning. So far, individual rotations,

which are followed by the parameterized entanglement, can

be considered as an analog of the perceptron with the non-linearity.

After 4-qubit scanning, smaller-scale filters are applied to analyze

obtained quantum feature map in more details. The structure of

layers with 3-qubit filters is presented in Figure 2B. In order to rotate

3 individual qubits RY(Θ1), RY(Θ2) and RY(Θ3) gates are added.
Similarly to the case of 4-qubit filters, individual rotations are

performed by parameterized RY gates. We note that even in the

case of 3-qubit filters, we use the entanglement of 4 qubits. Even

though the entanglement of 3 qubits looks more intuitive in this case,

as we show below, the 4-qubit entanglement provides more accurate

results on image recognition. More detailed scanning of images is

performed by layer with 2-qubit filters; the corresponding circuit is

given in Figure 2C (also see Ref. [32]). As in all previous cases, we use

4-qubit entanglement and the filter consists of 4 individual rotations

with additional entanglement by CNOT gates. The idea of using 4-

qubit entanglement is inspired by classical CNN, where generation of

new feature maps is done by summation of the shared weights of

previous feature maps and subsequent application of non-linearity.

3.2 Quantum convolutional neural
network layer with pooling

After the preliminary scanning step, the obtained quantum

state of 8 qubits contains encoding of feature maps. The role of the

next layer (see Figure 3) is to analyze these maps inmore detail and

pick up the most important of them. The scheme of the layer is

given in Figure 3B, where the convolutional filter is the same as in

Figure 3A. We note that in the pooling circuit, controlled RZ

rotation is activated if the first qubit is at state 1, while the

controlled RX gate is used when the upper qubit is at state 0.

This is conceptually similar to the structure proposed in Ref. [32].

3.3 Regular layers

Similarly to the CCNN case, several regular layers are placed

after convolutional layers. In our case we add 8 layers, as shown in

Figure 3A. In order to get more accurate results, the double

entanglement is added after individual rotations. The second

reduction of qubit number in the circuit is done by two pooling

procedures as in the case of convolution layers. In order to obtain the

required structure, we add a final filter at the end of the quantum
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circuit. As it is shown below, the use of the final filter is essential for

obtaining more accurate results of image classifications.

3.4 Toffoli and controlled rotation gates

The practical realization of high-fidelity two-qubit operations

on quantum hardware is still a challenging task. The situation is

typically more difficult for three-qubit gates, such as a Toffoli gate.

Thus, it is necessary to decompose these gates via single- and two-

qubit gates, which can be practically performed. The general

algorithm of n-controlled rotations is presented in Ref. [40] and

for the case of single-controlled rotation it can be expressed as it is

shown in Figure 4A. In order to implement the Toffoli gate, we

consider the qubit inversion as a rotation operation around X or Y

axes and in our case a doubly-controlled RY(Θ) gate is used with

the value of Θ = 2π. The circuit is presented in Figure 4B and it

corresponds to the representation of the sum of parameterized n-

controlled rotations, which are considered in Ref. [40]. A Toffoli

gate, in fact, can be considered as a sum of such rotations with n =

2, where Θ angles of all rotations, except the one that is controlled

by the 11th combination, are set to zero. The definition of α angles is

realized along the lines of the previously described procedure [40];

they are obtained from Θ angles by simple matrix transformation.

We note that multiqubit gate decomposition can be further

improved using qudits, which are multilevel quantum systems.

FIGURE 3
In (A) the convolutional layer with pooling is shown. In (B) the structure of regular layers is illustrated.

FIGURE 4
(A) Single-controlled rotation gates in terms of rotations and CNOT gates. (B) Decomposition of the Toffoli gate in terms of RY rotations and
CNOT gates.
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As it has been shown, the upper levels of qudits can be used

instead of ancilla qubits in the decomposition [41–45].

4 Classification results

We benchmark the proposed quantum machine learning

algorithm with the use of hand-written digits from MNIST and

clothes images from fashionMNIST datasets. Examples are presented

in Figure 5.

All the simulations are performed using Cirq python library

for the constructions of quantum circuits; TensorFlowQuantum

library [39] is used for the implementation of the machine learning

algorithmwith parameterized quantum circuits. We use the Adam

version of gradient descent, with a learning rate equal to 0.00005,

and the overall number of trainable parameters in the QCNN

circuit is equal to 149. As a metric for the model performance, we

simply use the accuracy of the recognition and for more detailed

analysis two sets of experiments are done. In all the conducted

experiments, parameterized quantum circuits are trained during

50 epochs.

Within the first set, training and classification are completed for

the case, when the dataset consists of images which have certain

similarities; thus, the classification problem becomes more difficult.

WeuseMNIST images of digits 3, 4, 5, and 6 for this part. Also, fashion

MNIST images with labels 0, 1, 2, and 3 are used for this purpose.

The second experimental set is focused on images, which

strongly differ from one another thus making the recognition

process easier; MNIST images of digits 0, 1, 2, and 3 and fashion

MNIST images with labels 1, 2, 8, and 9 are used here. The total

number of considered images of each type is given in Table 1.

Each image vector is normalized to one since only that type of

vector can be used by the amplitude encoding algorithm. The

results of image classification are given in Table 2. Quantum

circuits for multiclass classification are considered in Ref. [31].

QCNN examples, provided within the documentation of

TensorFlowQuantum [39] also can be relatively simply

generalized for the case of multiclass classification tasks. In the

second column of Table 2 we provide the results of experiments

with circuits, similar to previous results [31]. In order to obtain

these results we replace all the RY(Θ) used at entanglement steps

by CNOT gates. Also, we remove all the parts of the circuit of

Figure 1, which are placed after regular layers, i.e., pooling layers,

final layers, and the part with Toffoli gates. Entanglement of ancilla

qubits with regular layers is done via CNOT gates according to

Figure 2 of Ref. [31]. The third column in Table 2 contains the results

obtained with the full circuit shown in Figure 1. The significant

improvement in the accuracy of the classification results is caused by

two facts. Firstly, the usage of parameterized entanglement in our

circuit. Secondly, the increased performance may be connected with

the fact that our circuit is constructed in a similar way to classical

neural networks—we use a qubit reduction procedure analogous to

the reduction of the number of layer outputs in the classical case, i.e.,

reduction until the number of outputs equals the number of target

classes. Note that in Figure 1 ancilla qubits are used only at the read-

out step and no entanglement is needed between ancillas and other

qubits during the computational procedure, significantly simplifying

TABLE 1 Number of images of each type.

MNIST digits 0 1 2 3 4 5 6

Training 5923 6742 5958 6132 5842 5421 5918

Test 980 1135 1032 1010 982 892 958

MNIST fashion 0 1 2 3 8 9

Training 6000 6000 6000 6000 6000 6000

Test 1000 1000 1000 1000 1000 1000

FIGURE 5
Examples of MNIST digits (top) and MNIST fashion (buttom) images used in experiments.
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the corresponding quantum hardware requirements. We also

compare obtained quantum results with results of the CCNN

with a similar number of parameters, which is 188 in our case.

The structure of the CCNN is presented in Table 3. Clearly, the

classical results are more accurate, indicating that, with a

similar number of parameters, the classical model is still more

expressive. An analysis of possible quantum advantage in ML

tasks is presented in Ref. [46]. In their study, the authors

analyze ML models based on kernel functions and show that

with enough data provided, classical methods become more

powerful than the corresponding quantum algorithms. Thus,

additional study is still needed to find ML tasks where

quantum algorithms will outperform their classical analogs.

Overall, the QCNN can produce accurate multiclass

classifications that are qualitatively similar to the classical

model if the number of parameters is comparable. A similar

level of accuracy has been achieved previously [31] for the 3-class

classification problem. Here, we have demonstrated this level of

the accuracy for the 4-class classification tasks, which to the best

of our knowledge is the first such demonstration.

5 Conclusion

Here we have demonstrated the quantum multiclass classifier,

which is based on the QCNN architecture. The main conceptual

improvements that we have realized are the new model for

quantum perceptron and an optimized structure of the

quantum circuit. We have shown the use of the proposed

approach for 4-class classification for the case of four MNISTs.

As we have presented, the results obtained with the QCNN are

comparable with those of CCNN for the case if the number of

parameters are comparable. We expect that further optimizations

of the perceptron can be studied in the future in order to make this

approach more efficient. Moreover, since the scheme requires the

use of multiqubit gates, the qudit processors, wheremultiqubit gate

decompositions can be implemented in a more efficient manner,

can be of interest for the realization of such algorithms.
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TABLE 2 Accuracies of classification for quantum and classical convolutional neural networks.

Quantum Quantum Classical

Reference [31]—like Figure 1

MNIST digits (3456) 71.44 85.14 94.25

MNIST digits (0123) 77.64 90.03 95.85

MNIST fashion (0123) 71.15 85.93 89.69

MNIST fashion (1289) 79.33 93.63 97.42

TABLE 3 Structure of the used classical convolutional neural network
with 188 parameters.

Layer type Output shape Number of parameters

Conv2D (None, 14, 14, 1) 10

Conv2D (None, 12, 12, 1) 10

Pooling (None, 6, 6, 1) 0

flatten (None, 36) 0

Dense (None, 4) 148

Dense (None, 4) 20
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