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Single-cavity, dual-comb lasers are those specially designed mode-locked

lasers that can emit more than one, asynchronous ultrashort pulse trains

with stable repetition frequency difference between them. Unlike the long-

studied, widely-used femtosecond lasers generating one stable pulse train,

systematic investigation on them and their potential dual-comb applications

only began, based on the fiber laser platform, around a decade ago, despite

sporadic and limited reports of similar lasing phenomena since the beginning of

the mode-locked laser studies. From a historic perspective, the birth of this

novel technology is the lucky outcome of the timely collision of perpetual

search for novel pulsing laser dynamics and concerted pursuit of open-minded

solutions for out-of-lab dual-comb systems in the 2010s. In this review article,

first, the current schemes to implement single-cavity dual optical frequency

comb fiber lasers and their applications are summarized, based on the concept

of multiplexed mode-locked lasers. The characteristics of reported single-

cavity, dual-comb fiber lasers are discussed as well as their applications in

spectroscopy, ranging, Terahertz (THz) spectroscopy, and asynchronous

optical sampling (ASOPS). Finally, the more recent development of single-

cavity, multi-comb lasers is presented.
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1 Introduction

Optical frequency comb (OFC) has discrete and equally spaced ‘comb teeth’ in the

optical frequency domain, while their tooth spacing falls into the microwave frequency

range. Realized by femtosecond pulsed lasers with octave spanning spectra and precisely

controlled carrier envelope offset frequency (fceo), the frequency stabilized OFC

technology [1, 2] has found applications in many areas of high precision

measurement. Dual optical frequency comb scheme was proposed to further simplify

the system configuration for broadband measurement while retaining the advantages of

OFC [3]. It uses two optical frequency combs with slightly different mode spacing. The

coherent beating frequencies from the two combs are well within the radio-frequency

range and can be easily picked up and processed by the existing electronic system. Thus,

fast, large bandwidth and high resolution measurement can be realized with low-

bandwidth electronics. Therefore, it was applied to time/frequency transferring [4],

time synchronization [5], optical spectroscopy [6–8] and absolute-distance ranging
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[9]. It should be noted that, as the technology gained greater

popularity, the concept of OFC had evolved into a broader one by

covering other types of light sources, including microcavities and

modulated continuous wave lasers, with sometimes limited

bandwidth and less regulated optical frequency components.

Also, along with the drastically growing interests in dual-

comb techniques over the past decade, the focus of many

studies had been shifted towards their applicability to the in-

the-field applications and those that are less demanding in

performance but more in system complexity. In spite of its

great success in laboratory demonstrations, the complex and

expensive phase-locked OFC laser systems, essential for the dual-

comb techniques, has become a major obstacle for real-world

applications. How to reduce the complexity of the dual-comb

source while maintaining the mutual coherence of the dual

combs had become one of the important issues for further

development of the dual-comb technology [10].

Fiber mode-locked lasers are favored by many OFC systems

due to its simple structure and low cost. In recent years, single-

cavity dual-comb fiber laser technology that generates two OFC

pulse trains at the same time has become a new type of low-

complexity dual-comb light source. It could drastically reduce the

complexity of a dual-comb source to that of a single fiber mode-

locked laser, and thus has become a hotly investigated research

topic.

2 Single-cavity dual-comb
technology

The development of the optical frequency comb has been

closely correlated with the evolution of ultrafast mode-locked

laser technologies. During its early days in 1990s, the OFC source

had been mostly built based on the then-already-mature solid-

state lasers, such as Ti: sapphire lasers [2]. However, in the

ensuing two decades, ultrafast fiber lasers have been growing at a

fast pace with a number of innovations with the aim of improving

mode-locking stability, pulse energy and pulse width/spectral

bandwidth. They’d been quickly adopted as the mainstream

platform for OFC generation with their OFC noise

performance rivaling that from other lasers, because of their

additional advantages in the system compactness, ruggedness,

and optical-fiber-compatible spectral window. In the first decade

into the 21st century, most dual-comb demonstration had been

carried out by fiber-laser-based, frequency-stabilized OFC

systems.

Unlike their solid-state counterparts that was once plagued

by the unwanted bi-directional oscillation issue in their early

stages of development [11], it had beenmuch easier to control the

light path for pulses in the passively mode-locked fiber lasers,

thanks to the availability of a plethora of single-mode, fiber-optic

components like isolators. In the 90s, the research community in

general had its eyes set on bringing the output power, bandwidth

and other characteristics of these lasers on par with those of

others. Except for scant reports of peculiar dual-wavelength

lasing observation [12–15], little attention had been given to

the multi-pulse lasing in fiber lasers. A few studies with revived

interests on bi-directional mode-locking in solid-state lasers had

been carried out, targeting the laser gyroscope applications

[16–18]. Additional attention had been diverted to more

complex pulsing phenomena in the 00s, as the fiber laser

technology matured and its studies became more widely

spread. There had been several reports of picosecond, dual-

wavelength pulse generation in the 1,560 nm spectral window

from passively mode-locked Erbium fiber lasers [19–21]. It was

later observed in 2009 that these pulses could have different

periods due to dispersion from a normal dispersion laser [22]. In

2008, it was also demonstrated that bidirectional mode-locking

can be realized in a ring fiber laser by removing the isolator and

repetition rate difference on the order of tens of Hz was also

observed [23].

Coincidentally, demonstrations of the dual-comb techniques,

first proposed in 2002 [3], had been achieved for several

important applications around the same period of time [6, 7,

9, 24]. Built on the momentum and following the same technical

path of the hugely successful fully-frequency-stabilized OFC

technology, they quickly garnered great attention as one of

the most promising OFC techniques. Nevertheless, mutual

coherence of two combs, instead of frequency stabilities of

each comb, is now the most critical factor affecting the dual-

comb performance, and this is readily ensured for the systems

based on the traditional OFC sources. This minute yet important

change could spur the dual-comb source technologies to a major

shift in paradigm in realizing dual-comb light sources, in order to

address growing concerns about the complexity challenges faced

by dual-comb systems. Several alternative approaches, such as

post compensation by digital processing [25] and electro-optic

frequency combs [26], began to emerge.

Dual-wavelength generation of subpicosecond pulses with a

stable repetition rate difference from an Erbium fiber laser was

realized by tuning the spectral profile of the gain fiber and

utilizing both the 1,530 and 1,560 nm windows in 2011 [27].

Realizing the potential to replace the sophisticated dual-comb

sources at the time with such a simple free-running laser, the

aforementioned laser was soon applied to demonstrations of

asynchronous optical sampling (ASOPS) [28] and coherent-

detection dual-comb ranging [29]. A universal approach to

achieve stable asynchronous ultrashort pulse was proposed by

introducing the concept of “multiplexing” into the field of

ultrafast lasers [30]. In such a Multiplexed Mode-Locked

Laser (M2L2), the cavity is designed to allow the simultaneous

oscillation of pulses with different characteristics in one of the

propagation dimensions. In the following years, numerous

single-cavity dual-comb lasers and dual-comb systems based

on them have been achieved, and so far they can still be

categorized into the following four categories: wavelength-
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multiplexed, polarization-multiplexed [31], direction-

multiplexed, and pulseshape-multiplexed [32] lasers

corresponding to the four dimensions of light propagation,

just as envisioned by the concept of M2L2 [30].

On the other hand, as the emergence of single-cavity

dual-comb laser opens up a new possibility for realizing low-

complexity dual-comb systems, it is still necessary to verify

the applicability of such simple light source to dual-comb

applications, due to their significantly different

characteristics to those of standard comb sources. Along

with the continuous improvement of the dual-comb fiber

lasers over recent years, successful demonstrations in many

important dual-comb applications have been carried out, as

shown in Figure 1.

2.1 Single-cavity dual-comb fiber lasers

Multiplexing principle of single-cavity dual-comb lasers as

shown in Figure 2. Simultaneous lasing at multiple

wavelengths in the laser gain spectrum is often realized by

introducing spectral filtering [27–29, 33–62]. This scheme,

firstly applied to many continuous-wave lasers, has a long

history, but little attention had been paid to the characteristics

of the repetition frequencies of the output pulses [12, 13].

There had been conflicting reports of asynchronous or

synchronous pulsing phenomena. On the other hand, when

splitting gain spectrum into more than one sub-windows, the

resulting mode-locked spectral bandwidth is often severely

limited, and the long pulsewidth would render the output less

useful for most dual-comb applications [19–21, 63]. The

FIGURE 1
Single-cavity dual-comb lasers and their applications.

FIGURE 2
Multiplexing principle of single-cavity dual-comb lasers.
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ability of controlling the gain spectrum shape and bandwidth

[27] enables the generation of femtosecond pulses in dual-

wavelength mode-locked fiber lasers. Due to the difference in

cavity group velocity dispersion (GVD) at the wavelengths of

the mode-locked pulses, the pulses would oscillate in the laser

cavity asynchronously with slightly different repetition rate

[22, 27]. The repetition frequency difference can then be

designed by changing the intracavity dispersion. Various

optical filtering schemes based on Lyot filtering [28, 29,

33–44, 46, 48, 56, 59, 60], Sagnac filtering [45, 47, 49, 50,

55], multimode interference [51, 52], spatial light filtering [53,

54, 62, 64] had been later applied to realize single-cavity dual-

wavelength mode-locking. Studies on the self-starting process

of the wavelength-multiplexed laser source [41, 51], their

environmental stability [41, 46, 49, 54], tunability in the

repetition frequency difference [47, 48] and pulse dynamics

[57, 58, 61] has further carried out.

As to the spatial multiplexing scheme, for the fiber lasers

constructed of single-mode fibers, propagation direction in the

cavity would be the only possible variable to differentiate

different pulses in this physical dimension. In the laser cavity

based on the free-space optical path, the phenomenon of

bidirectional simultaneous oscillation of pulses was found in

early laser research [11, 65]. In order to suppress phenomena

such as spatial hole burning, optical isolators had been routinely

used to achieve unidirectional operation of laser in the cavity. An

all-fiber bidirectional mode-locked laser based on carbon

nanotube saturable absorber was realized by removing the

intracavity optical isolator [23]. Later on, simultaneous mode-

locking in the clockwise and counterclockwise directions in the

ring cavity has become the common implementation of the bi-

directional lasing [23, 30, 66–84]. Furthermore, in order to avoid

the effects of competition between bidirectional pulses, there are

also a variety of bidirectional fiber laser structures that share only

part of the optical cavity [79, 83–86]. Unlike the wavelength-

multiplexed cases, it is thought that the difference in repetition

rates between the two pulse trains likely originates from

direction-dependent birefringence, non-linear phase shift, and

the GVD at different lasing wavelengths [78]. In a study on a

bidirectional, dual-wavelength mode-locked laser, it is revealed

that the seemingly different types of laser implementations, like

the bidirectional or multi-wavelength ones, could be regarded as

examples in different transmission dimensions of a family of

M2L2. Furthermore, the idea of “multiplexing” was introduced

into the design of a mode-locked laser cavity in order to realize

asynchronous dual-comb generation [30]. The possibility of

these multiplexed mode-locked laser as a dual-comb laser

source was laid out as well [30]. Dual-comb spectroscopy

measurements based on a bidirectional dual-comb laser were

demonstrated [66], and further studies on directional

multiplexed lasers in the 2 μm wavelength [67, 73], generation

regimes of mode-locked [77, 82] and with high output power [72]

had been carried out. Other designs adopting a partially shared-

cavity structure to improve the self-starting and polarization-

maintaining properties of the laser had also been explored [69,

70, 74, 87, 88], sometimes at the expense of mutual stabilities of

the dual combs.

Polarization-multiplexed lasers are to generate two pulse

trains with orthogonal polarization states from one laser

cavity [31, 89–97]. Conventional fiber mode-locked laser

structures are either composed entirely of single-mode fibers

or polarization-maintaining fibers. Concerned about the

bandwidth limiting effect that may be introduced by

birefringence, the former hopes to keep the birefringence in

the optical cavity as low as possible, while the latter is designed to

maintain a single polarization state operation. After the concept

of M2L2 was proposed, it is natural to look beyond the above two

physical dimensions, and the scheme to realize polarization

multiplexed fiber lasers was investigated. By introducing a

short section of birefringent fiber into the cavity to break the

degenerate transmission of polarization states in the cavity, it is

demonstrated that two vector soliton pulse sequences with

different repetition rates and orthogonal polarizations can be

emitted stably [31]. The spectra of polarization-multiplexed

mode-locked lasers overlap with each other fairly well, and

can be directly applied to dual-comb measurements without

non-linear spreading [89, 91]. Based on this concept, various

studies, like dual-comb lasing utilizing residual birefringence in

FP fiber cavities [98], polarization-multiplexed dissipative soliton

generation [90], spectroscopy measurement applications using

polarization-multiplexed fiber laser [92] had been carried out.

Polarization-maintaining, polarization multiplexing schemes

had been also developed based on partially shared-cavity

structures [94, 99, 100].

Multiplexing based on temporal pulseshapes seems to be an

even more daunting task. In order to enable pulses with distinct

temporal profiles to mode-lock in the same cavity, unlike

conventional lasers, multiple mechanisms that can contribute

to the pulse shaping process need to be introduced. In a cavity

with a physical saturable absorber, both polarization-dependent

loss and birefringence can be introduced by using a polarizer with

a polarization-maintaining fiber pigtail. In this way, the

birefringence and polarization-dependent loss produce the

Lyot filtering effect, which has a narrowing effect on the pulse

bandwidth; on the other hand, the polarizer and the non-linear

effect in the cavity can form the non-linear polarization rotation

effect under sufficient pulse energy. It, combined with the

physical mode-locking device, as hybrid mode-locking

mechanism, can expand the pulse spectrum. Thereby, a pulse-

energy-dependent, pulse shape/spectrum control scheme can be

achieved. For the pulse with low pulse energy in the cavity, the

linear filtering plays a more significant role, and the mode-locked

spectrum is narrow. On the other hand, for the pulse with a

sufficiently large pulse energy, the non-linear effect is more

prominent, which significantly broadened its spectrum. The

laser realized the simultaneous generation of ultrashort pulses
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with different energies and time-domain characteristics. Two

output pulses have overlapped spectra, albeit with very different

bandwidths, and slightly different repetition frequencies due to a

small center wavelength offset. The beat signal of the dual-comb

also proves that the two pulses have good mutual coherence [32].

Repetition frequency difference (Δf) and repetition

frequency (f) are the keys in dual-comb application. Δf
affects the sampling rate, and f/Δf is the scaling factor in

the dual-comb application [10]. Figure 3 shows the

relationship between f/Δf and Δf for various types of so-

far-reported single-cavity dual-comb lasers with a

completely shared cavity. Δf is determined by the cavity

dispersion, either chromatic or polarization-dependent,

based on the types of dual-comb lasers, and varying the

cavity parameters, such as GVD, birefringence can, thus,

change Δf of the laser output. Due to the relatively large

GVD or birefringence one can apply to a cavity, the

wavelength-multiplexed and polarization-multiplexed lasers

can realize relatively large Δf, which is beneficial for those

measurement applications requiring a higher update rate. On

the other hand, Δf of the other two types of lasers are generally
much lower, which gives them certain advantages in realizing

larger f/Δf factors. A larger f/Δf factor, i.e. a larger down-

conversion ratio could be beneficial for those applications

with a limited radio frequency (RF) detection bandwidth while

targeting a broader frequency range, like THz spectroscopy

[38, 39]. For partially-shared cavities, on the other hand,

tuning Δf can be done by directly adjusting the lengths of

corresponding light paths.

The pulse energy is the another key parameter in many dual-

comb applications. Figure 4 summarizes the reported

performance of dual-comb fiber lasers from that perspective.

It can be seen that the average output power for most of the

single-cavity dual-comb lasers falls around 1 mW, with one

exception of a normal-dispersion, directional-multiplexed with

an about 70 mW output. This is mainly due to the limitation

posed by the intracavity pulse interactions, and could be

ameliorated by extra-cavity optical amplification at moderate

costs of system complexity. Since this power level falls short of

the requirements of many applications, there had been quite a

few demonstrations of amplified dual-comb sources for optical

spectroscopy [34, 35, 37] and THz spectroscopy [38, 39, 42] with

sufficient mutual coherence and stability, despite the expected

impact from the non-linear and spontaneous emission noise

from the optical amplification scheme.

It is also noted that, since the demonstrations of the proposed

single-cavity, dual-comb fiber lasers and their dual-comb

applications, dual-comb lasers based on other laser platforms

had also emerged. Bi-directional Ti: sapphire lasers [101–103],

spatially-multiplexed thin-disk laser [104], polarization-

multiplexed thin-disk lasers [105–110], polarization-

FIGURE 3
Relationship between f/Δf and Δf in the single-cavity dual-
comb lasers with wavelength-multiplexed [27–29, 34–50, 53–56,
60, 61, 64], direction-multiplexed [24, 65, 67, 72, 75, 77, 80],
polarization-multiplexed [31, 89–93, 95–97] and
pulseshape-multiplexed [32] schemes.

FIGURE 4
Relationship between pulse energy and f in the single-cavity dual-comb lasers with wavelength-multiplexed [34, 41, 45, 48, 54, 55], direction-
multiplexed [24, 30, 65–68, 70–72, 74, 77, 81], polarization-multiplexed [90, 92, 94, 100] and pulseshape-multiplexed [32] schemes.

Frontiers in Physics frontiersin.org05

Yang et al. 10.3389/fphy.2022.1070284

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1070284


multiplexed solid lasers [111–116] and even bi-directional-

pumped microresonator [117] had been investigated.

Compared to fiber lasers, some of them can achieve higher

repetition frequency or higher output power, and they help to

broaden the spectrum and scope of dual-comb laser technology.

2.2 Applications of single-cavity dual-
comb lasers

The application schemes of single-cavity dual-comb lasers are

shown in Figure 5, and can be roughly divided into two types: time-

domain and frequency-domain measurements. The time-domain

measurement includes ASOPS and ranging, and the frequency-

domain measurement includes THz spectrum and optical

spectrum measurements.

ASOPS pump-probe application was the first demonstration

realized by a single-cavity dual-comb laser source for dual-comb

applications. In 2012, the dual-wavelength dual-comb laser was

used to demonstrate the measurement of the carrier dynamics of

a semiconductor optical amplifier (SOA) with over

10 nanoseconds scanning range, sub-picosecond time domain

sampling step, and hundreds of Hz update speed [28]. It was

realized with a very simple experimental setup without the

mechanical delay line. Pump-probe experiments were also

performed using a bidirectionally mode-locked laser [118]. A

polarization-multiplexed solid-state laser was used to measure

the time constants in the SESAM dynamic model, which were

consistent with the classical model [119].

Ranging, as another typical time-domain measurement,

was soon preliminarily demonstrated sequentially using

wavelength-multiplexed and polarization-multiplexed dual-

comb lasers to achieve coherent distance measurement [29,

89]. Low-power dual-comb distance measurement based on

incoherent reception was also realized [33, 120]. With a dual-

wavelength dual-comb fiber laser with improved performance,

ranging accuracy over a distance range of 70 m was

determined to be on the order of μm in a measurement

time of 1 s [44]. Several related improved techniques [55,

110, 121] had been developed.

High-quality dual-comb spectroscopy measurement using

a free-running laser was a more challenging task considering

the various factors affecting the quality of the spectroscopic

result. While the previous studies had obtained temporal

interferogram patterns indicating likely promising mutual

coherence between pulses from a dual-comb laser, good-

quality spectroscopy results could not be obtained until a

dual-comb fiber laser with sufficient passive mutual stability

performance was developed. After several years of incessant

improvement on the fiber laser setup, a dual-wavelength fiber

laser achieved about 250 Hz mutual linewidth between the

dual combs, lower than the repetition frequency difference of

1,250 Hz, and mHz fluctuations in the repetition rate

difference under free-running [34]. Through the

measurement of acetylene gas cell and high-Q micro-ring

resonators, a picometer spectral resolution was

demonstrated, with well-matched spectroscopic results with

the known database. Spectroscopic measurement of hydrogen

FIGURE 5
Applications of a single-cavity dual-comb (SCDC) laser. (A) ASOPS; (B) Ranging; (C) Optical spectroscopy; (D) THz spectroscopy.
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cyanide gas was also carried out using a bi-directional fiber

laser [66, 101]. Later on, doppler-limited hydrogen cyanide

absorption spectra were measured at low pressures by

polarization-multiplexed dual-comb laser [92]. These

demonstrations verified the applicability of free-running

single-cavity dual-comb lasers to spectroscopy applications

with modest resolution requirements. Though fceo’s of the two

combs are not actively controlled, passive coherence

illustrated by the good-quality spectroscopy results suggests

the existence of correlated fceo variations, in contrast to the

random drifts between them if two independent lasers are

used. Since then, the spectral measurement technology based

on single-cavity dual-comb technology in the 1 μm [107, 108],

1.6 μm [35], and 2 μm [45, 67] bands have also attracted the

attention of many researchers. In addition, the advantages of

the low complexity of the single-cavity dual-comb laser source

system have also render it more useful to new applications

stressing the low-cost or on-site requirements, such as multi-

component gas concentrations measurement in combustion

[36] and fiber grating sensing system [37, 40, 68, 93].

Different from the spectroscopy measurement technology

in the optical frequency band, the carrier-envelope offset

frequency of the optical comb will not be converted to the

terahertz or RF frequency band in the spectral measurement at

those frequencies. Therefore, the requirement for the

frequency stability of the carrier-envelope offset of the

dual-comb light source is more relaxed. THz frequency

measurement scheme based on the dual-wavelength laser

source [38] and the THz time-domain spectroscopy

measurement using the wavelength-multiplexing [42] and

direction multiplexing [76] dual-comb lasers have achieved

GHz spectral resolution. Further, an adaptive-sampling dual-

THz comb spectral measurement method based on a dual-

wavelength laser greatly expands the averaging time window

[39]. The absorption peaks of the methane cyanide gas in the

vibrationally excited state in the low-pressure methane

cyanide and nitrogen gas mixture can be distinguished,

thanks to the MHz-level ultrahigh THz spectral resolution.

Recently, the application of coherent anti-Stokes Raman

scattering spectroscopy and microscopy with a single cavity

dual optical frequency comb was reported [71, 75].

3 Single-cavity multi-comb fiber
lasers and their applications

If additional combs can be introduced to a dual-comb

system, such a tri-comb or multi-comb system could further

expand the capability for certain applications [122]. However, a

tri-comb system based on three frequency-stabilized optical

frequency combs would be even more complex and expensive.

Therefore, single-cavity multi-comb technology could be a

more attractive alternative. However, from the perspective of

multiplexing schemes, it is challenging to realize the generation

of triple-comb or multi-comb in other physical dimensions,

except for wavelength. Wavelength -multiplexed laser would

also be limited by the finite accessible spectrum width, which

strongly limits the performance of multi-comb signals. The

concept of Multi-dimensional Multiplexed Mode-Locked Laser

(M3L2) was proposed [123]. Multiple combinations in the

wavelength- and polarization-dimensions in the optical

cavity were leveraged to realize a single-cavity, three-comb

or even multi-comb light source [123]. On the application

side, dead-zone-free RF frequency measurement was

demonstrated with a single-cavity tri-comb laser with

wavelength multiplexing [124]. A real-time ranging scheme

based on a multi-wavelength tri-comb laser demonstrated an

extended ambiguity range to the order of tens of kilometers

[125]. A dual-asynchronous sampling scheme based on

wavelength-multiplexed tri-comb source has realized the de-

modulation of fast-varying spectral modulations [126]. It

should be noted that these demonstrations had been carried

out with marginal increase in system complexity, due to the

application of multi-comb fiber lasers.

4 Conclusion

We have reviewed the history and summarized the recent

progress of single-cavity dual-comb fiber lasers and their

applications. While hardly-known or recognized over a decade

ago, single-cavity, dual-comb fiber lasers have become an

attractive topic for researchers around the world. The essence

of this technology is removing the “smart” feedback control

system and replacing it with a properly designed, “dumb” yet

self-stabilized physical system based on a good understanding of

laser physics. This renders the unique advantages of the

technology in system complexity, power consumption, cost,

and compactness, which make it an alternative over the more

universal, powerful yet more complicated frequency-stabilized

OFC solutions. Such lasers could also play an important role in

broadening the reach of the dual-comb techniques by unlocking

those application areas that are highly sensitive to system

complexity or size. On the other hand, it is not unexpected

that, as such lasers are based on somewhat unconventional laser

designs, there could be some performance limitations like the

adjustability and stability of the repetition frequency difference,

the pulse energy as well as intracavity phenomena unique to these

lasers. While new mode-locked laser technologies based on more

sophisticated ultrafast pulse dynamics or new functional devices

keep on emerging, the dual-comb lasers, by far, mostly are still

based on the traditional cavity and conventional soliton

configurations. With further investigations into the dual-comb

dynamics in the cavity and better understanding of ways to

control and manipulate them, it is expected that more innovative

solutions that further overcome the current performance
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limitations would be found in the near future. It is foreseeable

that more would delve into further investigating or solving these

issues.
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