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Non-negative intensity (NNI) is a quantity which avoids near-field cancellation effects
in sound intensity and provides direct visualization of the surface contributions to the
radiated sound power. Hence, minimizing the integration of Non-negative intensity
on predefined surfaces is implemented to be the design objective of topology
optimization for the constrained-layer damping design on plates in this work.
Non-negative intensity can be easily computed based on the radiation modes
and the particle velocity on the surfaces of interest. Regarding the radiation
modes, an eigenvalue analysis for the acoustic impedance matrix is required.
After evaluating the objective function, the gradients of the objective function are
computed using an adjoint variable method (AVM). These gradients enable the
optimization to be solved by the method of moving asymptotes (MMA). Finally,
some numerical examples are presented to validate the proposed optimization
approach. Numerical results show that the corner radiation properties of the
plate can be suppressed by the optimization, minimizing the integration of Non-
negative intensity.
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1 Introduction

Noise control has become an important task in an engineering design. As a commonly used
component in engineering, reducing the sound radiation from vibrating plates has drawn much
attention. An efficient tool for this job is the topology optimization technique. Topology
optimization has rapidly developed since it was introduced by [1] and has been applied to a
large range of engineering problems. This technique can flexibly generate holes in the structure
and achieve the design objectives, such as reducing the weight or increasing the first natural
frequency. Du and Olhoff [2] reduced the radiated sound power of the vibrating plate by
optimizing the distribution of bi-materials. In addition, Xu et al. [3] also optimized the material
distribution of the plate for minimizing the sound radiation. In their work, damping effects are
neglected. To achieve a better design, damping patches can be adopted, for example, free-layer
damping and constrained-layer damping (CLD). Compared with the free damping layer, CLD
provides considerably more damping effects due to the motion constraints of the damping
layer. Zheng et al. [4] investigated the topology optimization of passive constrained-layer
damping (PCLD) treatment patches on thin plates with respect to sound radiation at low-
frequency resonances.
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In addition to the optimization procedure, another alternative to
reducing the sound power is to locate the most contributing
components of the vibrating structure and then adopt some
additional patches on these regions, for example, damping layer,
stiffener, or adding mass. This approach is more direct and
computationally efficient because it usually does not require an
iterative optimization process. It, however, sometimes cannot give a
very efficient design for radiation control. Numerical techniques to
identify the surface contribution to sound power include supersonic
intensity and non-negative intensity. Supersonic intensity (SSI) was
first proposed by [5] based on near-field acoustic holography (NAH)
and Fourier transformation in wavenumber space. Another method is
the surface contribution method proposed by [6]. The surface
contribution method is a computational procedure to locate the
regions of a vibrating object that radiate far-field sound based on
acoustic radiation modes. The surface contributions depend on the
acoustic radiation modes, the effectiveness of the acoustic radiation,
and either the normal structural velocity or the acoustic pressure. The
surface contribution is always positive, avoiding cancellation effects
and providing a more direct visualization of the surface contribution
to sound power than the sound intensity, compared to the supersonic
intensity of the region with positive and negative contributions. Later,
[7] renamed this quantity non-negative intensity (NNI) for
comparison with the sound intensity. Liu et al. [8] compared these
two intensities for predicting radiated sound in detail. By using SSI and
NNI, the most contributing regions of vibrating structures can be
determined. This information can assist in noise control.

The process of meshing can be costly when performing large-scale
calculations, which makes the transition from computer-aided design
(CAD) to computer-aided engineering (CAE) very cumbersome [9].
In isogeometric analysis (IGA), conventional Lagrangian basis
functions are replaced by a B-spline basis function commonly used
in CAD, which alleviates the meshing burden [10-19]. As a boundary
representation method, IGABEM is naturally compatible with CAD
and can thus perform numerical analysis directly on CAD models
without having to go through the time-consuming meshing process
required by traditional FEM/BEM, and without having to deal with the
challenging volume parameterization required by the isogeometric
finite element method. As a result, IGABEM is excellent for solving
complicated boundary issues (Chen et al. [20]). IGA handles
singularities and moving boundaries effectively [21, 22]. In order to
solve the weakly singular and hypersingular integrals that emerge in
IGABEM, specialized integration methods have been devised [20, 23].
In this work, non-uniform rational B-spline (NURBS) basis functions
are used to discretize partial differential equations.

This article focuses on the adoption of NNI for topology
optimization of plate structures with the CLD design. Since NNI
can be regarded as the contribution to sound power, reducing the
contributions defined as NNI over some partial regions of interest
could be another design objective, different from the existing
optimizations. By optimizing the distributions of NNI, the
contributing pattern to sound power varied. That is to say, the
radiation pattern of the vibrating structure is optimized.

The remainder of this article is organized as follows: in Section 2,
vibro-acoustic analysis, based on the isogeometric finite element
method and the Rayleigh integral equation is presented. NNI is
established using the acoustic radiation modes. Section 3 presents
the complete optimization problem, including the sensitivity analysis,
the definition of objective functions, and updating the scheme of

design variables. The validation of the proposed optimization method
is demonstrated in Section 4, by means of a baffled plate example.
Finally, this work is concluded in Section 5.

2 Vibro-acoustic analysis

The following governing equations for the structure and fluid are
derived in the frequency domain. Throughout this contribution, the
time-harmonic term e−iωt will be applied, where i � ���−1√

is the
imaginary unit, ω = 2πf denotes the angular frequency, with f as
the excitation frequency in Hz, and t denoting time.

2.1 Isogeometric finite element modeling for
plate vibration

2.1.1 B-splines and non-uniform rational B-splines
Generally, the B-spline is constructed by the knot vector Ξ = [ξ0, ξ1,

. . . , ξm], where m = n + p + 1. The B-spline basis function Ni,p{ }n
i�1 is

defined, as given in Eq. 1 [24]:

Ni,0 ξ( ) � 1 if ξ i ≤ ξ < ξ i+1,
0 otherwise,

{ (1)

and for p ≥ 1, we have Eq. 2:

Ni,p ξ( ) � ξ − ξi
ξi+p − ξi

Ni,p−1 ξ( ) + ξ i+p+1 − ξ

ξ i+p+1 − ξ i+1
Ni+1,p−1 ξ( ), (2)

where ξ represents the parametric coordinate, p denotes the
polynomial order, and n is the number of basis functions or
control points. Eqs 1 and 2 are usually obtained using the Cox-de-
Boor recursive formula.

NURBS [9] is an important CAD geometric modeling technique
developed on the B-splines and is accepted as an industry standard.
The NURBS surface is defined, as given in Eq. 3:

S ξ, η( ) � ∑n
i�1

∑m
j�1

Rp,q
i,j ξ, η( )Pi,j,

Rp,q
i,j � Ni,p ξ( )Mj,q η( )Wi,j

∑n
i′�1

∑m
j′�1

Ni′,p ξ( )Mi′,q η( )Wi′,j′

,
(3)

where Ni,p(ξ) andMj,q(η) are the B-spline basis functions, η represents
the parametric coordinate, and Wi,j is the weight associated with the
control point Pi,j.

2.1.2 Boundary element method for exterior
acoustic problems

In order to calculate the Kirchhoff–Helmholtz integral equation
for exterior acoustic issues, the boundary element method (BEM) is
utilized to solve the well-known Helmholtz equation. The
Kirchhoff–Helmholtz boundary integral equation can be derived
from the Helmholtz equation using Green’s second theorem, as
shown in Eq. 4:

c x( )p x( ) + ∫
Γ

zG x, y( )
zn y( ) p y( ) dΓ y( )

� ∫
Γ
G x, y( )q y( ) dΓ y( ), x, y ∈ Γ, (4)

Frontiers in Physics frontiersin.org02

Zhang and Xu 10.3389/fphy.2022.1072230

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1072230


where x is the field point, y is the source point situated at the boundary
Γ, n(y) denotes the outward normal vector at point y, and z()/zn = ∇()
·n denotes the normal derivative. When the boundary is smooth
around point x, the coefficient c(x) is 1/2, and when x ∈ Ω, it is 1.
The integral equation produced by this formulation can be used to
calculate the sound pressure at points of the exterior domain. G (x, y),
as shown in Eq. 5, is Green’s function:

G x, y( ) � eik|x−y|

4π|x − y|. (5)

The linear system of the equation that results from discretizing the
aforementioned integral equation using the collocation method is
given in Eq. 6:

Hp � Gv, (6)
where H and G are the BEM influence matrices, which are typically
frequency-dependent and asymmetric, and p and v are vectors that,
respectively, contain unknown sound pressures and given acoustic
particle velocities on the boundary. Eq. 7 gives the definition of
acoustic intensity:

I � 1
2
R pv*( ), (7)

whereRstands for the real portion and ()* for the complex conjugate.
Eq. 8 defines the radiated sound power based on acoustic intensity:

P � ∫
Γ
I · n dΓ y( ), (8)

where n is the outward normal direction on Γ.

2.1.3 Plate vibration analysis
Following [25], the plate structure is assumed to be discretized into

three layers, as shown in Figure 1, that is, the constrained-layer
damping (CLD) plate. It is composed of a base layer, a visco-elastic
layer, and a constrained layer. Shear strains are only considered in the
constrained layer. Moreover, we neglect the energy dissipation in the
constrained layer and the base layer. In this work, we include the
damping effects of the visco-elastic layer by introducing an imaginary
component to Young’s modulus E as given in Eq. 9:

Ed � E 1 − iγ( ), (9)
where Ed and γ are the complex Young’s modulus and loss factor of
damping material, respectively. To model the constrained-layer
damping plate, we adopt the finite element model used by [25]. In

this model, the NURBS basis function is used to discretize the partial
differential equation, and the elemental matrices are composed of
three parts, as shown in Eq. 10:

Ke � Ke
b + Ke

v + Ke
c,

Me � Me
b +Me

v +Me
c,

(10)

whereKe
b,K

e
v,K

e
c andM

e
b,M

e
v,M

e
c represent the elemental stiffness and

mass matrices for the base, visco-elastic, and constrained layers,
respectively. By assembling the elemental matrices to the global
matrices, we have Eq. 11:

K − ω2M( )u � f s, (11)
where u is the displacement vector and fs is the structural load. For
convenience, we use Kd to represent (K − ω2M) in the following
sections.

2.2 Rayleigh integral for sound radiation

Assuming a baffled plate, the sound pressure at any point can be
computed via the Rayleigh integral equation, expressed as Eq. 12:

pf x( ) � iωρf
2π

∫
Γ

eikr

r
vf y( ) dΓ y( ), (12)

where pf is the sound pressure, r = |x − y| is the distance between point
x and y, k is the wavenumber, and vf is the particle velocity resulting
from the structural vibrations. After discretizing by the collocation
method, we obtain Eq. 13:

pf � Gvf, (13)

where pf denotes the sound pressure on collocation points, and the
particle velocity vf at the collocation points can be interpolated based
on the structural displacement u by vf = −vs = iωΘ−1Cfsu, where Θ is
the boundary mass matrix [6] and Cfs is the coupling matrix. G is the
coefficient matrix, which is dense and asymmetric. Then, the sound
power can be computed by the sound pressure and velocity using
Eq. 14:

P � −1
2
R pT

fΘvf*( ) � 1
2
R vTfZvf*( ), (14)

where ()T denotes the transposed matrix. Here, the minus sign is
introduced because of the direction of the particle velocity. Z = −GTΘ
is the impedance matrix, which is not symmetric due to discretization
error when using the collocation method. However, the

FIGURE 1
Plate structures with constrained-layer damping treatments.
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symmetrization of Z can be simply achieved by Z = (Z + ZT)/2. The
Rayleigh integral equation can be regarded as a special case of the
BEM, where H = H−1 = I. Considering the symmetry, the sound power
can be further rewritten as Eq. 15:

W � 1
2
vTfR Z( )vf* � 1

2
vTfZRvf* , (15)

where ZR is the resistive impedance matrix. Another alternation to
obtain ZR is first computing the sound power as the integration of
sound intensity over the surface Γ, as given in Eq. 16:

W � 1
2
∫

Γ
R p* x( )vf x( )[ ] dΓ x( )

� ωρf
4π

∫
Γ
∫

Γ
vf* x( ) e

ikr

r
vf y( ) dΓ x( ) dΓ y( ). (16)

Then, as given in Eq. 17, the entry of matrix ZR reads:

Zij
R � ωρf

2π
∫

Γj
∫

Γi

sin kr
r

dΓ x( ) dΓ y( ). (17)

If we use a one-point Gauss–Legendre quadrature scheme, the
entry can be approximated as given in Eq. 18:

Zij
R � ωρfSiSj

2π

sin krij
rij

, (18)

where rij denotes the distance between the collocation points located in
elements i and j and Si and Sj are areas of elements i and j. When i = j,
r → 0 and (sin kr)/r → k. Apparently, this approach is much more
efficient than the collocation method since it does not require
integrals. However, this approach cannot yield the sound pressure
field because of the singularity in eikr/r.

2.3 Non-negative intensity

To omit the cancellation effects of sound intensity, we use NNI
proposed by [6] and named by [7] to visualize the surface
contribution. Following references [6, 26], sound power can be
expressed by Eq. 19:

P � ∫
Γ
INNI x( ) dΓ x( ) � +1

2
βHΘβ, (19)

where INNI(x) denotes NNI, which is defined by Eq. 20:

INNI x( ) � +1
2
β* x( )β x( ), (20)

where β(x) is a quantity without physical significance and ()* denotes the
conjugate of complex values. Apparently, INNI(x) has to be non-negative.
After discretizing, the sound power can be reformulated as Eq. 21:

P � +1
2
βHΘβ, (21)

where ()H denotes the transpose conjugate of a complex matrix. As
proposed by [6], the complex vector β can be calculated by Eq. 22:

β � BΘvf � Φ
��
Λ

√
ΦTΘvf, (22)

where Φ and Λ are the matrix-storing eigenvector ϕ and diagonal
matrix-storing eigenvalue λ by solving the following generalized
eigenvalue problem, as shown in Eq. 23:

ZRϕ � λΘϕ. (23)

In fact, the computation of the sound power based on β is
equivalent to mapping the radiation modes, which could
apparently reduce the computational efforts the eigensolutions are
truncated, since the radiation is dominated by the first fewer radiation
modes in the low-frequency range.

3 Optimization problem

3.1 Optimization problem definition

Usually, the objective function of a structural-acoustic system can be
categorized into two main types. One is the sound pressure and its
variants at one or more points, and the other is the sound power and its
variants, which are more suitable for general noise and vibration control
in open domains. In this work, we adopt the second type and define the
optimization problem as given in Eq. 24:

min
μ

Π � Π u, pf( ),
s.t. ∑Ne

e�1
μeve − fv ∑Ne

e�1
ve#0,

0#μe#1 e � 1, . . . , Ne( ),

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(24)

where the objective function Π represents a real-valued function of state
variables u and pf. This expression is adopted for convenience because we
will investigate more than one objective function. μ � [μ1, μ2, . . . , μNe]T
is the design variable vector, andNe denotes the number of chosen design
elements. The symbol ve denotes the volume of the eth element and fv
denotes the corresponding volume fraction constraint.

3.2 Material interpolation with RAMP
formulation

Following the SIMP method, elemental matrices can be
interpolated as given in Eq. 25:

Ke μe( ) � Ke
b + μpeK

e
v + Ke

c,
Me μe( ) � Me

b + μqeM
e
v +Me

c,
(25)

where μe is the design variable assigned to the eth element and p and q are
the penalization factors and are usually chosen to be 3 and 1, respectively.
These factors make the intermediate value approach 0 (no visco-elastic
element) or 1 (visco-elastic element). Since the damping layer is attached
to the base structure, the problem of localized modes can be avoided, as
discussed by [27]. Then, the derivatives of the elemental matrices with
respect to the eth design variable can be directly given by Eq. 26:

zKe

zμe
� pμp−1e Ke

v,

zMe

zμe
� qμq−1e Me

v.
(26)

Eq. 26 will be used in the sensitivity analysis.

3.3 Design sensitivity analysis

In the present work, we choose the gradient-based algorithm to
solve the optimization problem described in Eq. 24. Hence, the
derivative of the objective function, that is, the sensitivity
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information, is necessary. In the computation of FEM/FMBEM
sensitivity, the adjoint variable method (AVM) exhibits excellent
accuracy and efficiency [28]. So, AVM is applied for the sensitivity
analysis in this work.

First, we can directly write the derivative of the objective function
by applying the chain rule as Eq. 27:

zΠ
zμe

� R zT1
zu
zμe

+ zT2
zpf

zμe
+ z3( ), (27)

where zT1 , z
T
2 , and z3 are auxiliary variables from [29]. z3 does not

contain the derivatives of state variables, that is, zu/zμe and zpf/zμe.
Since sound pressure can be computed directly from the particle
velocity via pf = Gvf = iωGΘ−1Cfsu, we get Eq. 28:

zΠ
zμe

� R zT1 + iωzT2GΘ
−1Cfs( ) zu

zμe
+ z3[ ]. (28)

Then, the direct differentiation of Eq. 11 yields Eq. 29:

zKd

zμe
u + Kd

zu
zμe

� zf s
zμe

� 0. (29)

Since we only consider design-independent load, the derivative of
structural load, that is, zfs/zμe vanishes. Combining Eqs 28 and 29, the
derivative of the objective function can be written as Eq. 30:

zΠ
zμe

� R z3 − zT1 + iωzT2GΘ
−1Cfs( )K−1

d

zKd

zμe
u[ ]. (30)

The derivative of displacement, that is, zu/zμe, is omitted in Eq. 30.
By defining the adjoint equation as given in Eq. 31:

λTKd � zT1 + iωzT2GΘ
−1Cfs( ), (31)

and the derivative of the objective function can be finally expressed by
the adjoint vector λ as given in Eq. 32:

zΠ
zμe

� R z3 − λT
zKd

zμe
u( ). (32)

The adjoint method is therefore not free since it requires solving
the extra adjoint equation. The adjoint equation, however, only needs
to be solved once because it does not contain derivative components.
According to the used interpolation scheme for the material properties
defined in Section 3.2, the derivative of the matrix Kd could be simply
computed, as given in Eq. 33:

zKd

zμe
� zK
zμe

− ω2zM
zμe

, (33)

from which, we have Eq. 34:

zD
zμe

�
zDe

zμe
0

0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, D � K or M. (34)

FIGURE 2
Flowchart of the detailed optimization procedure.

FIGURE 3
Computational grid.

FIGURE 4
Clamped plate example definition.
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3.4 Objective functions

Since the sound power can be calculated using the sound intensity
or NNI, we define two objective functions, as shown in Eq. 35:

PSI � −R 1
2
pHΘcv( ),

PNNI � +1
2
βHΘcβ,

(35)

where H denotes the conjugate transpose and Θc is the
corresponding boundary mass matrix for the chosen surface.
When Θc = Θ, we have PSI = PNNI = P. Note that PSI can be
negative due to the cancellation effects of sound intensity, whereas
PNNI is always non-negative. Following Eq. 27, we obtain Eq. 36 for
the objective function PSI:

zT1 � iωpH
fCfs,

zT2 � iωCfsu( )H,
z3 � 0,

⎧⎪⎪⎨⎪⎪⎩ (36)

and Eq. 37 for the objective function PNNI:

zT1 � 2ω2uHCT
fsB

HΘcBCfs,

zT2 � 0,
z3 � 0.

⎧⎪⎨⎪⎩ (37)

Based on the derived zT1 , z
T
2 , and z3, the derivatives of PSI and PNNI

could be easily calculated using Eqs 31 and 32.

3.5 Design variable updating scheme

Based on the sensitivity information, the method of moving
asymptotes (MMA), see Svanberg [30], is employed to solve the
optimization problem. The iteration procedure is repeated until the
relative difference of the objective function values in two adjacent
iteration steps is less than a prescribed tolerance τ, as shown in Eq. 38:

change � Πi+1 − Πi
∣∣∣∣ ∣∣∣∣

Πi < τ, (38)

where Πi denotes the objective function at the ith iteration step. The
detailed optimization procedure is presented as follows:

1. Modeling using NURBS. The analyzed structural domain is divided
into finite elements, and the impedance matrix and its real part are
also computed based on the finite element mesh.

2. Setting up the optimization model with an initial distribution given
for the design elements.

3. Solving the response problem described in Eq. 11. Then, the
objective function is evaluated based on the solutions u and p.
To achieve an efficient reanalysis, we only assemble matrices ZR

TABLE 1 Material properties of the constrained-layer damping plate.

Density Modulus Thickness Poisson’s ratio Loss factor

(kg/m3) (MPa) (mm)

Base layer 2,700 7 × 104 1 0.3 —

Visco-elastic layer 1,200 12 0.3 0.495 0.5

Constrained layer 2,700 7 × 104 0.5 0.3 —

FIGURE 5
Radiated sound power and truncation number versus frequency. (A) Sound power computed by sound intensity and non-negative intensity (NNI). (B)
Truncation number of radiation modes to achieve 99% accuracy.

Frontiers in Physics frontiersin.org06

Zhang and Xu 10.3389/fphy.2022.1072230

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1072230


(and Z) in the first optimization iteration, and these matrices will be
recycled in the following iterations.

4. Solving the generalized eigenvalue problem described in Eq. 23 if
required, and computing β based on the solution u. Similarly, we
also store the eigenvectors and eigenvalues for a possible
recycling step.

5. Evaluating the chosen objective function (PSI or PNNI). Then,
deriving auxiliary variables zT1 , z

T
2 , and z3 using Eq. 36 or Eq. 37.

6. Solving the adjoint Eq. 31 for derived zT1 , z
T
2 , and z3. With the

adjoint variable λ, the sensitivity values are computed using Eq. 32.
7. When the objective function converges like Eq. 38, optimization is

stopped. Otherwise, the design variables are updated using
the MMA.

8. Modifying the design variables by the volume-preserving density
filter [31], and the procedure is repeated from step 3.

The corresponding flowchart is shown in Figure 2.

4 Numerical examples

To investigate the validity and applicability of the developed
optimization approach, some numerical examples are performed in
this section. All the computations are implemented in an in-house
Fortran 95/2003 code. Sparse direct solver PARDISO is applied to all
computations involving the global dynamic stiffness Kd. Eigenvalue

FIGURE 6
Optimization results obtained by sound intensity and NNI. (A)Objective function computed by sound intensity and NNI. (B)Optimized µ distribution via
sound intensity. (C) Optimized µ distribution via non-negative intensity.
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problems described in Eq. 23 are solved using the ARPACK routines.
The convergence tolerance τ in the optimization is set to 10–4.

A baffled plate of dimensions 1 m × 1 m will be chosen as
the design object in the following example. It is discretized into 80 ×
80 four-node quadrilateral elements, as shown in Figure 3. The
finite element model is verified by comparing the natural
frequencies and modal loss factors from the present model with
those from a closed-form solution [32]. Regarding radiation
analysis, the collocation method will be only used when sound
intensity is required, otherwise the direct method without
integration will be applied instead, in order to save
computational costs. We assume the plate to be clamped at its
four edges and excited by four harmonic loads F = F0e

−iωt as shown
in Figure 4. Air is the acoustic medium, with c = 343 m/s and ρ =
1.21 kg/m3. The base and constrained layers consist of aluminum
with no damping loss, and the core layer is assumed to consist of a
visco-elastic material. Detailed material properties are listed in
Table 1.

As mentioned previously, the computational efforts will be
reduced when truncating eigensoultions in mapping the radiation
modes for evaluating NNI and sound power. Figure 5 shows the
Radiated sound power and truncation number versus frequency. In
Figure 5A, we compare the sound power computed by sound
intensity and NNI resulting from mapping truncated radiation
modes, and these two results match very well. We also investigate
the truncation number to achieve 99% accuracy compared with the
sound power computed by sound intensity in Figure 5B. From the
result, we notice that a truncation number of 4 is acceptable for the
calculation with a frequency range of 200 Hz. In fact, the sound
power is dominantly contributed by the fourth radiation mode
because the particle velocity corresponds to the fourth modal
pattern. This can be confirmed by investigating the coupling
factor of particle velocity with the radiation modes [33]. The
coupling factor between the particle velocity pattern and the
fourth mode is several orders of magnitude larger than the
coupling factor with the first three radiation modes. In the

FIGURE 7
Distributions of sound intensity and NNI at 100 Hz. (A) Distribution of sound intensity. (B) Distribution of NNI.

FIGURE 8
Different chosen surface Γc, cyan color represents the chosen parts. (A) Left parts. (B) Lower left part. (C) Lower left and upper right parts. (D) Four
corners.
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following calculations, we set a higher truncation number of 30 to
guarantee correctness and accuracy, and this still saves considerable
costs compared with the computation via sound intensity. As a
further investigation, we compare the optimization results, which
aim at minimizing the radiated computed sound power using
truncated acoustic radiation modes. The excitation frequency is
assumed to be f = 100 Hz. All the initial design variables are
given a uniform value of 1 to avoid possible local minimum. The
optimization iteration history is illustrated in Figure 6A. Figures 6B,
C show the optimized distributions of the design variables μ. Red
(μe = 1) represents the visco-elastic damping element, and blue (μe =
0) indicates that there is no visco-elastic element. Intermediate
values (0 < μe < 1) are not physical and are difficult to observe in
Figures 6B, C. It can be clearly seen that the two optimizations yield
almost the same iteration history and optimization solution. Slight

differences between the two optimized designs are possibly caused by
numerical error in the eigenvalue analysis and optimization solution.
This proves that mapping truncated radiation modes could be an
efficient approach to evaluate the sound power without losing
accuracy in the response analysis and optimization process at low
frequencies. Interestingly, we find that the optimized design yields an
even lower sound power (6.6 × 10–12 W) than that (9.7 × 10–12 W) of
the initial design with a full visco-elastic damping layer, which is
similar to the findings in [29]. This indicates that the investigated
optimization is a nonlinear problem and thus stresses the necessity of
optimization.

Figure 7 shows the distributions of sound intensity and NNI,
which are different. The result of NNI is consistent with the corner
radiation introduced by [34] and confirmed by [5] using the
supersonic intensity, while the sound intensity is not consistent

FIGURE 9
Optimization results of PSI and PNNI. The left parts are chosen as the investigated surface Γc. (A) Distribution of design variables, for minimizing PSI. (B)
Distribution of design variables, for minimizing PNNI. (C) Iteration history of sound power, PSI and PNNI, for minimizing PSI. (D) Iteration history of sound power,
PSI and PNNI, for minimizing PSI.
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since it could be positive or negative. This is similar to the result
presented by [6] where the authors used a (1 × 1) structural modal
shape as the particle velocity pattern. It has been clearly shown
that NNI (computed via mapped radiation modes) could localize

the most contributing areas on structural surfaces, while sound
intensity fails due to its cancellation effects. But in the
aforementioned optimization, NNI does not outperform sound
intensity since they give completely the same objective function

FIGURE 10
Distributions of sound intensity and NNI of different designs. (A) Sound intensity of initial design. (B)NNI of initial design. (C) Sound intensity of optimized
design in Figure 9A. (D) NNI of optimized design in Figure 9A. (E) Sound intensity of optimized design in Figure 9B. (F) NNI of optimized design in Figure 9B.
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when the whole surface is selected, that is, the radiated sound
power. NNI, however, makes sense if we only want to decrease the
radiation contributed by the partial surface. In this case,
integration of the sound acoustic intensity, that is, PSI, on the
prescribed region does not directly correspond to the
intensity that radiates to the far-field. This is the reason why

we implement the integration of NNI as the objective function
instead of PSI.

In Figure 8, we split the plate surface into several pieces and
choose different pieces as the investigated area Γc where we want to
minimize the sound radiation. When choosing the left parts as Γc,
the optimization results are obtained and illustrated in Figure 9.

TABLE 2 Optimized results at 100 Hz when the lower left part in Figure 8B is chosen as the investigated surface Γc. The left column corresponds to the results with PSI
being the objective function, and the right column corresponds to the results with PNNI being the objective function.
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The initial values of the design variables are both set to 0.7. From
this figure, it can be clearly seen that these two objective functions
yield notably different optimized distributions of design variables,
as shown in Figures 9A, B. After the optimization, PSI drops from
4.33 × 10–6 W to −1.18 × 10–3 W, while the integration of NNI, that
is, PNNI, increases from 4.33 × 10–6 W to 1.22 × 10–3 W. That is to

say, the real contributions from the left parts are enlarged by the
optimization, which indicates that PSI cannot correspond to the
energy radiated to the far-field. By contrast, the optimization
minimizing PNNI produces a reduction from 4.33 × 10–6 W to
2.19 × 10–6 W. The coincidence between PSI and PNNI at the
beginning is due to the symmetry along the y axis with a

TABLE 3Optimized results at 100 Hzwhen the lower left and upper right parts in Figure 8C are chosen as the investigated surface Γc. The left column corresponds to the
results with PSI being the objective function, and the right column corresponds to the results with PNNI being the objective function.
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uniform distribution of design variables. From Figures 9C, D, we
notice that the changing tendency of PSI is opposite to that of PNNI,
but PNNI and sound power W show a similar tendency. While the
contributions from the left parts are considerably decreased, the
sound power almost doubles from 8.66 × 10–6 W to 1.64 × 10–5 W.

Figure 10 presents the distributions of sound intensity as well as
NNI of the initial design (first row) and two optimized designs
(second and third rows). To achieve a better optimization result, we
conduct the optimization with different initial values of the design
variable: μ = 0.7 and μ = 1 and then show the better one here. This

TABLE 4 Optimized results at 100 Hz when the four corners in Figure 8D are chosen as the investigated surface Γc. The left column corresponds to the results with PSI
being the objective function, and the right column corresponds to the results with PNNI being the objective function.
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treatment will also be adopted in the following computations. The
sound intensity and NNI patterns of the initial design are very
similar to those in Figure 7 since they both correspond to a uniform
distribution of design variables (μ = 0.7 and μ = 1.0). Hence,
homogeneous damping distributions have a very small influence on
the patterns of sound intensity and NNI except for detailed values.
It is observed the sound intensity and NNI are redistributed by the
optimizations in a different manner, which yields inhomogeneous
damping distributions. Regarding the sound intensity, there are
always adjacent areas exhibiting positive and negative values before
and after optimization. From NNI, we notice that two radiating
sources located at the left corners become weaker compared with
the sources in the right corners after two optimizations. However,
compared with the unoptimized source in Figure 10B, the two left
sources in Figure 10D correspond to a higher NNI due to improper
optimization, with PSI being the objective function. When using
PNNI, these two corner sources are successfully suppressed. The
optimization makes the contributions from the left corners to the
sound power reduce from 50% to approximately 13%. This is
attributed to improved cancellation effects of the acoustic source
and sink in the left region, and thus less acoustic energy radiates to
the far-field. In general, the optimization finally results in an
inhomogeneous distribution of structural damping and
redistributes the acoustic sink and source accordingly to
minimize the objective function. Although the sound intensity
performs well when minimizing the sound power is of interest,
it shows inferiority in radiation control of the partial or local
regions.

In Table 2, we present the optimization results for different
investigated surface Θc, that is, the lower left part. Integrations of
the sound intensity and NNI are also selected as the objective
function. The first row shows the optimized distributions of design
variables μ, resulting from the two objective functions. The second
and third rows show the distributions of sound intensity and NNI,
and the last row gives the power values before and after
optimization. Since the optimization problem is not symmetric
along the x and y axes, the resulting designs are also not symmetric
anymore. From Table 2, we can see that PSI decreases from 2.2 ×
10–6 W to −5.1 × 10–4 W, showing a large reduction. PNNI, however,
increases from 2.2 × 10–6 W to 1.4 × 10–3 W. Since NNI provides a
more accurate visualization of the contribution to sound power,
optimization based on PSI becomes meaningless because it
increases the radiation from the chosen regions. Furthermore,
the contributions from the lower left corner are still higher than
those from the upper right corner after optimization aiming to
decrease PSI. That is to say, PSI fails to give the desirable
contributing/radiation pattern. When optimizing the damping
distribution based on PNNI, the power radiated from the
predefined region reduces to a very low value of 4.3 × 10–7 W.
The lower left corner becomes the least contributing compared
with all other corners, which is exactly as expected. In addition, two
corners adjacent to the lower left corner also become
inconspicuous due to the redistributed damping. After
optimization, there is only one hot spot located in the upper
right corner which is opposite to the chosen region. The four-
corner radiator becomes a one-corner radiator. Comparing the
sound power, we find that all optimized solutions yield a high
sound power because the optimization target is not minimizing the
sound power radiated from the entire surface. From the sound

powers, it can be seen that the increase caused by optimization
using PSI can be very large, which is unfavorable. Compared with
PSI, the increase in sound power introduced by optimization using
PNNI is much smaller.

Similar to Tables 2–Tables 4 present optimization results with
different investigated surfaces Θc. In Table 3, the lower left and
upper right parts are selected. It can be clearly seen that two
objective functions generate notably different distributions of
the design variables with volume fractions of 0.21 and 0.47,
respectively. The four-corner radiator becomes a two-opposite-
corner radiator after the two optimizations, minimizing FSI and
FNNI, respectively. Because Γc in Figure 8D is symmetric along both
the x and y axes, this finally leads to symmetric distributions of
damping, as shown in Table 4. We can notice that the distribution
of sound intensity and NNI is very similar to that seen in Figure 7,
which results from a homogeneous damping distribution. It can be
considered that the waves traveling toward high-damped regions
(but with opposite directions in one-fourth of the plate area) cancel
each other. Hence, the corner mode remains nearly the same as the
homogeneous mode. Interestingly, optimization minimizing FSI
produces a lower FNNI than optimization aiming at minimizing
FNNI. From this aspect, the optimized solution of FNNI is not
optimal, indicating that the applied optimization does not make
sense. However, we want to stress that this issue is very common in
topology optimization for dynamic and acoustic problems since the
optimization problem for these investigated systems are highly
non-convex. A local optimum is generally reached by the gradient-
based algorithm, and it is very hard to get a global optimum. This is
the reason why we conduct optimization with different initial
values of the design variables, expecting to obtain a good
solution (maybe not optimal). Those optimized solutions,
however, are generally good designs, which could provide
guidance for design and analysis. Thus, choosing a proper initial
value for the design variables is of importance for topology
optimization. NNI, which could visualize the contributions of
the element/region to sound radiation, has the potential to
generate a good initial design. Optimization based on this initial
design might converge faster than normal initial values, or
converge to a better local minimum. This will be investigated in
future work.

From the results discussed previously, it can be clearly seen that
the radiation pattern is optimized by using predefined objective
functions. Optimized designs usually show higher sound powers
than unoptimized designs. However, the increases in sound power
caused by optimization using FNNI are not usually very large and
can sometimes be acceptable if the sound power is not of high
importance. This is attributed to how we select regions with high
contributions to sound radiation as the investigated area Γc, such as
the corners of the plate. This is reasonable because these regions are
always of greater interest compared with other less contributing
areas. In contrast, optimization possibly produces a sound power
several orders of magnitude larger when choosing FSI as the
objective function. Such enormous increases are usually
unfavorable in engineering. Hence, it is not recommended to
optimize the radiation pattern based on the integration of sound
intensity.

Finally, we have to admit that the physical meanings of NNI are
still unclear, and further research on NNI is required. However, it can
be clearly seen that optimization using NNI has the potential to
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optimize the radiating pattern and outperforms the sound intensity in
designing the radiation pattern.

5 Conclusion

An approach to optimizing the contributing pattern to
radiated sound power from vibrating structures has been
introduced. Two different predefined objective functions,
namely, the integrations of NNI and sound intensity over
chosen surfaces, are applied and compared in the optimization.
By using these objective functions, an optimized damping layer
distribution can be found which reduces the contribution to the
sound power from the surfaces of interest. When the entire
surface is of interest, these two objective functions are
equivalent to the radiated sound power, and two optimizations
give almost the same result. However, NNI can be extracted from
truncated radiation modes, and usually requires less
computational effort than sound intensity. This could improve
the computational efficiency of optimization. When only partial
surfaces are of interest, two predefined objective functions
produce quite different optimized designs. However,
optimization using the sound intensity possibly yields an
enormous increase in the radiated sound power, which is
usually unfavorable in engineering designs. Furthermore, it
sometimes fails to generate a desirable radiating pattern. In
contrast, optimization using NNI always leads to a desirable
radiating pattern with only a slightly increased sound power.
Thus, we strongly recommend using NNI to optimize the
radiating/contributing pattern. The optimization procedure
presented here provides a new way for radiating pattern control.
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