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Non-Hermitian skin effect (NHSE), where huge modes are accumulated at

system boundaries, offers new possibility for steering the transport and

localization of light by non-Hermiticity. Here, the direction-dependent NHSE

is proposed in a photonic waveguide array via spatially complex modulation,

where the skin modes tend to localize at different boundaries for opposite

propagation directions. We utilize complex modulation to arouse anisotropic

coupling between symmetric and anti-symmetric modes in multimode

waveguides and further match the refractive index of adjacent waveguides.

In this way, a non-Hermitian Su–Schrieffer–Heeger (SSH) lattice that supports

NHSE is achieved. In particular, the anisotropic coupling is highly unidirectional.

For forward direction, it allows mode conversion from antisymmetric modes to

symmetric modes. However, the process is forbidden for backward direction.

As a result, the skin modes tend to locate at lower boundary for forward

propagation but the localization direction is reversed for backward injection.

Our results provide a potential platform to investigate NHSE on photonic chips

and may find applications in non-magnetic unidirectional devices.
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Introduction

The ability to control the flow of light is of fundamental significance and desired

for the next-generation of photonic integrated devices [1]. Inspired by band theory

developed in solid state physics, its photonic analogies, such as photonic crystals [2],

ring resonator arrays [3–5], and waveguide arrays [6–8], have sparked a wide range of

applications by taking advantage of micro/nanofabrication technology. In particular,

waves tunneling dynamics in coupled waveguides resembles that of electron hopping

in crystals. Therefore, waveguide arrays are successfully utilized to simulate unique

electron dynamics that may be difficult observed in electron crystal. Discrete

diffraction [9], Bloch oscillation [10, 11], dynamic localization [12, 13], Anderson
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localization [14], and massless particle [15] were theoretically

and experimentally demonstrated in different kinds of

waveguides, which in turn provide new approaches to

controlling light transport and localization. In addition,

synthetical gauge fields can be generated by periodically

bending waveguides [16], dynamical modulation of

refractive index [17, 18], or using orbital coupling [6, 19],

which give rise to Aharanov-Bohm caging [19], Fouquet

topological insulator [20], high-order topological insulator,

and semimetals [21, 22].

Recently, band theory in non-Hermitian photonic systems

has also attracted a lot of attention with considering the

influence of gain and loss. The early studies mainly focus

on parity-time (PT) and anti-PT-symmetric systems where

non-Hermiticity is introduced by on-site gain and loss [23,

24]. On the other hand, non-Hermiticity can also be produced

by anisotropic coupling, which leads to intriguing non-

Hermitian skin effect (NHSE) with a number of modes

accumulated at system boundaries [25]. The discovery of

NHSE deepens the previous understanding of bulk and

topological edge modes in the sense that bulk modes can

be localized but topological edge modes may become extended

[26]. Therefore, the traditional bulk-boundary

correspondence is broken down and non-Bloch band

theory is subsequently developed to indicate the existence

of topological modes. In addition, NHSE itself belongs to a

topological phenomenon protected by spectral winding

number, which develops a new way for manipulating light

[27]. Abnormal phenomena were discovered with the aid of

NHSE, such as light funneling [28], self-acceleration [29], self-

healing [30], and anomalous single-mode lasing [31]. NHSE

are reported in various platforms, such as quantum walks [32],

cold atoms [33], electric circuits [34], acoustics [35], optical

fibers [28], and photonic ring resonator arrays [4].

In this work, we present another platform by using

modulated waveguide arrays to achieve NHSE. The

waveguides undergo spatially refractive-index modulation

and gain-loss modulation along light propagation direction

at the same time, namely the complex modulation [36]. Such

modulation yields one-way mode conversion in multimode

waveguides, which was theoretically proposed in long-period

grating and experimentally implemented in silicon

waveguides [37–39]. Here, we utilize a set of modulated

waveguides with each supporting two TE-polarized modes

and further turn their refractive index to match the detuning

of propagation constants of symmetric and anti-symmetric

modes between adjacent waveguides. In this approach, we can

create a non-Hermitian SSH photonic lattice that sustains

NHSE with non-Hermitian anisotropic coupling induced by

complex modulation. Since anisotropic coupling is

unidirectional, NHSE inherits this direction-dependent

behavior and tends to localize at different boundaries for

different transport directions.

Theoretical model for anisotropic
coupling

We start by investigating the anisotropic coupling aroused by

complex modulation in a single photonic waveguide. Figure 1A

shows the scheme of a waveguide where light propagates along z

direction. The relative refractive indexes of cladding and core are

denoted as n0 and ncore, respectively. For simplicity, we assume

the cladding is air with n0 = 1. The waveguide holds two modes

under TE polarization including symmetric and anti-symmetric

modes, which propagation constants are denoted by kzs and kza.

In Figure 1B, we plot the band structure of waveguides without

modulation, namely, the propagation constant versus incident

frequency. The insert illustrates the typical modal profiles of

symmetric and anti-symmetric modes.

In general, the two modes are orthogonal to each other and

thus the mode conversion is forbidden between them without

modulation. To make them coupled, we add periodic modulation

of complex permittivity along z direction. The modulation

function reads as

Δε x, z( ) � sign x − x0( ) Δεr cos
2πz
Λ

+ iΔεi cos
2πz
Λ

− ϕ( )[ ] (1)

where x0 denotes center location of the waveguide, Δεr and ΔεI
are the amplitudes of the real and imaginary parts of the dielectric

perturbation, Λ is the modulation period, and ϕ is the phase

difference between real and imaginary modulation. The

modulation profile is odd along x direction with respect to x0.

When phase matching condition is satisfied with 2π/Λ = kzs—kza,

the mode conversion is aroused between symmetric and

antisymmetric modes. In the modulated region, the electric

fields can be written as

E x, z, t( ) � as z( )Es x( ) exp i kzs − zωt( )[ ]
+ aa z( )Ea x( ) exp i kza − zωt( )[ ] (2)

where Es,a denote the modal profiles of symmetric and anti-

symmetric mode, as and aa are their normalized amplitudes,

respectively. When light is injected from the left side of the

waveguide (forward direction), the real modulation is ahead of

the imaginary modulation, and the phase difference is positive ϕ.

By utilizing slowing varying approximation, one can derive the

coupled mode equation in the modulated region for the forward

propagation as follows

−i d
d

as
aa

( ) � 0 cr + ici exp iϕ( )
cr + ici exp −iϕ( ) 0

( ) as
aa

( ) (3)

where the coupling coefficients are

cr,i � 1
2
ε0ω∫Δεr,iE*

s x( )Ea x( )dx (4)

The result indicates the complex modulation leads to

complex coupling between symmetric and anti-symmetric

modes. The phase difference ϕ between real and imaginary
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modulation acts as an effective gauge potential [40]. Its

interaction with complex coupling finally leads to anisotropic

coupling. It becomes more straightforward with considering a

special case as ϕ = π/2, corresponding to PT-symmetric

modulation [41]. In this case, the coupled mode equation

reduces to

−i d
d

as
aa

( ) � 0 cr + ci
cr − ci 0

( ) as
aa

( ) (5)

where the off-diagonal elements are different. When the real and

imaginary modulations have the same strength with Δεr = Δεi,
the two coupling coefficients are equal with cr = ci. In this case, it

only allows mode transition from antisymmetric to symmetric

modes while the inverse conversion is forbidden.

In contrast, for the backward propagation, the imaginary

modulation is ahead of the real modulation. Then the effective

gauge potential becomes negative with ϕ = −π/2. As a result, the
coupled mode equation for the right-side injection reads as

−i d
d

as
aa

( ) � 0 cr−ci
cr + ci 0

( ) as
aa

( ) (6)

with off-diagonal elements switched. As cr = ci, the mode

conversion is reversed. The power can couple from

symmetric to antisymmetric mode. However, no energy

transfers from anti-symmetric mode to symmetric one.

The one-way coupling behaviour is schematically indicated

by the arrows in Figure 1B.

We further place an array of modulated multimode

waveguides to realize a non-Hermitian SSH lattice, as shown

in Figure 1C. Figure 1D plots the propagation constants of two

modes as a function of the refractive index ncore with incident

wavelength λ = 1.55 μm. The width of each waveguide is fixed at

w = 1 μm. The blue and red lines stand for symmetric and

antisymmetric modes, respectively. The two modes supported in

a single waveguide are coupled by the complex modulation. We

further adjust the refractive index of every waveguide such that

the symmetric and anti-symmetric modes between adjacent

waveguides have the same propagation constants and can be

coupled. We first set the refractive index of the first waveguide to

ncore = 1.5, then calculate the effective refractive index of the two

modes in this waveguide, which are neff = 1.403 for symmetric

mode and 1.116 for antisymmetric mode, respectively. In order

to make the second waveguide couple with the previous

waveguide, we should adjust the refractive index of second

waveguide such that the antisymmetric mode of second

waveguide is the same as that of the symmetric mode of the

first waveguide. Then, the refractive index of the second

waveguide is determined to be ncore = 2.084. Following this

way, we can determine all refractive index of every waveguide.

The refractive index from upper to lower waveguides is set to

FIGURE 1
Schematic to construct non-Hermitian SSH lattice using complex modulation. (A) The diagram of a slab waveguide. (B) Band structures of the
waveguide. The blue and red lines stand for symmetric and anti-symmetric modes. Their mode profiles (Ey) are shown in the insert. The two modes
are coupled under spatial modulation. (C) The diagram of a waveguide array. (D) Propagation constants versus the refractive index of waveguide
core. The width and incident wavelength are fixed at w = 1 μm and λ = 1.55 μm. (E) and (F) are the effective lattice for forward and backward
directions, respectively. The intracell couplings are different for two lattices.
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ncore = 1.50, 1.80, 2.08, 2.35, 2.598, 2.831, 3.053, 3.265, and 3.467.

The materials for the parameters adopted can be SiO2 and Si. The

refractive indexes of Si and SiO2 are 1.45 and 3.45, which cover

the range of refractive index used above. Therefore, we could use

the hybrid waveguide made by Si and SiO2 to design the proposed

model. In this way, we could realize an effective coupled photonic

lattice with non-Hermitian coupling, as indicated by the red and

blue dots in Figure 1D. We have briefly shown the periodically

modulation results in a coupled mode equation with complex

coupling for mode conversion process. More intuitively, we

indeed integrate on-site gain and loss into the waveguide. As

the on-site dissipation is periodically varied, it can provide a

wavevector to meet the mismatch between symmetric and

antisymmetric modes. In this way, the two modes can be

coupled and the effective coupling coefficients are imaginary.

This complex coupling occurs in the momentum space between

symmetric and anti-symmetric modes. We emphasis that the

real-space coupling, that is, the couplings between neighboring

waveguides, are still real-valued. To further consider the

unidirectional coupling generated by complex modulation, the

proposed SSH lattice is direction-dependent since it inherits the

unidirectional behaviour. The effective lattices for forward and

backward directions are shown in Figures 1E,F, respectively. The

intracell couplings are inversed for opposite directions.

To further gain insights into the unidirectional coupling, we

perform full wave simulation based on finite element method. As

a comparison, we present the transport of light as only the real

part of dielectric permittivity is modulated. The distributions of

electric field (Ey) are shown in Figure 2A where light with

wavelength λ = 1.55 μm is launched from the left side of

waveguide, corresponding to forward propagation. Other

parameters are set as w = 1 μm, ncore = 1.5, and n0 = 1. The

propagation constants for symmetric and antisymmetric modes

are figured out to be kzs = 5.69 μm−1 and kza = 4.52 μm−1,

respectively. The modulation period is Λ = 2π/(kzs − kza) to

match the detuning of two modes and the modulation amplitude

is Δεr = 0.1. The insert plots the effective lattice in which the

transition is bidirectional. The results show that the

antisymmetric mode at the incidence evolves into symmetric

mode and then transfers back to antisymmetric mode. The

coupling is bidirectional and can be also reflected by plotting

mode amplitudes, as indicated by the blue line for symmetric and

red line for antisymmetric mode in Figure 2B. At propagation

distance z = 25 μm, we see aa = 0 and as = 1, implying all light

completely converts into symmetric modes. As propagation

distance increases, aa increases and as decreases, indicating

light transfers back to antisymmetric modes. The same

behaviour applies in backward injection due to the reciprocity

in momentum space [42]. Figure 2C shows the field distributions

in forward propagation as the waveguide is under complex

modulation. The real and imaginary modulation strength is

equal as ΔεI = Δεr and the phase difference is ϕ = π/2. The
coupling is completely unidirectional, as shown in the inset of

Figure 2C. The injection of antisymmetric mode will stimulate

symmetric mode. However, it will not transfer back. As a result,

the symmetric mode is dominated at the output. We also plot the

amplitudes of two modes as a function of propagation distance in

Figure 2D. The amplitude of symmetric mode linearly increases

(blue line) while the antisymmetric mode (red line) stays

unchanged. For backward propagation, as shown in Figure 2E,

the injected antisymmetric mode remains unchanged and cannot

transfer to symmetric mode. This can be seen from mode

amplitudes as well, as plotted in Figure 2F. The amplitude for

antisymmetric mode (red line) keeps at unity for different zwhile

FIGURE 2
One-way mode conversion under complex modulation. (A)
The simulated distribution of the electric field (Ey) under real
modulation for the forward propagation. The red arrow indicates
propagation direction. (B) The amplitudes of symmetric (blue
line) and anti-symmetric (red line) modes along propagation
distance z under real modulation. (C) and (E) are the distribution of
the electric field under complex modulation for the forward and
backward injections, respectively. (D) and (F) are amplitudes of two
modes corresponding to C and E, respectively. The real and
imaginary parts of permittivity perturbation are equal with Δεi =
Δεr = 0.1. For complex modulation, the phase difference is fixed at
ϕ = π/2.
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it is vanished (blue line) for symmetric mode. Such one-way

mode conversion clearly reflects the direction-dependent

coupling due to complex modulation.

We emphasis that we only use spatial modulation without

time modulation. As a result, the proposed model does not break

Lorentz reciprocity and cannot be used for optical isolators. We

surely obtain asymmetric behavior in mode conversion.

However, it is not necessary to break Lorentz reciprocity as

our system still respects tij = tji with tij denoting transmission

coefficients from j mode into i mode. By involving time

modulation, Lorentz reciprocity can be broken and the

transmission coefficients fulfill tij ≠ tji. In this case, it is

possible to construct an isolator.

Non-Hermitian skin effect

As discussed above, a non-Hermitian version of SSH model

can be realized by couple a set of modulated waveguides. We now

analyse the eigenvalues and eigenvectors to clearly show the

appearance of NHSE in the proposed systems. We consider the

effective gauge potential is ϕ = π/2. Then the Bloch Hamiltonian

for forward direction corresponding to Figure 1E is given as

follows

Hf k( ) � 0 cr + ci + c2e
ik

cr − ci + c2e
−ik 0

( ) (7)

with cr ± ci denoting intracell coupling, c2 signifying intercell

coupling, and k representing Bloch momentum. Such a non-

Hermitian model has been studied in various systems,

exhibiting NHSE under OBC and non-Bloch bulk-boundary

correspondence [26, 43, 44]. Here we focus on NHSE, which

can be indicated by eigenvalue spectra. Figures 3A–C plot the

eigenvalue spectra on the complex plane for three different

anisotropic couplings with ci = 0, cr/2, and cr, respectively.

Other parameters are fixed at cr = 1 and c2 = 0.5. The blue dots

and red circles stand for PBC and OBC, respectively. As ci = 0,

the intracell coupling is isotropic and the system is Hermitian.

The spectra for OBC and PBC are real and almost identical to

each other, as shown in Figure 3A. In this case, there is no

NHSE under OBC. The corresponding distributions of

eigenmodes are plotted in Figure 3D. The modes are

extended throughout all sites. As ci = cr/2, the periodic

spectrum forms closed loops in the complex plane. In

FIGURE 3
NHSE inmodulated waveguide arrays. (A–C) Are the eigenvalue spectra for three different imaginary coupling strength with ci = 0, ci = cr/2, and
ci = cr, respectively. The blue dots and red circles stand for periodic and open boundaries, respectively. (D–F) Are the distributions of eigenmodes
under OBC for forward propagation. (G–I) Are eigenmode distributions for backward propagation.
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contrast, the spectrum for OBC collapses into lines that

resides within the loops for PBC. This is a typical feature

of NHSE. According to bulk-boundary correspondence based

on spectral winding, NHSE will take place under OBC if

periodic spectra enclose any area. The spectral winding is

given by

W � ∫ π

−π
dk
2π

zkarg Hf k( ) − Eb[ ] (8)

where Eb is any base point. The spectral winding number is to

characterize the number of times of complex eigenvalues

encircling Eb. The non-zero winding number indicates NHSE

will appear in the system under OBC. If periodic spectra enclose

any non-zero area, the base point can be chosen within the loop,

which leads to W ≠ 0. In Figure 3E, we plot the distributions of

eigenmodes, which are accumulated at the left boundary and

exponentially decrease with distance away from the boundary. As

we further increase the anisotropic degree with ci = cr, the

enclosed area of periodic spectrum increases, as shown

Figure 3C. NHSE effect becomes stronger in the sense that

eigenmodes experience stronger localization at the left

boundary, as shown in Figure 3F.

For backward direction, the effective gauge field switches to

negative value and the intracell coupling changes as well. The

Bloch Hamiltonian corresponding to Figure 1F is given by

Hb k( ) � 0 cr − ci + c2e
ik

cr + ci + c2e
−ik 0

( ) (9)

The spectra for backward direction are similar to that of

forward propagation. However, the location of skin modes is

reversed. Figures 3G–I plot the distributions of eigenmodes for

backward direction for ci = 0, cr/2, and cr, respectively. As ci = 0, as

shown in Figure 3G, there are no skin modes. The eigenmodes

are distributed throughout all sites, just like forward case. In

contrast, when ci = cr/2 and ci = cr, as shown in Figures 3G,H, one

can observe NHSE and skin modes are exponentially

accumulated at the right boundary.

The NHSE and the direction-dependent behavior can be

directedly viewed from light propagation by full wave simulation.

In Figure 4, we employ nine modulated waveguides to achieve a

SSH lattice. Each waveguide underlies complex modulation with

ϕ = π/2. The refractive index of each waveguide is the same as that

in Figure 1D. To generate the same coupling strength between

symmetric and antisymmetric modes in the same waveguide, the

modulation amplitudes of different waveguides should be

adjusted. From upper to lower, the modulation amplitudes of

dielectric permittivity are Δεr = 0.12, 0.13, 0.15, 0.16, 0.18,

0.20.0.21, 0.23, and 0.24 with the modulation vectors 2π/Λ =

0.287k0, 0.303k0, 0.288k0, 0.270k0, 0.253k0, 0.238k0, 0.226k0,

0.215k0, and 0.204k0. As a result, the intracell couplings are

identical, corresponding to cr = 0.0628 μm−1. On the other hand,

the spatial spacing should be altered as well to make intercell

couplings identical. The spacing from upper to bottom is d =

1.59 μm, 1.41 μm, 1.30 μm, 1.24 μm, 1.20 μm, 1.17 μm, 1.14 μm,

and 1.12 μm, which leads to coupling coefficient c2 = 0.044 μm−1.

In this way, a photonic SSH lattice is created. Then, we launch

light from the second waveguide at the bottom with

antisymmetric modes. Figures 4A–C show the light

propagation for forward propagation as Δεi = 0, Δεr/2, and
Δεr, respectively. As Δεi = 0, light spreads and more and more

waveguides are excited during the propagation, displaying

discrete diffraction [Figure 4A]. As Δεi = Δεr/2, light tends to

localize at the lower boundary with the aid of NHSE [Figure 4B].

As we further increase imaginary modulation with Δεi = Δεr, the
localization becomes stronger [Figure 4C]. These results indicate

the skin modes tend to localize light at the bottom of waveguide

array. We further inject light from the right side, corresponding

to backward propagation, as shown in Figures 4D–F. As Δεi =
0 [Figure 1D], there is no NHSE and light spreads during the

evolution, just the same as Figure 1A. In contrast, in the presence

FIGURE 4
Wave dynamics for direction-dependent NHSE. (A–C) Are the distributions of electric fields (|E|) for forward direction with Δεi = 0, Δεr/2, and Δεr,
respectively. (D–F) Are the field distributions for backward propagation. The arrow in the insert denotes the propagation direction.
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of NHSE, light tends to localize at the upper boundary for

backward propagation [Figures 4E,F], significantly different

from the forward direction. The results clearly show the

direction-dependent behavior of NHSE using complex

modulation. The wave propagation in Figure 4F is not very

well confined into a single waveguide for the backward

propagation. It may be caused by the following two reasons.

Firstly, the input ports locate at the lower boundary, which is just

near the location boundary for forward propagation but far from

location boundary for backward injection. Secondly, the designed

waveguide array is not perfectly equivalent to a tight-binding

model and the coupling coefficients for the backward direction

are not completely vanished. Anyway, the results can still reflect

the unidirectional localization of NHSE.

Conclusion

In conclusion, we have proposed NHSE in waveguide arrays

based on complex modulation. The complex modulation could

arouse non-Hermitian coupling and effective gauge fields between

symmetric and anti-symmetric modes, which interaction finally

leads to anisotropic coupling. By coupling a set of waveguides

and making the propagation constants of neighboring

waveguides matched, we successfully create a photonic SSH

lattice sustaining NHSE. Since the effective gauge fields switch its

sign for opposite propagation directions, the anisotropic coupling

changes its relative strength as well. Therefore, the localization

direction of NHSE is direction-dependent in the sense that skin

modes are accumulated to locate at the lower boundary for forward

direction and upper boundary for backward direction. The proposed

modelmay be experimentally implemented in dielectric waveguides.

The modulation of real part of refractive index can periodically

embed sinusoidal-shaped structure at the top of the silicon

waveguide, while the imaginary part of modulation is realized by

integrating periodically curved Ge or Cr layers [38]. In order to

match the refractive index of adjacentwaveguides, one can adjust the

width and the height of Si. The difficultymay lie in how to fabricate a

large-scale waveguide array together with each waveguide under

complex modulation with different parameters. As NHSE is a

topological phenomenon, the accuracy requirements of some

parameters can be relaxed such as coupling coefficients,

waveguide spacing, and the width of waveguides. We believe the

proposed model can be realized soon. Here we only discussed skin

modes but topological modes can also be explored in these systems

to detect non-Bloch bulk-boundary correspondence and extended

isolated modes [45]. Furthermore, the spatial modulation does not

break optical reciprocity. The similar mechanism can be extended to

dynamically modulated waveguides with involving temporal

modulation. One could construct a special photon transition

where transition can occur between two modes at different

frequency for forward direction. However, for backward

propagation, mode transition is forbidden due the wavevector

mismatch, which may give rise to non-reciprocal transport of

skin modes. Our results pave a way to chip-scale localization

with the aid of NHSE and may find potential applications in

non-magnetic unidirectional devices.
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