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We investigate the behavior of the orbital angular momentum (OAM) flux

density of partially coherent vortex (PCV) beams in atmospheric turbulence.

It is shown that for PCV beams with different spatial coherence structures, the

OAM flux density distribution exhibits rich variations along the propagation path.

Our findings provide insight into the use of the OAM in free-space optical

communications when turbulence effects are significant.
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Introduction

During the past few decades, the study of vortex structures in optical fields, and more

complicated wavefield singularities, has become a stand-alone area of investigation of

modern optics, named singular optics [1–3]. Spatially coherent beams carrying optical

vortices, called vortex beams, have attracted much interest due to their potential

applications in many areas including coronagraph [4], coherence filtering [5], and

free-space optical communication [6]. Since Allen et al. found that Laguerre–Gauss

beams carry a well-defined OAM as a consequence of their vortex core [7], vortex beams

have also found application in optical tweezing [8], optical spanning [9], design of light-

driven machines [10], high-resolution microscopy [11], security holograms [12],

quantum information transfer [13], and rotation measurements [14].

Partially coherent beams have been shown to benefit a number of applications, such as

free-space optical communication [15], particle trapping [16], and atom cooling [17]. It is

therefore of great interest to consider vortex structures in partially coherent beams. Unlike

spatially coherent beams, however, partially coherent beams do not have a well-defined

phase structure and their behavior can only be described using coherence functions. Some

years ago, Schouten et al showed that these coherence functions can possess their own

phase singularities (and optical vortices) that are closely related to their coherent

counterparts [18], and since then, much attention has been given to these so-called
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coherence singularities or coherence vortices [19–23]. For

partially coherent beams carrying vortex structures, which are

called PCV beams, when the coherence decreases, coherence

singularities are shown to be more robust than phase

singularities [24].

Recently, it was found that the OAMof PCV beams exhibits a

number of novel characteristics. For example, different types of

PCV beams can have different distributions of the OAM flux

density in their cross-sections. The OAM flux density can

represent a Rankine vortex, a rigid body rotator, a fluid

rotator, or even more rich varieties of OAM distributions;

these results indicate that PCV beams can provide additional

control over OAM than their coherence counterparts [25–28].

More recently, we found that one can manipulate the source

coherence to change the OAM flux density of PCV beams on

propagation in free space [29], and this effect joins correlation-

induced spectral and polarization changes in a family of source

coherence influenced propagation phenomena (for the summary

see Ch. 4 of Ref. [30]).

However, despite the fact that free-space optical

communication is one of the most significant applications of

such beams, the propagation characteristics of the OAM flux

density of PCV beams in atmospheric turbulence has yet to be

studied. In this paper, we study the propagation of the OAM flux

density of PCV beams in atmospheric turbulence. We derive

analytic formulas showing how atmospheric turbulence affects

the OAM flux density on propagation, and illustrate the changes

with a number of model partially coherent beams with structured

spatial coherence.

Theory

We consider a scalar, statistically stationary random source

that is located in a plane perpendicular to the direction of

propagation. The second-order statistical properties of the

source can be characterized by the cross-spectral density

(CSD) function [31],

W r1, r2( ) � 〈U* r1( )U r2( )〉ω, (1)
where 〈 · · · 〉ω represents averaging over a spatial-frequency

ensemble of the field U(r), and the asterisk stands for

complex conjugate. Here, r is the two-dimensional position

vector in the source plane.

To model a variety of partially coherent vortex beams, we

consider isotropic Schell-model sources with a definite

topological charge, of the form

W r1, r2( ) � U*
l r1( )Ul r2( )μ0 r1 − r2| |( ), (2)

with

Ul r( ) � Clr
l| | exp ilφ( ) exp − r2

w2
( ) (3)

representing the normalized Laguerre–Gauss mode of radial

order 0 and azimuthal order l, and

Cl �
�������

2
πw2 l| |！

√ �
2

√
w

( ) l| |
, (4)

where r � (r,φ), μ0(|r1 − r2|) is the source spectral degree of

coherence, w is the initial beam width, and l is the topological

charge.

The CSD function of the PCV beam after propagating in

atmospheric turbulence can be calculated with the extended

Collins integral [32].

W ρ1 , ρ2 , z( ) � 1

λz( )2 ∫∫W r1 , r2( ) exp − ik
2z

r1 − ρ1( )2 − r2 − ρ2( )2[ ]{ }
〈 exp ψ ρ1 , r1 , z,ω( ) + ψ* ρ2 , r2 , z,ω( )[ ]〉 d2r1d

2r2 ,
(5)

where ρ1 and ρ2 denote the coordinates of two arbitrary points at

the receiver plane, k � 2π/λ is the wave number of light with λ

being the wavelength. The angle brackets < > represent an

average over an ensemble of turbulence states, which can be

expressed as [33]

〈exp ψ* r01, r1 , z( ) + ψ r02, r2 , z( )[ ]〉
� exp −π

2k2Tz

3
[ r01 − r02( )2 + r01 − r02( ) · r1 − r2( ) + r1 − r2( )2]{ }, (6)

where

T � ∫∞

0
κ3Φn κ( )dκ. (7)

Here, T is the quantity denoting the effect of turbulence,

Φn(κ) is the one-dimensional power spectrum of the refractive-

index fluctuations of the turbulent medium, and κ is the spatial

frequency.

If turbulence is governed by non-Kolmogorov statistics

and the power spectrum Φn(κ) has the van Karman form, in

which slope 11/3 is generalized to an arbitrary parameter α

[34], i.e.,

Φn κ( ) � A α( )~C2

n

exp −κ2/κ2m( )
κ2 + κ20( )α/2 , 0≤ κ<∞, 3< α< 4, (8)

with

κ0 � 2π/L0, (9)
κm � c α( )/l0, (10)

c α( ) � 2π
3
A α( )Γ 5 − α

2
( )[ ]1/ α−5( )

, (11)

A α( ) � 1
4π2

cos
απ

2
( )Γ α − 1( ), (12)

where L0 and l0 are the outer and inner scales of the turbulence,

respectively; α is the power law exponent; ~C
2
n is a generalized

refractive-index structure parameter with units m3−α, and Γ(.) is
the gamma function. For the power spectrum in Eq. 7, T can be

expressed as
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T � A α( )
2 α − 2( )

~C
2

n βκ2−αm exp κ20/κ2m( )Γ 2 − α/2, κ20/κ2m( ) − 2κ4−α0[ ],
3< α< 4, (13)

where β � 2κ20 − 2κ2m + ακ2m, Γ(.) is the incomplete Gamma

function. For the case of α = 11/3, the power spectrum Φn(κ)
reduces to the van Karman spectrum with Kolmogorov statistics,

and Eq. 6 can be expressed as

〈exp ψ ρ1, r1, z,ω( ) + ψ* ρ2, r2, z,ω( )[ ]〉
� exp − ρ1 − ρ2( )2 + ρ1 − ρ2( ) • r1 − r2( ) + r1 − r2( )2

ρ20
[ ],

(14)
where ρ0 � (0.545C2

nk
2z)−3/5 is the coherence length of a

spherical wave propagating through the turbulent medium.

In the modeling of a partially coherent vortex beam, we begin

with a planar, secondary Gaussian Schell-model vortex (GSMV)

source, with a source spectral degree of coherence of the form

μ0 r1 − r2| |( ) � exp − r1 − r2| |2
δ2

[ ], (15)

where δ is the coherence width. Substituting Eqs. 2, 14, 15 into

Eq. 5, the cross-spectral density function of the GSMV beam with

l = 1 in the plane z can be derived analytically. The result is given

by the expression

W ρ1 , ρ2 , z( ) � C| |2
λz( )2

π2

4A2
2M

2 exp − ik
2z

ρ21 − ρ22( ) − 1

ρ20
ρ1 − ρ2( )2[ ]× exp

1
4A2

ρ1 − ρ2
ρ20

− ikρ2
z

( )2{
+ 1
4M

ρ1 − ρ2
ρ20

− ikρ1
z

( ) − A3

2A2

ρ1 − ρ2
ρ20

− ikρ2
z

( )[ ]2

}

× 2A3 + A3

2M
ρ1 − ρ2
ρ20

− ikρ1
z

( ) − A3

2A2

ρ1 − ρ2
ρ20

− ikρ2
z

( )[ ]2{
+ A3

2A2

ρ1 − ρ2
ρ20

− ikρ2
z

( )2

− ρ1 − ρ2( )2
ρ40

− ik ρ21 − ρ22( )
ρ20z

− k2ρ1 · ρ2
z2

[ ]+ ik
z2

k · ρ1 × ρ2( )},
(16)

with

A1 � 1

w2 +
1

δ2
+ 1

ρ20
+ ik

2z
,

A2 � 1

w2 +
1

δ2
+ 1

ρ20
− ik

2z
,

A3 � 2

ρ20
+ 2

δ2
,

M � A1 − A2
3

4A2
.

. (17)

For a paraxial scalar PCV beam, the average OAM flux

density can be shown to be related to the CSD function by

the expression [25]

Ld r( ) � −ε0
k
Im y1zx2 − x1zy2( )W r1, r2( )[ ]

r1�r2, (18)

where ε0 is the free-space permittivity, zx2 and zy2 represent

partial derivatives with respect to x2 and y2, respectively. It is to be

noted that theOAM flux density at a point depends not only on the

strength of rotation at the point, but also on the local intensity. To

better understand the physics of the OAM distribution, we may

consider a normalized OAM flux density ld, which represents the

average OAM flux density per photon,

ld � ZωLd r( )
S r( ) , (19)

where S(r) � k
μ0ω

W(r, r) is the z-component of the Poynting

vector. The total OAM per photon can be given by the ratio of

integrated Ld(r) and S(r),

lt �
Zω∫Ld r( )d2r∫S r( )d2r

. (20)

The total OAM lt is conserved on propagation, while the

distribution of OAM flux density may change during propagation.

These changes will be a combination of correlation-induced OAM

changes and turbulence-induced OAM changes. Substituting Eq. 16

into Eq. 18, one finds that the average OAM flux density of a GSMV

beam is given by the expression

Ld ρ( ) � Im〈 iε0 C| |2π2kρ2

4A2
2M

2λ2z4
exp −k

2ρ2

4z2
1
A2

+ 1
M

1 + A2
3

4A2
2

− A3

A2
( )[ ]{ }〉. (21)

With the help of Eqs. 19, 21, we can calculate the distribution

of normalized OAM flux density ld for the GSMV beam

propagating in atmospheric turbulence.

To illustrate the possible effects of atmospheric turbulence on

the distribution of the OAM flux density of PCV beams with

different spatial coherence states, we will involve multi-Gaussian

Schell-model vortex (MGSMV) source, for which the source

spectral degree of coherence has the form

μ0 r1 − r2| |( ) � 1
C0

∑M
m�1

−1( )m−1 M( )m
mm!

exp − r1 − r2| |2
δ2m

[ ], (22)

where

C0 � ∑M
m�1

−1( )m−1 M( )m
mm!

, (23)

M( )m � M M − 1( ) · · · M −m + 1( ). (24)

Here, C0 is the normalization factor, (M)m is the Pochhammer

symbol (falling factorial) [35], and δm � ��
m

√
δ are the coherencewidths

of the constituent Gaussian functions. In the far field, the MGSMV

beamswithM> 1 represent flat-topped profiles [36], and theMGSMV

beams with M< 1 represent cusped profiles [37]. For M � 1, the

MGSMV source reduces to the traditional GSMV source in Eq. 15.

We will also consider a source that is the incoherent

superposition of GSMV beams with equal and opposite

topological charges but different coherence width δn, for

which the CSD function has the form

W r1, r2( ) � ∑
n�+l,−l

U*
n r1( )Un r2( ) exp − r1 − r2| |2

δ2n
[ ]. (25)

This source has a net zero OAM flux density but will exhibit

OAM flux density changes on propagation due to the different
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correlation widths of the different OAM modes, even in free

space [29].

With the help of Eqs. 16, 19, 21, the normalized OAM flux

density ld of MGSMV beams and the incoherent superposition of

GSMV beams can be constructed by superposition of the

solutions of GSMV beams with different coherence widths δ.

Results

To show the effect of atmospheric turbulence on the

evolution of OAM of PCV beams on propagation, we

calculate the normalized OAM flux density ld of GSMV

beams, MGSMV beams and the incoherent superposition of

GSMV beams, respectively. The distribution of spectral

density is also given for comparison.

Figure 1 shows the evolution of the normalized OAM flux

density ld of GSMV beams in atmospheric turbulence, for

different propagation distances z. We take w � 10mm and λ �
632.8nm for the remainder of the paper. It can be seen from

Figure 1A that over a short propagation distance z � 1km, the

difference between the OAM distribution near the core for C2
n �

0 and C2
n � 10−13m−2/3 is small, which is similar with that of the

spectral density in Figure 1D, and with the increase of

FIGURE 1
NormalizedOAM flux density (A–C) and spectral density (D–F) of GSMV beamswithw= 10 mm, δ � 5mm, at z = 1 km (A,D), z = 2 km (B,E), and
z = 5 km (C,F).
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propagation distance the difference becomes larger. However, in

the outskirts, even at small propagation distancez � 1 km, the

difference between the OAM distribution is obvious, which

indicates that the OAM in the outskirts is more affected by

atmospheric turbulence than that near the core. This results in an

interesting phenomenon that the OAM flux density is larger in

atmospheric turbulence than in free space for shorter

propagation distances but becomes smaller at longer distances.

Figures 2, 3 show the evolution of OAM in atmospheric

turbulence forM> 1 and M< 1, respectively. It can be seen that

the distribution of OAM in free space mimics that of the spectral

density of the respective beams: the beam (M � 15) with a flat-

topped spectral density results in a flat-bottomed “dead zone” in

the OAM, and the beam (M � 1/15) with a cusped spectral

density results in a cusped OAM distribution near the core. As

the propagation distance in atmospheric turbulence is increased,

the flat-topped spectral density degenerates to a Gaussian profile

(see also [38]), while it is interesting to find that the “dead zone”

of OAM in the core can be maintained, within which there is no

circulation. For the cusped OAM distribution in atmospheric

FIGURE 2
Normalized OAM flux density (A–C) and spectral density (D–F) of MGSMV beams withM � 15,w = 10 mm, δ � 5mm, at z = 1 km (A,D), z = 2 km
(B,E), and z = 5 km (C,F).
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turbulence, with the increase of propagation distance, it

disappears as does the cusped spectral density distribution

(see also [37]).

Even more significant variations in the distribution of OAM

can be made by the incoherent superposition of GSMV beams

with equal and opposite topological charge. We label the positive

contribution by the subscript “+” and the negative contribution

by the subscript “-”. Figures 4, 5 give the evolution of OAM with

the fixed correlation width of the positive vortex beam

δ+ � 5 mm, and width δ− � 10 mm and δ− � 2.5 mm for the

negative vortex beam, respectively. Counter-rotating regions of

OAM flux density are created due to the different local densities

of the modes with different correlation widths, creating, for

example, in Figure 4 a beam core with a negative flux density

and an outer region with a positive flux density.

It can be seen from the figures that this non-trivial counter-

rotating structure can be maintained on propagation in

atmospheric turbulence, even though the OAM lt � 0 and the

FIGURE 3
Normalized OAM flux density (A–C) and spectral density (D–F) of MGSMV beams with M � 1/15, w = 10 mm, δ � 5mm, at z = 1 km (A,D), z =
2 km (B,E), and z = 5 km (C,F).
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normalized OAM flux density ld � 0 in the source plane. It can

also be seen that the distribution of OAM is affected more than

the corresponding spectral density.

In comparing Figures 4, 5, it can be seen that the OAM

distribution for δ− � 10 mm is affected more than that for

δ− � 2.5 mm. This may be explained by the effective

turbulence resistance of lower coherence beams: a beam with

lower coherence spreads faster, and therefore turbulence-

induced beam spreading is less noticeable. For the constituent

GSMV beam with larger coherence width and negative

topological charge (δ− � 10 mm), the negative part of the

counter-rotating OAM distribution becomes a region which is

similar to a “dead zone” as the propagation distance in turbulence

increases.

Discussion

In summary, we have studied the evolution of the OAM

density flux in atmospheric turbulence for PCV beams with

different coherence structures, i.e., GSMV beams, MGSMV

beams, and the incoherent superposition of GSMV beams.

The analytical expression of the average OAM flux density in

atmospheric turbulence is derived, with which we illustrate the

FIGURE 4
Normalized OAM flux density (A–C) and spectral density (D–F) of superposed GSMV beams with w = 10 mm, δ+ � 5mm, δ− � 10mm, at
z = 1 km (A,D), z = 2 km (B,E), and z = 5 km (C,F).
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changes of OAM distribution on propagation. The results show

that after propagating in atmospheric turbulence, the OAM

distribution of PCV beams exhibits rich behavior. It is found

that the OAM distribution in the outskirts is more affected by

atmospheric turbulence than that near the core, which results in

an interesting phenomenon that the OAM flux density is larger in

atmospheric turbulence than that in free space for shorter

propagation distances but becomes smaller at longer distances.

Especially, for theMGSMV beams withM> 1, the “dead zone” of

OAM in the core can be maintained for long propagation

distance. For the incoherent superposition of GSMV beams,

the non-trivial counter-rotating structure can be maintained

on propagation in atmospheric turbulence, even though the

OAM lt � 0 and the normalized OAM flux density ld � 0 in

the source plane. Meanwhile, for the constituent GSMV beam

with large coherence width and negative topological charge, with

the increase of propagation distance in atmospheric turbulence,

the negative part of the counter-rotating OAM distribution

FIGURE 5
Normalized OAM flux density (A–C) and spectral density (D–F) of superposed GSMV beams with w = 10 mm, δ+ � 5mm δ− � 2.5mm,
at z = 1 km (A,D), z = 2 km (B,E), and z = 5 km (C,F).
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becomes a region which is similar as the “dead zone”. Our

findings may be useful in the application of free-space OAM

communication in the presence of atmospheric turbulence.

We have illustrated the possible OAM changes in air

turbulence only for a very small portion of partially coherent

beams; an entirely different behavior may be expected for non-

Schell model beams, e.g., non-uniformly correlated, twisted

beams or radially accelerating random beams. The calculation

of the OAM flux is far from trivial even for general Schell-model

beams, even in free space [39], and hence, better methods need to

be developed for comprehensive analysis of the OAM flux

density of beams with arbitrary coherence states, for

propagation in both free space and turbulent media.
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