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Macroscopic degrees of freedom that are involved in the transport of carriers
through mesoscopic electronic devices are susceptible to the effects of strong
many-body correlations. The presence of magnetic impurities in dilute magnetic
alloys typically allow for insights into Kondo effect from the scattering of free carriers
by localized electron states of the magnetic impurities but this effect is not well
understood when there are no d-band electron states. Herein, the signatures of
Kondo resonance effect are elucidated in quantum dots derived from a carbon-
nanoline embedded monolayer hexagonal boron nitride whose electron states host
flat band ferromagnetism as distinct broken symmetry states. Quantum transport
state of mesoscopic devices modelled as quantum dots tunnel coupled to metallic
leads is computed by direct diagonalization of the Hamiltonian. The possibility of
realizing quantum dots with highly tunable electron states in energy interconversion
devices is discussed to show the importance of screening effects on single-electron
energy levels. The quantum master equation is solved within different formalisms to
determine the stationary-state particle and energy currents. Stability diagrams are
calculated to show the dependence of the conductance on experimental control
variables of the quantumdot device. The computed responses of the stationary-state
transport signatures are used to characterize Kondo resonance effects from flat band
states of embedded carbon nanoline-based quantum dots. It is found that the local
network structure of the hexagonal ring carbon cluster-based quantum dot has a
broken particle-hole symmetry in the transport state. This signals the formation of
the quasiparticle states expected in second order scattering when the macroscopic
“charge” pseudospin symmetry of the tunnelling electron state is broken dynamically
due to charging. The results are discussed to show the implications of a vanishing
particle-hole symmetry in the carrier transport state of quantum dots for energy
conversion applications.
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1 Introduction

Exotic phenomena such as d- and f-electron superconductivity, integer and half-integer
quantum Hall states, quantum spin liquid state, and spontaneous formation of quasiparticles
can emerge in quantum materials because of many-body correlations [1, 2]. It is also important
to understand the non-equilibrium physics of the formation of broken symmetry states to
understand how electron states couple to bosonic environments. A bosonic environment can be
described by quasiparticles such as phonons, photons, anyons, polarons and excitons in an
energy interconversion application [3]. Developing such understanding is important because
the out of equilibrium behavior of quantum materials gives rise to intriguing electrodynamic
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properties, and unusual magnetic and topological phases which may
be related to the ultrafast energy conversion processes [4, 5]. Quantum
dots (QDs) offer an ideal platform for designing carrier transport
devices under realistic conditions that allow the many-body
correlation and strong quantum confinement effects that dominate
mesoscopic transport to be probed at the single-electron level. The role
of Coulombic interactions in exotic phenomena such as defect-
induced d0-magnetism and single-electron tunneling is crucial in
quantum dots. The QD is made from either a nanostructure or a
single molecule coupled to metallic leads, and it can be integrated into
energy harvesting systems for interconverting electromagnetic
radiation into electric current [6].

The QD is a small-sized particle of a semiconducting material. In
general, it is a nanocrystal with a diameter between 20–100 Å. It
contains about 10–50 atoms and its electronic properties are unique
because they often lie between the properties of a bulk semiconductor
and a single molecule. The broad range of their properties arises
because of its high surface-to-volume ratio. These unique range of
properties lead to their intriguing applications in non-linear optics and
energy application. For instance, in luminescence and fluorescence,
QDs can be used to produce distinctive colors that are determined by
the size of the particles. Due to its small size, electrons in a QD are
confined in a small space known as the quantum box. When the radius
of the nanocrystal is made smaller than the exciton Bohr radius
(i.e., the average distance between the electron in the conduction
band and the hole it leaves behind in the valence band), the energy
levels become quantized according to Pauli’s exclusion principle. The
discrete, quantized energy levels of the QD relates it more closely to
atoms than to bulk materials and this has led to the QD being
identified as the artificial atom [7, 8]. QDs host single-electron
states just as vortices of bulk trivial superconductors, endpoints of
1D p-wave topological superconductor, and hybrid semiconductor-
superconductor nanowires. The electron states manifest as a quantized
zero-bias conductance peak (ZBCP) of height 2e2/h at 0 K and also
above a critical magnetic field (Bc) that is determined by gating. Other
metrics include symmetry breaking signatures in the tunnelling
differential conductance spectra of electron-hole states. Since these
signatures are also seen in superconductors and semiconductors due
to a variety of other physical effects such as Andreev or Shiba bound
states, Kondo resonances, etc, it is important to study them self-
consistently.

The current drive towards the development of high-performance
materials (HPMs) for use in the next-generation of technologies for a
facile interconversion of energy has made it a fundamental scientific
imperative to understand the nature of the underlying many-body
correlation effects in quantum materials. Recent progress in energy
materials shows that HPMs that have potential for being used as a
flexible electronic “skin” are highly desirable for energy autonomy [9].
This desire for new HPMs has demanded the introduction of flexible
and stretchable materials. In this respect, our previous studies had
shown the graphene and monolayer hexagonal boron nitride are
highly stretchable [10], making them equally suitable for
development as HPMs for energy applications. The recent use of
mixed caesium and formamidinium lead triiodide perovskite system
(Cs1−xFAxPbI3) promises a realistic pathway for achieving efficient
photovoltaic and optoelectronic energy conversion using the QD
architecture. The major drawback is the severe challenge of
synthesizing multinary QDs with desirable properties for use in
high-performance QD solar cells [11]. The present study therefore

represents a crucial first step in developing such understanding from a
multiscale multi-physics model of the electron states for
understanding the role of HPMs in the facile interconversion of
energy.

When a metal contains a magnetic impurity, conduction electrons
of the metal scatter from the localized impurity spin and screens it to
form a cloud of spin-polarized electrons [12]. Kondo effect arises from
the interaction of conduction electrons with degenerate degrees of
freedom of carriers in a material. When the Kondo effect is associated
with dilute magnetic impurities in a non-magnetic host the
phenomenon constitutes the traditional Kondo effect (TKE) [13].
In the TKE, the two degenerate states correspond to the two
orientations (i.e., up, or down) of the impurity spin. Several
variants of the TKE have been observed wherein the quantum
impurity (QI) is coupled to a bath of conduction electrons. The
Anderson’s model of the QI is a useful microscopic model for
understanding the physics of the broken symmetry quantum state
that forms in the TKE when localized impurity spins are dynamically
screened by the conduction electrons [14]. Analogous broken
symmetry states form as the underlying quasiparticle state that
mediates the energy interconversion process whenever polarons,
plasmons, excitons, charge- or spin-density waves form as a
collective state for carrier transport. Kondo resonance effects in the
carbon nanoline-embedded quantum dots are crucial for developing a
rational understanding of the energy interconversion. This is because
the Schrieffer-Wolff transformation is known under the Wilsonian
renormalization group theory [15] to project out the high energy
charge excitations in the Anderson QI model so that a low-energy
effective Hamiltonian is obtained with only virtual charge
fluctuations [16].

There are several alternative models of the TKE wherein the spin
of the quantum dot is magnetically exchange-coupled to
ferromagnetic leads [17], or with superconducting pair-breaking
interactions [18], or with the surface state of topological insulators
and to impurity states in Dirac and Weyl semimetals [19]. Although
the QI model is mostly associated with spin [20, 21], orbital [22, 23] or
structural [24, 25] degree of freedom of carriers in the TKE, these are
not the models of the Kondo effect considered herein. There are other
Kondo models that comprise of two degenerate degrees of freedom,
which can also lead to the Kondo-like phenomena [24, 26]. For
instance, consider that the “charge Kondo effect”, which
corresponds to the dilute magnetic impurities with two degenerate
charge states in the TKE, has been proposed for negative-U Anderson
QI models [27]. As demonstrated experimentally by Matsushita, et al;
[28], there are strong quantum valence fluctuations implicit in the
charge Kondo effect (CKE) model to support the involvement of
electrons pairs that tunnel on and off the impurity sites. Their
experimental measurements also demonstrated that the electron
pairing mechanism of the CKE model also provides the pairing
mechanism for superconductivity, as well as the abrupt logarithmic
increase in the low-temperature resistivity observed in
superconducting Tl-doped PbTe. Also, the TKE is now known to
arise from second-order scattering processes that involve virtual
intermediate states or quasiparticles [29].

Herein, the effects of the screened charge pseudospin-½ state are
discussed as signatures of Kondo resonance. The charge pseudospin of
the tunnelling electronic state is the macroscopic degree of freedom
that is screened by conduction electron cloud of the metallic leads
when the QD is tunnel coupled. The charge Kondo effect is shown as
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the underlying mechanism that controls the interconversion of energy
with quantum dots derived from carbon nanoline embedded in
monolayer h-BN since energy interconversion process is limited by
formation of the quasiparticle state. In the present analysis,
quasiparticle states of an energy conversion process are considered
to correspond to virtual intermediate states of a second-order
scattering process, and both states saturate below the characteristic
Kondo temperature in the unitary scattering limit [30]. This is
illustrated by the dynamical formation of a broken particle-hole
symmetry state due to Coulombic charging of the dots in the
presence of pseudospin—an additional electronic degree of freedom
inherent in graphene [31], which is also preserved in the embedded
carbon nanoline. The CKE is implemented in gate controlled QD
system [32, 33]. It uses either a metallic- or semiconducting-
realization of the single-electron transistor via the tunnel coupling
of the QD to metallic leads by charge-tuning of the quantum
pseudospin degree of freedom. The charge pseudospin of the QD is
construed as the macroscopic quantum variable that consists of two
degenerate electronic states when the QD is coupled to metallic leads
(i.e., treated here as a bath of many conduction electrons) [34]. Thus,
the role of spin up (↑) or down (↓) in the TKE is played by the screened
charge pseudospin.

Kondo resonance effects are demonstrated in the charge stability
diagrams of QDs designed from an intrinsically non-metallic
metamaterial. The platform consists of an embedded carbon
nanoline conducting channel in the semiconducting matrix formed
by the hexagonal boron nitride (hBN) monolayer. With its highly
tunable carrier transport properties, it is argued herein that such
drawbacks do not arise when graphene-nanoline based QDs are
integrated into energy systems. Since quantum many-body
interactions play a central role in the microscopic theory of a QD
system [35], the electronic signatures of Kondo resonance are
unraveled as a function of a tunable confinement potential and
gate potential. It is shown that emergent flat band materials
obtained from the highly flexible graphene and monolayer
hexagonal boron nitride (hBN) are suitable HPMs for energy
conversion when integrated in QD devices. This requires accurate
characterization of the strength of the Coulombic interaction on
carrier transport signatures in the absence of the d-band
ferromagnetism expected from localized magnetic impurities in
dilute magnetic ions (DMAs). Kondo effect is elucidated in carbon
nanoline based QDs as an increase in the direct current conductance
as temperature drops below the Kondo temperature of 10 K. Kondo
resonance effects are shown to arise from an interplay between
Coulombic and magnetic exchange interactions. The Kondo
resonance effect of the screened charge pseudospin is traced to the
presence of flat bands due to the broken structure-inversion and time
reversal symmetries.

This paper is organized as follows. In Section 2, the theoretical
framework employed here to calculate the ground state electronic
structure of embedded carbon nanoline conducting channels in hBN
monolayer is presented. Details are also provided for the protocols
used to obtain mesoscopic transport signatures of quantum dot in
exact diagonalization calculations. The latter includes electronic-level
alignment strategies that describe a four-terminal transistor coupled to
metallic leads by tunneling in the multilayer architecture. Results and
discussion are presented in Section 3. The electronic band structure in
different types of embedded hBN monolayers are presented. The
quasiparticle band gaps, and magnetic properties are also analyzed.

Results of the mesoscopic transport properties of the tunnelling
current and their bias dependent conductance responses also
analyzed in Section 3 with respect to simulated charge stability
diagram parameters and the associated band topology. The results
are discussed with special emphasis on the realization of tunable QDs
for integration in devices for facile interconversion of energy. Finally,
conclusions are drawn in Section 4.

2 Theoretical and computational details

2.1 Ground state electronic structure and
self-consistent correction for the
quasiparticle gap

First principles calculation of the ground state electronic structure
was performed within density functional theory (DFT) using the grid-
based projector augmented wave (GPAW) method [36, 37]. The
calculations were first performed in the generalized gradient
approximation (GGA) using the Perdew Burke and Ernzerhof
(PBE) functional for the exchange correlation potential [38]. The
Coulombic interaction between conduction electrons and ion cores
were described using the projector-augmented wave (PAW) potentials
[39, 40]. Electronic energy was converged to within 10−8 eV. A cutoff
limit of 600 eV was used to expand the kinetic energy in the plane wave
basis. For calculations of the primitive p (1 × 1) unit cell of the pristine
hBN monolayer, a dense Monkhorst-Pack k-points mesh of size 10 ×
10×1 was used to sample the Brillouin zone [41]. Electronic states were
populated using the Fermi-Dirac distribution. A small smearing width
of 01 eV was used to account for temperature dependence of the
populated electron states to avoid intraband transitions. Spurious
interactions between periodically repeating monolayers were
avoided by inserting a vacuum region of 15 Å along the z-axis of
the monolayer.

Nanoline conducting channels when embedded in an intrinsically
non-magnetic monolayer hexagonal boron nitride (hBN) layer serves
as a platform for gaining insights into defect-induced magnetic
moments since there are no d-band contributions to electronic
states. To embed a nanoline conducting channel in the
semiconducting hexagonal boron nitride monolayer (hBN), a 5 ×
5×1 supercell model was used. Six unique local geometries of the
nanoline conducting channel were obtained when variable number of
carbons replaces the B and N atoms along a contiguous line within the
layer. Spin polarized ground state calculations were performed in each
case using a reduced k-mesh of 2 × 2×1. Spin orbit interaction effects
on the electronic bands were included non-self consistently as a
correction of the ground state. This was sufficient to describe the
band states induced within the semiconducting gap of the pristine
layer when C replaces some of the B and N atoms of the layer along a
contiguous line in the monolayer. Geometry optimization calculations
were performed until the Hellman-Feynman forces on each atom
converged to within 001 eV/Å.

It is well-known that native approximations to DFT such as the local
density approximation (LDA) and generalized gradient approximation
(GGA) give underestimated band gaps. As such, the GGA bandgaps
obtained herein do not yield any insights on the effects of the broken
symmetry states (i.e., quasiparticles such as polarons and excitons, etc.)
that may be created in the HPMs. Corrected band gaps are calculated in
this study to yield useful insights for understanding quasiparticle effects
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when a carbon nanoline based HPM is integrated in the QD device. The
calculations are performed using the GLLB-SC functional [42]. The
GLLB-SC functional uses the PBEsol exchange correlation
potential to model the Kohn-Sham potential with the derivative
discontinuity at integer particle numbers based on the self-
consistent approximation introduced by Gritsenko et al. (GLLB)
[43]. The fundamental quasiparticle gap was obtained from the
GLLBSC functional as the sum of Kohn-Sham gap and the
derivative discontinuity due to the response of the exchange-
correlation hole to density variations.

2.2 Framework for the calculation of
mesoscale transport

2.2.1 Unitary evolution of the density matrix
To describe the unitary evolution of the density matrix, consider

that the dynamics of a closed quantum system is specified by the
solutions of the time-dependent Schrödinger equation.

iZztΨ � ĤΨ, (1)
where Ψ denotes the wave function, Ĥ denotes the Hamiltonian, and - is
Planck’s constant. The time-dependent Schrödinger equation is a first order
partial differential equation where bothΨ and H are functions of space and
time. For computational purposes, it is useful to expand Eq. 9 in a set of
basis functions that span the Hilbert space of the Hamiltonian, and to write
it in matrix and vector form i-zt |Ψ〉 � H |Ψ〉 , where |Ψ〉 is the state
vector andH is the matrix representation of the Hamiltonian. This matrix
equation can, in principle, be solved by diagonalizing the Hamiltonian
matrixH. In practice, however, it is difficult to perform this diagonalization
unless the size of the Hilbert space (i.e., the dimension of the matrix H) is
small.

While the evolution of the state vector in a closed quantum
system is deterministic, open quantum systems are stochastic in
nature. The effect of an environment on the system of interest is to
induce stochastic transitions between energy levels, and to
introduce uncertainty in the phase difference between states of
the system. The state of an open quantum system is therefore
described in terms of ensemble averaged states using the density
matrix formalism. The density matrix ρ describes a probability
distribution of quantum states |Ψn〉, in a matrix representation

ρ � ∑
n
pn Ψn| 〉 〈Ψn | , (2)

where pn denotes the classical probability that the system is in the
quantum state |Ψn〉. Calculation of the time evolution of the density
matrix _ρtotal of the tunnel-coupled quantum dot system is the objective
of the mesoscopic transport calculation discussed herein. Thus, at the
level of mesoscopic transport calculation, we are solving the time-
evolution of the density matrix at different charging potentials of the
quantum dot and applied magnetic field.

The quantum statistical mechanics approach for deriving
equations of motion of an open quantum system that is interacting
with its environment is to expand the scope of the system to include
the environment [44, 45]. Since the combined quantum dot and
metallic lead system is a closed quantum system, its evolution is
governed by the von Neumann equation

_ρtotal � zt ρ̂total( ) � −iZ−1 Ĥtotal , ρ̂total[ ] (3)

Equation 11 is the equivalent Schrödinger equation expressed in
density matrix formalism in Eq. 1. Here, the total Hamiltonian,
Htotal = Hsys + Henv + Hint, includes the original system
Hamiltonian Hsys, the Hamiltonian for the environment Henv, and
an additional term Hint that represents the interaction between the
system and its environment. This corresponds to the systems
Hamiltonian defined in Section 2.3. Since the interest is only in the
dynamics of the system, it is possible to perform a partial trace over the
environmental degrees of freedom in Eq. 3 to obtain a master equation
for the motion of the original system density matrix.

The generalized form of the completely positive trace-preserving
time evolution of the density matrix is the Lindblad master equation
for the reduced density matrix ρ = Trenv [ρtotal]. This is expressed in
terms of the time-dependent Hamiltonian Ĥ(t) and dissipation terms
D(ρ̂) as [46],

_ρ t( ) � zt ρ̂ � −iZ−1 Ĥ t( ), ρ̂ t( )[ ] + D ρ̂( ), (4)

where D(ρ̂) � ∑ 1
2 [2Cnρ(t)C†

n − ρ(t)C†
nCn − C†

nCnρ(t)]. The term
Cn � γn

���
An

√
denotes collapse operators (or the Lindbladian) while

An denotes the operators through which the environment couples to
the system, and γn are the corresponding collapse rates. Equation (4) is
the primary equation that is solved in the transport model. The formal
derivation of the Lindblad master equation is presented in several
standard sources, including Refs [47–53], and will not be repeated
here. Nonetheless, if one retains only the first term on the right-hand
side of Eq. 4, then the Liouville-von Neumann equation results. The
unitary evolution of the density operator of the QD is denoted by the
Liouvillian. The second term on the right-hand side of Eq. 4 is the
Lindbladian, which describes the non-unitary evolution of the density
operator. It emerges only when one takes the partial trace of the
interacting degrees of freedom between the electron in the QD and the
bath of conduction electrons in the metallic leads. By adopting the
interaction Hint of the form,

Hint�Z ρ t( )C†
n − ρ t( )C†

nCn − C†
nCnρ t( )[ ], (5)

the physical meaning of the Lindblad operators is understood as
representation of the contribution of the QD charging energy to the
interaction with conduction electrons. This is crucial since Eq. (4) is
derived from the Liouville-von Neumann equation by tracing the
degrees of freedom of the bath.

2.2.2 Numerical implementation
Analytically, it is a formidable task to calculate the dynamics of a

QD system that has more than two states using the von Neumann
equation (i.e., Eq. (3)). This becomes even more complicated when, in
addition, one must consider dissipations due to the interaction of the
QD with the surrounding environment using the Lindblad master
equation (i.e., Eq. (4)). It is therefore necessary to resort to numerical
approximations for these computational tasks to be performed in
realistic situations. To this extent, the role of efficient and openly
accessible computational tools, such as QuTip [54] and Kwant [55], in
facilitating the numerical study of the dynamics of open quantum
system calculations cannot be overstated. Herein, exact
diagonalization calculations were performed to solve Eqs (3), (4)
using different approximate master equations (i.e., Pauli, von
Neumann, Redfield and Lindblad) as implemented in the Quantum
master equation for Quantum (QmeQ) package [56]. QmeQ is an
opensource PYTHON utility for simulating the stationary-state
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mesoscopic transport in QDs. The computational cost for solving the
Lindblad equation numerically grows as additional complexity is
introduced into the QD model. Hence, better numerical
approximations are required for efficient numerical implementation
of the solution. For derivation of the different approximate master
equations that are implemented in the QmeQ package, and their pros
and cons, see Appendices A–F in Ref; [56]. Key features of the
approximate master equations used in the numerical simulations
are listed below.

Second order von Neumann (2vN): This approach bridges the gap
between rate equations and the transmission formalism which
neglect level broadening and cotunneling which is essentially
based on the single-particle picture thereby treating many-
particle interactions on an approximate level. The 2vN is an
approximation that is based on decoupling of the equations of
motion for the density matrix. Only terms that involve up to two
excitations n = 2 are retained in the Runge-Kutta algorithm for
numerically solving the coupled ordinary differential equations. A
Markov approximation is made to the two-excitation term.
Electrons in the leads are assumed to be thermally distributed
according to the Fermi-Dirac distribution, f. The 2vN resembles the
resonant tunneling approximation, which is based on a suitable
infinite re-summation of the perturbation series for the generalized
master equation. (2vN) yields exact currents for non-interacting
systems with HCoulomb = 0. When interactions are introduced
during charging (i.e., HCoulomb ≠ 0) the results are only reliable
at weak to moderate coupling strengths, wherein the Kondo
temperature TK is larger than (or equal to) the tunnelling rate Γ
during the coupling. Also, the simulation temperature T must be
larger than any Kondo temperature TK in the system [54].

First order von Neumann (1vN): The 1vN approximation assumes
that only the terms that involve one excitation n = 1 are retained in the
Runge-Kutta algorithm for solving the coupled ordinary differential
equations. A Markov approximation is made to the one-
excitation term.

First-order Redfield: Retains all the assumptions, advantages, and
disadvantages of the 1vN approximation. However, it implements an
important exception wherein the Markov approximation to the one-
excitation term is set to the steady-state solution of the Schrodinger
equation, corresponding to Eq. 1, subject to the normalization
condition. Thus, one can go to the Hamiltonian by transforming
the first order Redfield master equation (also known as the second
order in perturbation approximation) to the Lindblad master
equation way.

Pauli master equation: Only the terms that involve one
excitation n = 1 are retained, and all higher terms in the Runge-
Kutta algorithm solving the coupled ordinary differential equations
are discarded. The Markov approximation is made to the one-
excitation term. The coherences of the reduced density matrix of
the QD system are neglected. The Pauli master equation is
obtainable from the 1vN or the Redfield approaches by
neglecting the coherence.

Lindbladmaster equation: An approximate form of Eq. 4 is solved for
the steady-state solution of the Schrodinger equation, corresponding to
Eq. 1, subject to the normalization condition. This Lindblad
approximation is the first order in rates and can describe the
sequential tunneling in the presence of coherences. It preserves the
positivity of the reduced density matrix as in the 2vN approach.

2.3 Relationships of mesoscale transport in
QDs with DFT calculation of carbon nanolines

A system of coupled quantum dots is studied using a
phenomenological model where carrier tunnelling is coupled to
metallic leads. The Hamiltonian of the coupled QD/metallic lead
system Hsys is obtained as a sum of terms,

Hsys � Htunneling +Hleads +Hdot, (6)
where Hleads, Hdot and Htunneling denotes total energy contributions
from the tunnelling between the QD and the leads, the metallic leads,
and the QDs, respectively. The DFT calculations show two distinct
possibilities wherein flat band electronic structure supports a
ferromagnetic (or non-magnetic) ground state when number of
carbons is odd (or even). Transport in the unpaired or paired
electron spin system is modeled using the spinful single-orbital
quantum dot (SSQD) model or spinless double quantum dot
(SDQD) model in the regime where Coulombic interactions
dominate. In this case, the energy level position of distinct local
structure-derived flat band states is determined ab initio and fed as
input into the stationary-state transport model calculation.
Cronenwett, et al. [57] demonstrated over 2 decades ago that a QD
can be designed to host a well-defined integral number of electrons.
Thus, it is essential to allow a small tunnel coupling between the dot
and nearby source and drain leads to probe electronic transport states.
This magnitude of the coupling must be weak to prevent strong
fluctuations in the number of confined electrons. A well-defined
number of electrons also implies a definite amount of quantum
mechanically confined charge, i.e., N times the elementary charge,
e; Figure 1 shows the circuit diagram for simulating the coupling of a
quantum dot to metallic leads that constitute the source (L) and drain
(R) leads.

Carrier transport in the QD is described using the SSQD (or
SDQD) model if the ground state magnetic moment of the nanoline-
embedded QD is zero (or nonzero) using the approaches enumerated
in Ref. [44]. In both cases, an on-site charging energy U due to an

FIGURE 1
Schematic diagram of the tunnel coupling of quantum dot to the
source and drain leads.
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externally applied bias potential couples the quantum dot to the source
(L) and drain (R) leads via tunnelling. The SSQD calculations are
performed by parameterizing the energies of spin-polarized electrons
for two single particle states (ϵ↑, ϵ↓) as a function of a gate (or bias)
potential Vg and a magnetic field Bwhich are applied externally, where
ϵ↑ � Vg + 1

2B and ϵ↓ � Vg + 1
2B. The total energy of the conduction

electrons in the leads are described as non-interacting particles. This is
expressed in the second quantization notation as

Hleads � ∑
αk

αkĉ
†
αk ĉαk, (7)

where the ĉ†αk (ĉαk) operator creates (destroys) a spin-polarized
electron at site k in a lead channel α. The site index k is a proper
quantum number for the continuum energy. This allows the sum over
k-space to be written using the density of states g(E) as a
thermalization mapping for the occupied states

∑
k

f k →∫ g E( )f E( )dE, (8)

where f(E) � [e(E−μα)/Tα + 1]−1 denotes the Fermi-Dirac distribution
function with respective temperatures Tα and chemical potentials µα.
The lead channel α describes a coupled system consisting of a source
and drain lead label, and an electron spin depending on the physical
setup of the QD.

The Hamiltonian of the QD (Hdot) is modelled as the sum of the
DFT-derived single-particle Kohn-Sham states (HKS) and the
Coulomb interaction between the states,

Hdot � HKS +HCoilomb, (9)
using the general form of the many-body Hamiltonian componnts

HKS � ∑
i

ib̂
†

i b̂i +∑
i≠j

Ωijb̂
†

i b̂j, (10)

HCoulomb � ∑
mnkl

Umnklb̂
†

mb̂
†

nb̂kb̂l , m< n (11)

where the operator b̂
†

i (b̂i) creates (annihilates) a spin-polarized
electron at site i in a single-particle orbital of energy ϵi, Ωij

denotes the strength of the hybridization between single particle
orbitals. In the present calculations, the term Umnkl � 〈mn|U |kl〉
denotes the Coulomb matrix elements determined ab initio from
DFT calculation of the ground state electronic structure. This is
defined in the atomic pz basis ψi(r) of a given material as:

〈mn U| |kl〉 � e2

4πεrε0
∫∫dr1dr2ψ

*
m r1( )ψ*

n r2( )ψk r1( )ψl r2( ), (12)

for states where m < n. Finally, the tunnelling Hamiltonian is

HTunnelling � ∑
αki

tαkib̂
†

i ĉαk +H.c., (13)

where H.c. represents the Hermitian conjugate of the first term and
tαki denotes the tunneling amplitude between the leads and the QD.
The above formulation introduces an important energy scale for these
calculations through the tunneling rate such that

Γαki E( ) � 2π∑
k

tαki| |2δ E − αk( ). (14)

The Hamiltonian of the SDQD model calculations is given by

Htwo � ∑
k;l�L,R

lk ĉ
†
lk ĉlk + ∑

k;l�L,R
(tr b̂†r ĉRk + tlb̂

†

l ĉLk +H.c.)

+ Vg b̂
†

r b̂r + b̂
†

l b̂l( ) + Ωb̂
†

l b̂r +H.c.( ) + Ub̂
†

l b̂
†

r b̂r b̂l. (15)

The SDQD model calculations are performed by parameterizing the
energies of spin-polarized electrons for two single particle states
(ϵ↑, ϵ↓) as a function of a gate (or bias) potential Vg and a
magnetic field B which are applied externally. The total energy of
the conduction electrons in the leads are described as the internal
energy of non-interacting particles. Consider that the experimental
interpretation of carrier transport signatures in QDs is sometimes not
straightforward-especially when the STM image maps of the QD are
used in the characterization of the device. Theoretically modelled STM
images may resolve conflicting possibilities and point to an underlying
atomistic model. Although the DOS at ground state is derived from
DFT only gives direct insight into the local electronic structure at 0 K,
the calculated tunnelling DOS yields better insights into bias
dependent transport state independent of the tunnelling rate, Γ.
This is because at a given charging potential V, the current that
tunnels through the QD to the leads is proportional to the thermalized
population of carriers (see Eq. (8)), such that:

I � eV∑
k

f k → ∫εF+eV

εF

∑
kn

ωk Ψkn| |2δ ε − εkn( )dε, (16)

where ωk is the k-point weight and Ψkn is the wavefunction. The
changes in current as a function of the applied bias or the tunnelling
conductance (dI/dV) are also calculated. This is an experimentally
observable physical quantity that correlate with the charge stability of
the QD system.

When the bias dependent mesoscale carrier transport is treated
perturbatively to lowest order in the tunneling couplings, QmeQ
allows the use of different possible approaches to obtain the
tunnelling current. These are Pauli (classical), first-order Redfield,
and first order von Neumann master equations, and the Lindblad
equation. When all the microscopic processes involving two-particle
excitations in the leads are of interest, the 1vN approach can be
applied. What is new in the master equation compared to the
Schrödinger equation are processes that describe dissipation in the
quantum system due to its interaction with an environment. These
environmental interactions are defined by the operators through
which the system couples to the environment, and rates that
describe the strength of the processes. For instance, to describe the
second-order scattering processes that involve virtual intermediate
states or the broken-symmetry state of quasiparticles the 2vN is used
to calculate the expected particle-hole asymmetry for comparison with
predictions of the Pauli master equation. The Pauli approach and the
1vN approach, with three different values 0, 1, and 2 for the QmeQ
Builder’s optional argument itype were used. The value of itype
determines how the tunneling rate matrix Γ (see Eq. 14) is
calculated. For itype = 2, the principal part integrals are neglected,
for itype = 1 the principal part integrals are approximated using the
digamma function [58]. This is equivalent to the logarithmic
derivative of the gamma function. A full calculation is performed
for itype = 0 using the SciPy implementation [59] of the DQAWC
subroutine [60]. Results of the calculated tunnelling current are shown
for solution to Eq. (3) using the methods from different master
equations.
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3 Results and discussion

3.1 Ground state properties

3.1.1 Local network structure
It is important to first characterize atomic network structure of

the monolayer materials considered to appreciate their effects on
electronic transport. Significant progress has been made in
understanding the roles of defect in a covalently bonded solid.
For instance, it is now well-known from our previous studies of
tetrahedrally-bonded materials that the presence of an open-
volume defect introduces localized electron states into the mid-
gap region due to their dangling bonds [61, 62]. The density of the
mid-gap defect states in the hydrogen-free amorphous silicon
(a-Si) reduces significantly when it is passivated with hydrogen
[63]. In this sense, the passivating hydrogen is an impurity in the
disordered silicon network. In sp2-bonded crystalline materials,
such as the hBN bilayer [64] and monolayer [65, 66], we also found
that introduction of a point defect also introduces localized mid-
gap electronic states. A single carbon substitutional defect
introduced on the boron or nitrogen site creates s-resonant
electronic states at the Fermi-level with finite magnetic
moments. By contrast, the introduction of a few-carbon or on
both boron and nitrogen sites either at near-neighbor positions or
over an extended region of the monolayer also induces finite
magnetic moments [67].

Although hydrogen-related point defects and vacancies are not
considered in the QDs discussed in this work, it is demonstrated in the
next section that an embedded carbon nanoline also introduces mid-
gap defect states in the hBN monolayer leading to flat bands in the
electronic structure. This leads to formation of the Fermi level
resonant state when the number of embedded carbons is odd. By
contrast, a significantly narrowed band gap is obtained when the
number of embedded carbons is even. Such monolayer materials have
been studied extensively for about 2 decades and graphene and
monolayer boron nitride have both emerged as ideal Dirac material
candidates for designing HPMs. More recently, our work has
showcased different technology platforms that can utilize the
ballistic transport capability of carriers in graphene, monolayer
hBN or their derivatives in diverse technological applications like
spintronics [68], skyrmionics [69], catalysis [70] and plasmonics [71].
Insights from these previous studies suggest that similar
computational approaches can be used to gain unique insights into
the efficacy of HPMs in energy conversion applications.

Figures 2A–F show the local atomic networks in the carbon
nanoline-embedded hexagonal boron nitride monolayers. The short
line of carbon (SLC), carbon dimer chain (CDC), hexagonal line of
carbon (HLC), long line of carbon (LLC), and hexagonal ring carbon
(HRC) represent unique nanoline geometries, respectively. The
embedded SLC acts as a carrier conducting channel in the
semiconducting layer. Its role in the hBN monolayer is analogous
to the spin nanoroad observed in the spin-resolved charge density of

FIGURE 2
Different structures of the local atomic network geometry of the carbon nanoline-embedded hexagonal boron nitride monolayer showing the pristine
monolayer structure (A) and the carbon nanoline conducting channel embedded within the semiconducting PML as a short line of carbon (B), a carbon dimer
chain (C), a hexagonal line of carbon (D), a long line of carbon (E), and a hexagonal ring carbon (F).
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FIGURE 3
Electronic band structure of the nanoline embeddedmonolayer hexagonal boron nitride showing the pristine structure (A) and a short line of carbon (B),
a carbon dimer chain (C), a hexagonal line of carbon (D), a long line of carbon (E), and a hexagonal ring carbon (F).
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the metal-insulator-metal heterostructure as a 1D conducting channel
[71]. The nanoroad denotes the graphene conducting channels
embedded within the hexagonal boron nitride layer [72]. As such,
it is suggested that monolayer hBNQDs derived from carbon nanoline
induced narrow bandgap semiconducting nanowires can serve as the
building blocks for spin-based quantum information processing, and
as HPMs for energy applications. QDs made with narrow bandgap
semiconducting monolayers are advantageous because of their high
electron mobility and small effective masses making it possible to
manipulate the spin transport state.

3.1.2 Electronic band structure
Figure 3 shows the electronic band structure of nanoline-

embedded monolayer hBN calculated with the GLLBSC functional.
Firstly, the GLLBSC functional gives a significantly improved band
gap of the pristine hBN monolayer relative to the experimental values.
The band structure of the PML is characterized by a wide Kohn-Sham
band gap of 5.827 eV. Figure 3A shows that the position of the highest
occupied valence band state in the PML is localized at over 4 eV below
the Fermi level. With a derivative discontinuity of 2.08 eV from the
GLLBSC functional of the particle exchange-correlation hole, the
fundamental quasiparticle band gap of 7.87 eV is obtained as
expected. The calculations reveal that the electron states in the
PML systems are time-reversal symmetric. Electrons from the two
spin channels are not sensitive to spin polarization. As such, changes
in direction of spin quantization does not affect the electron states.
This causes the position of the corresponding highest occupied valence
state to be localized at an energy level that is located at over 4 eV below
the Fermi level. This leads to invariant direct interband transition from
the valence to conduction states at Γ-point of the Brillouin zone.

Using the nanoline geometry to embed carbon species in the
monolayer introduces impurity band states in the gap region.
Embedding the nanolines reduce the wide band gap in pristine
hBN monolayer. Generally, Figure 3 shows that the carbon
impurity states cause the position of the corresponding highest
occupied valence band to shift towards the Fermi level. Except in
the case of an embedded hexagonal line carbon, the lowest unoccupied
conduction band states are shifted in energy to a position above 2 eV
in the conduction band. These culminate in significant reductions in
the size of the wide band gap obtained in the PML. As such, the band
structure in each embedded system is only shown here in the energy
interval of ±4 eV around the Fermi level (see Figures 3B–F). Figure 3B
shows that the highest occupied valence band state lies directly at the
Fermi level. This leads to metallic transport property in the SLC
system. The other embedded systems yield a semiconducting band
structure. Other embedded structures yield significantly reduced band
gaps with a strong sensitivity to the local structure of the nanoline
conducting channel.

There is a nearly flat band resonating with the Fermi level in
Figure 3B. This band exists at the mid-gap region. It is due primarily
from the carbon atoms at the zigzag edge nanoline of the SLC
geometry. The behavior of this flat band state resembles a non-
degenerate defect state in the pristine zigzag-edged graphene
ribbon [70, 73]. Our previous studies [65–67] showed that the
threshold for reconstruction of the local structure in the layer is
sensitive to the presence of a substitutional carbon impurity. This
implies that the layers are stable against puckering. The present study
considers the embedded nanoline as a line defect and not as point
defects. However, the origin of an associated magnetic moments

behaves like the magnetic moments obtained with the
substitutional carbon defects in the hBN monolayer. These are
different from the magnetic moments obtained from d-electron
states in dilute magnetic allots. As such, the associated Kondo
resonance effects cannot be ascribed to a dispersive defect state.
The Kondo effect associated with spin-dependent transport of
carriers in a non-dispersive defect state is different to those in
materials where magnetism arises from the d-band electron states.
In the latter, d-electron states in transition metals lead to
ferromagnetism but there are no d-band states in the monolayers
considered herein.

Table 1 also shows the renormalized quasiparticle band gaps
obtained in the GLLBSC approach. This description of electronic
states in terms of the momentum space dispersion of energy leads to
the non-magnetic ground state. Thus, the band structures shown in
Figures 3C–F each has a finite gap, and the net magnetic moment is
zero in each case. The ferromagnetism of the SLC-embedded system is
due to the Fermi-level resonant state formed due to strong s-p
hybridization. This gives rise to the dispersionless (or flat) band
seen along the M-K direction of the Brillouin zone in Figure 3B.
This flat band character is seen also along the Γ-M and the K-Γ
directions. This is attributable to the combined effects of quantum
confinement and the low dimensionality of the layer.

These have a strong influence on the interaction of electrons with
local magnetic moments. The bandwidth of this flat band is ~.05 eV.
The magnitude of this band width is far smaller than the error of .2 eV
expected from electronic energies obtained from DFT calculations
with GPAW. This suggests that the SLC model of the flat bands will
strongly contribute to the density of states (DOS) for occupied
electrons and can be modelled within the SSQD approximation
due to its unpaired electron spin. Presence of such a high DOS in
the valence channel around the Fermi level position has crucial
implications for carrier transport. This ferromagnetic moment give
rise to interesting Kondo phenomena in QDs in ways that are different
from the Kondo effect observed in DMAs in 3D materials.

3.1.3 Defect-induced local fields
Table 1 summarizes the defect induced local fields at ground state

as the number of carbon changes. This shows the electric andmagnetic
dipole moments, changes in the GGA and GLLBSC band gaps for
different nanolines, and derived position of the flat bands. This shows
that the distribution of the energy level position of the most dominant
flat band states in the nanoline embedded systems is sensitive to the
number of carbons embedded in the layer. It is found that the position
of the flat conduction band state decreases steadily towards the Fermi
level while the flat valence band position is shifted deeper into the
valence band as the number of carbons is increased in the layer.
Similarly, the magnitude of the electric dipole moment also increases
continuously with increasing number of carbons. The electronic
structure of the SLC yields a distinctly metallic transport character
while all the other embedded systems have a semiconducting character
with reduced band gaps. It is important to also note that at the ground
state of the SLC-embedded layer, the spin-split eigenvalues for up (↑)
and down (↓) spin channel is −20.73912912029137 states/eV.cell
and −20.477150085834335, respectively. This culminates in a total
magnetic moment of 1.00 μB/cell. This is 3 orders of magnitude higher
than the net magnetic moments in other embedded structure. The
GLLBSC functional yields a total magnetic moment of 1.00 μB/cell for
the SLC system. The energy-level positions of the flat bands are
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obtained in the vicinity of the Fermi level. In the SLC-embedded
system, this was set to the Fermi level (i.e., 0 eV) since there is no
band gap.

The positive net magnetic moment in the metallic system is
suggestive of a ferromagnetically ordered local moment because the
direction of spin quantization is along the z-axis of the monolayer.
Thus, the GLLBSC band structure accurately describes the magnetic
exchange interactions expected in the induced flat band
ferromagnetism. This is important because when electronic spin in
important in the tunnelling process making it convenient to view the
spin tunneling as a magnetic exchange coupling. Several previous

studies of the Hubbard model of ferromagnetism have shown that
when the one-electron band structure contains flat bands [74–76], the
magnitude of the repulsive electron–electron interaction will
guarantee the emergence of a fully spin-polarized ground state
whenever the flat band is half-filled. The above prediction of flat
band ferromagnetism of the dominate carriers in the polarized spin-
state was also confirmed in our previous calculations [69, 77]. This led
to the conclusion that only small changes are expected in electron
momentum due to deviations from perfect flat band dispersion in the
free-standing monolayers compared to stacked multilayers [78]. This
suggests that the signatures of Kondo physics in hBN aremore likely to

TABLE 1 Ground state properties of carbon nanoline embeddedmonolayer hBN showing the electronic, andmagnetic properties as a function of the number of carbon
atoms in embedded in the layers.

Nanoline Carbon Band gaps Local dipole fields Position of flat band

PBE (eV) GLLBSC (eV) Magnetic (μB/cell) Electric (|e|*Å) Conduction (eV) Valence (eV)

PML 0 4.363 7.93 00 −16.99 1.97 −4.2

SLC 9 - - 1.00 −14.59 - -

CDC 10 2.27 3.83 00 −15.60 2.48 −.60

HLC 18 1.20 1.92 00 −17.31 1.06 −.65

LLC 18 1.24 1.49 00 −17.71 .88 −.80

HRC 26 1.18 1.33 00 −19.52 .65 −1.10

FIGURE 4
Ground state electronic structure in the pristine monolayer hexagonal boron nitride under the effect of spin orbit coupling showing the band structure
(top panels) and the corresponding electronic density of states (bottom panels) calculated from PBE (A, C) and GLLBSC (B, D) functionals in the absence of
carbon species. The band structures show a reversal of the charge pseudospin degree of freedom at the time reversal symmetric K and K’ points of the Brillouin
zone because of the broken time reversal symmetry of the electron state.
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be easily delineated in the monolayer systems considered herein than
in the multilayers.

The size of the narrowed band gaps of semiconducting sheets in
Table 1 shows a strong sensitivity to the number of carbons in the
embedded nanoline. With increasing number of carbons in the
embedded layer, the overall electric dipole moment gets enhanced.
However, the GLLBSC band gap decreases as number of carbons
increases and gives rise to a progressively decreasing position of the flat
bands for up and down spin channel. In the SLC, the odd number of
carbons in the layer means there is an unpaired electron state in the
system. This unpaired electron state forms an electronic resonance at
the Fermi level leading to zero band gap—as would be expected. All the
other embedded systems have a finite but reduced band gap. Only the
SLC geometry is characterized by an odd number of carbons. Hence,
the unpaired electron is the only physically plausible cause of the band
(or itinerant) ferromagnetism observed in the carbon nanolines
embedded monolayer. This is quite unlike the more localized Ising-
type spins observed in DMAs due to the presence of localized d-band
states in transition metal ions. Thus, our recent justification for using
the Heisenberg exchange to model the interaction between localized
spin moment in stacked monolayer systems is equally applicable in
this case [79].

Figure 4 shows the effects of spin orbit coupling (SOC) on the
electronic band structure of pristine monolayer hBN in the absence
of carbon species. The color bar shows the evolution of the charge
pseudospin degree of freedom under the effect of time reversal
symmetry. It is crucial to emphasize that the presence of carbon in
the hexagonal lattice of the hexagonal boron nitride (hBN)
monolayer induces ferromagnetism. The phenomenon of carbon
induced magnetism in monolayer hBN has been confirmed both
experimentally [80–83] and theoretically [84–86]. Thus, consider
too that the carbon-induced ferromagnetism and the intrinsically
weak SOC of the nanoline-embedded monolayer enforces a broken
time-reversal symmetry on the electron state of the hybrid
monolayer. Since the presence of the carbon nanoline also
breaks the local structural inversion symmetry of the material, it
is the pseudospin 1/2 degree of freedom of the electron that gives
rise to observable the Kondo effect. Irrespective of whether the QD
has a magnetic or non-magnetic ground state, the pseudospin
charge density contribution from each valley can be screened by
being shifting spontaneously within the monolayer to reveal
Kondo-like behavior because of Coulombic charging when the
dot is tunnel-coupled to metallic leads.

To gain additional insights for understanding of the effect of the
different flavors of the intrinsic broken structural inversion symmetry
on the electron state caused by embedding of the carbon nanolines in
hBN; Figure 4 shows the band structure of pristine hBN monolayer
obtained from PBE (Figure 4A) and from GLLBSC (Figure 4B). The
ground state electronic structure shows an intrinsically reversed
magnitude of the “charge” pseudospin-½ degree of freedom at the
K- and K’-points of the Brillouin zone. These denote the Brillouin
zone points at which the electron state should remain invariant under
time-reversal symmetry when the dynamics of the electron is observed
in imaginary time under the effect of a symmetry-breaking field such
as the SOC. The phenomenon of charge pseudospin reversal also
occurs in pristine graphene—even though the two inequivalent
sublattice sites are occupied by carbon species only quite unlike
boron and nitrogen in monolayer hBN. The top panels of Figure 4
show the reversal of the charge pseudospin from +1.0 (at point K)

to −1.0 (at point K’) in the absence of carbon. Hence, introduction of
carbon nanoline in the QD influences the pseudospin as well as the
valley degrees of freedom for carrier transport [87]. The calculated
electronic DOS (bottom panels) in the absence of carbon species
shows a consistently wide bang gap—as expected. These indicate that
neither the spin nor charge is significant in the physics of the broken
symmetry state expected in the Kondo phenomenon reported herein.
It is instead the charge pseudospin in the carbon nanoline-embedded
layers that needs to be screened by the cloud of valence electrons in the
metallic leads of the dots that gives rise to the Kondo resonance effects.
This is crucial because the pseudospin of carriers in Dirac-like
materials is known to play the central role in determining the
generic transport properties in both fully spin-polarized and
channel-symmetric two-channel Kondo models [88].

From the experimental perspective, it is now common
knowledge nanoelectronics that a new paradigm has emerged
more recently wherein a large QD is coupled at quantum point
contacts to source and drain leads to realize the charge-Kondo
QDs. This perspective allows for realization of more complex QI
models to be experimentally by controlling the microscopic
interactions without any explicit reference to the localized
ferromagnetic spin or spinless fermion. This is encapsulated by
the fact that when the original two-channel charge-Kondo model
[34] is combined with the pseudogap Kondo physics of graphene
[89], one realizes a novel two-channel pseudogap charge-Kondo
effect akin to the phenomenon investigated herein. As discussed in
Refs. [34, 89, 90], it is the frustrated Kondo screening of the single
“impurity-like” state that is caused by the two distinct channels of
metallic conduction electrons that displays all the characteristic
features of the Kondo physics. This single “impurity-like” state is
akin to a screened charge-pseudospin-1/2 state in the QDs
considered herein. Thus, even when a gated “spinless” dot is
connected to two metallic leads, the frustrated screening of the
QD charge pseudospin is the mechanism that realizes the Kondo
physics.

The impurity-like state arises from the intrinsic pseudospin
SU(4) symmetry of the honeycomb lattice. When there is a
coupling of the dot charge pseudospin to two channels of
conduction electrons (each with the characteristic linear
pseudogap DOS of graphene), the pseudospin screening breaks
the particle-hole symmetry in the spin and valley pseudospin
degrees of freedom. This physics is investigated here using the
SDQD model of the HRC cluster to unravel the Kondo resonance
effects. Thus, the results of the first principles calculations shows
that insertion of different local geometries of the carbon nanoline
conducting channel in the semiconducting hBN monolayer leads
to two distinct (i.e., magnetic, and non-magnetic) ground states at
0-K depending on whether the number of embedded carbons is
odd or even. This interpretation is consistent with the two distinct
ground states correspond to an electronic structure with either a
“finite” or “zero” magnetic moment. Based on the obtained
ground states, a quantum dot can be modelled with either a
“finite” or “zero” magnetic moment. Quantum dots are
designed within these two categories of ground states and
described using either the spinful single-orbital quantum dot
(SSQD) model or spinless double quantum dot (SDQD) model
via a tunable coupling to metallic leads—depending on a tunable
Coulomb interaction that is scaled by the ratio, V/U, and by using
the gate voltage, V=Vg.
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3.2 Mesoscale transport properties

Despite major advancements in current understanding of
correlations effects in electronic structure theory, an accurate
description of the effects of electron-electron interaction potential on
the presence of quasiparticles is missing still. Such effects include
electron-electron repulsion and Coulomb drag. These contribute to
the Kondo phenomenon in layeredmagnetic materials elucidated in this
section. Quasiparticle excitations in QDs, which are present due to
strong effects of many-body correlations are accounted for by the
renormalization of quasiparticle energies. Thus, the finite lifetimes of
collective excitations are describable in the independent particle picture.
The TKE in real metals originate from the coexistence of nearly
degenerate electron states [11, 91]. More recently, Kleeorin and Meir
[92] have showed that the dependence of Kondo effect on gate voltage is
due to an interplay between the level occupation switching of nearly
degenerate levels. Consider that the coherent exchange coupling of
conduction electrons to local magnetic moments sets up the Kondo
cloud that screens the impurity spin state in planar carbon materials
[93]. Thus, despite the weak spin orbit coupling (SOC), the screened
charge pseudospin of carriers in the carbon nanoline is responsible for
the signatures of the Kondo physics observed herein.

Microscopic interactions in the system Hamiltonian described in
the Hubbard-like model are carefully controlled by electrostatic
charging to localize a single electrons state. This allows the many-
body effects in the quantum transport of carriers to be determined
from solution of different quantummaster equations. This approach is
justifiable since the macroscopic degrees of freedom that are involved
in the transport of carriers through a mesoscopic electronic device are
susceptible to the effects of strong many-body correlations and
sensitive to the strength of the orbital hybridization and the gate
voltage. The effects of many-correlation on carrier transport can be
probed at single-particle level by controlling the external bias potential
V and the gate voltage, Vg. In the following analyses, Kondo resonance
effects are presented wherein collective degrees of freedom like
currents and voltages behave quantum mechanically despite the
small magnitude of spin orbit coupling in the monolayer hexagonal
boron nitride layer.

3.2.1 Effects of temperature on dc conductance
Figures 5A,B shows the dependence of the magnitude of the

tunneling current on gate voltage and strength of the orbital
hybridization in the SDQD model at 0 K. The current is
determined using the Pauli, Redfield, first-order von Neumann and
Lindblad approaches using two different values of the itype variable in
solution method implemented in QmeQ. The results are obtained
using Γ= .5, U = 5, Ω = 2 as the simulation parameters. SDQD model
data are obtained using energy position of 1.50 eV determined from
the spin-split level of the two Fermi-level resonant flat bands at the
Brillouin zone point K in the SLC nanoline model (see Figure 2B).
Figure 4 shows the performance of different quantummaster equation
in the SDQD model for itype = 1. The colourmap denotes the
distribution of the current at different charging potential. Note that
setting itype = 0 yields a zero-tunnelling current irrespective of the
simulation temperature. Hence, only the non-vanishing currents
obtained with Pauli and Lindblad master equation for itype = 1 are
displayed in Figures 4A,B.

Nevertheless, it is also important to emphasize that the results
presented here for the SDQD are not sensitive to values of the itype
parameter. The Pauli and Lindblad master equations yield a similar
non-vanishing current contour while the first order von Neumann
(1vN) and Redfield master equations give rise to zero current.
However, the Pauli method is known to accurately reproduce the
current profile of the and Lindblad approaches only within the high-
charging regime of the SDQD model. In Ref. [54] for instance, the
current predicted with the Pauli master equation for the SDQDmodel
is anomalously high in the limit of minimal (or low) charging of the
QD whereinΩ/Γ→ 0 irrespective of the value of the itype variable. The
non-zero current obtained when Ω/Γ < 0 suggests a finite current flow
at negative charging. This trend is not seen obtainable with other
master equations. Secondly, the tunnelling current behaves quantum
quantum-mechanically. In this sense, changes in the current contour
shows an asymptotic jump between maximal values and a minimal
value in both Pauli and Lindblad methods. This is denoted by the
sequential change in the color of the current contour from white at the
dotted spots through the red line to the blue region at both values of
0 and 1 for the itype parameter. This characterizes the discrete quantal

FIGURE 5
Tunnelling current obtained from different quantum master equations in the spinful single orbital quantum dot model showing the dependence of
predicted Pauli (A) and Lindblad (B) tunnelling current on gate voltage and on strength of the orbital hybridization.
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behavior of current flowing in the QD at 0 K. This shows that only a
discrete number of electrons are transported across the quantum dot.

Figures 6A–D show contours of the current profile at 1 μK derived
from the four quantum master equations. At extremely low but non-
zero temperatures important differences are observed in each case. It is
observed that the Redfield and first order von Neumann master
equations only give a finite (i.e., nonzero) current at extremely low
(but nonzero) temperatures, in each case. This shows that the Redfield
and first order von Neumann currents match the Pauli and Lindblad
currents exactly at the high values of ratio Ω/Γ. When the Pauli and
Lindblad currents are compared to the 0 K (see Figures 5A,B), it is
observed that the linearly distributed white dots on blue the
background has disappeared. This leaves only the localized white
spots seen on the red contour line. When the strength of the electronic
coupling between the flat band states is set to Ω/Γ ≈ 1.5, two distinct
localized regions of high tunnelling current are observed around the
region where the Coulomb potential (denoted by Vg/U) is −1 and 5.
These two regions are denoted by the two regions of smoothly graded
white halos in Figures 6B,C. Otherwise, all the four forms of the
quantum master equation yield the same Kondo current. The results
show that the Kondo current survives up to 10 K before it disappears.
The other signatures of the Kondo resonance are studied using the
Lindblad formalism.

It is well-known in the Kondo physics of a dilute magnetic alloy
that at a characteristic temperature, which is also known as the Kondo
temperature, the resistivity (or conductance) increases (or decreases)

abruptly at a low temperature starting near the Kondo temperature.
This phenomenon depends on the energy position of the impurity
band state and on the nature of the metallic host in DMAs. However, it
has recently been associated with the impurity-induced resonance
peaks at the Hubbard band edges due to an isolated magnetic atom
deposited onto monolayer 1T-TaSe2 [94, 95]. Experimental
measurements show that the observed Kondo resonance peaks
disappear when the spatial overlap at the band edges is reduced or
when the magnetic impurities are replaced with non-magnetic
impurities. These effects are ascribed to the presence of spinons. A
spinon is an exotic charge-neutral quasiparticle present only in the
quantum spin liquid phase. As such, we have also studied the Kondo
resonance effect associated with the effect of temperature on the
conductance under zero and finite magnetic field. This includes the
carrier stability diagram and the associated effects of temperature and
magnetic field. Evidence of the tunneling transport of a well-defined
number of electrons through the dot is obtainable from the charge
stability diagram.

Figure 7 shows the charge stability diagram of a QD at four
different but evenly separated low temperatures under zero magnetic
field. Here, the Coulomb diamonds are labelled to show the quantized
energy levels or microstates that are accessible to the electron. Firstly,
there is considerable asymmetry in the size of the diamonds, i.e., the
available energy levels. The size of the diamonds at N = 0 and N = 1 is
not equal. This asymmetry is attributable to the two-fold degeneracy
expected when the available energy levels in the HPM are filled with

FIGURE 6
Performance of Pauli (A), first order von Neuman (B), Redfield (C) and Lindblad (D) quantum master equations in the spinful single orbital quantum dot
model showing the dependence of the tunneling current on gate voltage and strength of the orbital hybridization.
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electrons at the valleys located at K and K’ in the Brillouin zone.
Clearly, temperature has a non-trivial effect on the boundaries of the
diamonds but not on their size. Secondly, negative charging yields an
empty QD because the diamond labelled N = 0 does not close at all
temperatures. At the center, the diamond closes at all temperatures
with a relatively low energy penalty for adding the first electron.
Secondly, excited states are visible outside the Coulomb diamonds.
These appear near the diamonds as off-resonance conduction. This
Kondo resonance effect is low at 0 K. However, the signature can be
seen clearly up to .1 K (see Figure 7B). The edges of the Coulomb
diamonds are no longer sharp at 1 K and the effects becomes more
pronounced at 10 K. The smeared coulomb diamond edges are
suggestive of the thermal broadening of accessible energy levels;
Figures 6B–D illustrates the broadening of excited states in the
interval between .1 and 10 K. The broadened off-resonance
conduction characterizes the effect of temperature on quantized
dc conductance at B = 0.

The color bar in Figure 7 depicts the magnitude of the
conductance. It is observed that the dc conductivity saturates at the
peak value of 5 S/m at 0 K. As temperature increases to 1 K the
conductance drops to 14 S/m and this decreases further to 025 S/m
at 10 K. The results show that the dc conductance survives up to 10 K
before it disappears. The above trend in the results agrees temperature

dependence of the Kondo resonance effect of a Co atom observed
experimentally by Otte, et al; [96]. Their experiments demonstrated
that a single Co atom that is bound to the Cu2N surface shows a sharp
zero-voltage peak in its conductance spectrum. This peak was
attributed to increased density of electronic states near the Fermi
level. The expected high DOS around the Fermi level was ascribed to
the effect of the Kondo screening of the Co impurity. In our case, the
absence of a magnetic impurity means that the high DOS originated
explicitly from the small bandwidth of the flat bands.

To gain experimentally useful insights into the transport
calculations, it is important to recall that when the QD model
(either SSQD or SDQD) is connected as shown in the
measurement geometry of Figure 1, it will gain access to an
effective electron base temperature (Tbas), which cannot be lower
than the Kondo temperature, TK.With experimental QD devices made
from the GaAs/AlGaAs gated structure, a Tbase of more than 45 mK
was measured using a variable dc bias and/or an ac bias of 1 mV at
13.5 Hz for a lock-in detection [57]. This was experimentally
measured from the widths of the conduction band peaks in the
weak tunneling regime. The expected pseudospin coupling
interactions that give rise to localized single electron states (shown
in Figure 7A) are accessible experimentally even though the Kondo
temperature TK of the system is well-above 0 K. This is crucial because

FIGURE 7
Direct current (dc) conductance at 0 K (A), .1 K (B) 1.0 K (C) 10 K (D) when B = 0.
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the effective tunnelling rate Γ of the coupled QD system is a function of
the Coulomb energies U, as well as the tunnelling rates of the right (ΓR)
and left (ΓL) leads and these combine to determine the TK using [97],

TK �
����������
U

ΓLΓR
ΓL+ΓR( )√

exp
π(ΓL+ΓR)(E − EF)

2ΓLΓR
( ) (17)

where the Coulomb energy U and the Fermi energy EF are both
determined from the DFT calculations. Thus, in the QD charging limit
where interactions are introduced (i.e., HCoulomb ≠ 0), parameters (ΓR)
and left (ΓL) are tunable to the required weak to moderate coupling
strengths when different materials are used as leads (ΓR ≠ ΓL) by
setting the gate so that the conduction band peaks
overlap. Alternatively, the same material can be used as leads
(ΓR � ΓL) to access the same physics. For instance, these present
calculations show that setting Vgate = −U/2 and B = .375U localizes
a single electron state to the experimentally accessible particle-hole
symmetric point. This is because during charge coupling, the
pseudospin contribution is only significant when TK is larger than
(or equal to) the combined tunnelling rate, Γ � ΓLΓR/(ΓL+ΓR). The
predicted Kondo temperature of the two-quantum dot (i.e., SSQD and
SDQD) models is 10 K and 50 K suggesting that TK is structure
tunable. These are consistent with the experimental TK of ~4 K
evaluated from the width of zero-bias conductance peak of
graphene QDs obtained by electron-beam lithography and reactive-
ion etching [98], as well as the tunable TK of up to ~90 K in defective
graphene QDs [99].

Figure 8A shows the summary of the changes in dc conductance
with temperature when the magnetic field is set to B = .375U in
comparison to B = 0. Figure 8B shows the magnetic field independent
conductance of the quantum dot at 40 K. The applied magnetic field
has minimal effects on the single electron conductance. However, as
more electrons are added to the accessible energy levels, it is expected
that magnetic field is capable of form Landau levels under strong
magnetic fields. It is noted too that raising the temperature up to 40 K
at a fixed value of B = .375 U only reduces the conductance to 009 S/m
(see Figure 8B). The observed decrease in the dc conductance peak

with increasing temperature is a systematic trendline. It does not
depend on the applied magnetic field. This agrees with the arguments
of thermally broadened Fano lineshape introduced to explain the
temperature dependence of Kondo resonance effects of a single Kondo
impurity [100].

3.2.2 Implications of a bias-dependent particle-hole
asymmetry

Recently, Lu, et al. [101] have reviewed the methods for
transforming energy using QDs. The dependence of particle-hole
symmetry on gate voltage has crucial implications in typical energy
conversion applications. Consider that the Hamiltonian of the
Hubbard model is symmetric under the exchange of particles and
holes [102]. The Hamiltonian (see Eq. (1)) has a fascinating particle-
hole symmetry (PHS) that allows to establish a direct relationship
between its emergent physical properties at different values of the
Hamiltonian tuning parameters. In this case, particle-hole symmetry
denotes the anti-unitary operation which anti-commutes with the
Hamiltonian. Since the local network structures of the QD systems
considered herein preserve to the local symmetry of the Brillouin zone
valleys at KK’, the symmetry property of the electronic structure
enforces the constraint εk = ε−k on the electronic structure as the
necessary condition for particle-hole symmetry. Thus, electrons and
holes feel the same Coulombic interactions in the material without
changing their effective mass, conductivity, and response to bosonic
fields. This only happens at the particle-hole symmetry point when
carrier transport preserves time reversal symmetry.

Figure 9 shows the bias trace at the particle–hole symmetric point
Vgate = −U/2 for B = .375 U for the SLC (Figure 9A) and HRC
(Figure 9B) models. These parameters are chosen to simulate the
response of the single electron that occupies the n = 1 C diamond in
both QD models (Figure 7A). Results are also shown from calculation
done with the Pauli and second order von Neumann (2vN) methods,
in each case. In Figure 9A, the dc conductance rises exponentially.
There is no peak conductance since does not saturate. This signature is
characteristic of the absence of the global symmetry that would have
been expected on time reversal. This can also be attributed to the

FIGURE 8
Summary of the changes in conductance with temperature with magnetic field (A). Zeeman spin-splitting magnetic-field independent conductance of
the quantum dot at 40 K (B).
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presence of the broken symmetry states in the transport phase. By
contrast; Figure 9B shows conductance peaks at V/U = ~1.3, both Pauli
and 2vN methods give a well-defined peak at the particle-hole
symmetry point. This peak characterizes the global symmetry of
the transport state wherein electrons and holes feel the same
interactions without changing. Interpretation of these results
overlaps with our recent proposal for the dynamic bosonization of
the spin-½ transport state in interaction-driven lattices [103]. In this
sense, artificial gauge field coupling to the transport state of carriers
create quasiparticle states during the ultrafast process of energy
interconversion. Although the proposal for dynamic bosonization
has been implemented within cavity quantum electrodynamics,
compelling evidence for the formation of quasiparticle-like
transport state [i.e., the charge (or spin) density wave state] was
reported recently in an electromagnetically driven Dirac materials-
based metamaterial [73].

Figure 8A shows the effect of Zeeman spin splitting magnetic field
on the “broad-spectrum” of the tunneling conductance. By contrast,
Figure 9B shows the effect of same Zeeman splitting magnetic field on
the electronic structure of the localized electron state at the specific
pair of points (K andK’) in the Brillouin zone of the HRC-model of the
QD (see Figure 4) where particle-hole symmetry would have been
expected to hold. The clear lack of particle-hole symmetry in Figure 8B
means that the local structure of the QD model is capable of hosting
quasiparticle states. Such states dominate the second-order scattering
processes that mediate energy interconversion using quantum dots.

To understand the non-equilibrium physics of the energy
interconversion process, consider that Hoffmann [104] has recently
calculated the electromagnetic response of carriers in the half-filled
Landau level. The calculations used the effective field theory proposed
for composite fermion by Son [105]. The calculated electromagnetic
response shows a cancellation or suppression of spurious interband
transitions and collective modes that are present in the unmodified
theory when the dipole terms from composite fermions is included in
the calculation. It is crucial to note that cancelled (or suppressed)
collective modes in the electromagnetic response are quasiparticles.
The quasiparticles denote the bosonic field configurations of broken
symmetry states in the Chern-Simons field theory [106, 107]. Within
the framework for bosonization of the carrier transport state, the

appearance of a collective transport state also applies to a QD when
there is particle-hole asymmetry, i.e., εk ≠ ε−k. This is realizable in
practice because gauge fields that preserve the U (1) gauge and
translational symmetries of the lattice can be obtained by
modifying the local atomic geometry of the HPM with a nanoline
or by modulating the Bloch state of carriers by coupling them to
bosonic fields.

Thus, to describe the fast processes of energy interconversion
within the Hubbard model, an interaction term must be introduced in
the Hamiltonian for coupling the carriers to artificial gauge fields in
the QD. This reduces the Hubbard model to a many-body problem.
Figure 8A suggests that the SLC-based QD system has comparably
higher efficacy when integrated in energy applications. The above
analyses allow for unique insights in to the non-equilibrium transport
of electrons with a spin polarization in 2Dmaterials. It is advantageous
especially for understanding the effects of including the non-
equilibrium magnetic moments in the energy transport mechanism.
This is because the observed Kondo resonance effects are driven
mainly by differences in chemical potentials of the QD model and
by differences in temperature when a QD is tunnel coupled to metallic
leads. Zirnbauer [108] has clarified the related particle-hole
conjugation as an algebra automorphism that swaps single-fermion
creation and annihilation operators. This was used to construct its
invariant lift to the Fock space. This permits PHS to emerge as the
concatenation of particle-hole conjugation with one (or another)
involution that reverses the sign of the first quantized Hamiltonian.

The presence of broken PHS in the transport state is observed with
the HRC-based QD model. This underscores the fact that it is
experimentally feasible to form quasiparticles in the ultrafast
energy conversion process using a suitably designed QD local
structure. The above framework allows the PHS to be understood
as a function of QD tunning parameters. Thus, the local network
structure of the carbon nanoline based QD has a non-trivial effect on
the particle–hole symmetric point. At DFT-level, the point is the time-
reversal symmetric points of the Brillouin zone. The pseudospin state
at points KK’ (see Figure 4) indicated that this is the point in which
the macroscopic “charge” pseudospin ½ symmetry of the single
electron state is broken dynamically due to the charging effect. The
broken particle-hole symmetry state is observed in the bias trace of the

FIGURE 9
Bias trace at the particle–hole symmetric point at Vgate = −U/2 for B = .375U in the SLC (A) and HRC (B)models of the embedded nanoline quantum dot
architecture.
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HRC (Figure 9B). This therefore supports the expected formation of
the quasiparticle states through second-order scattering processes
expected when the QDs are used in devices to interconvert energy.
Since the transported energy current is a sum of kinetic and mass
(i.e., excitation) energy but not potential energy [109]. The above
interpretation of the role of quasiparticle states is consistent with
recent experimental evidence for a non-vanishing quasiparticle
population during spin dependent transport of energy in a
superconductor [110]. Thus, the presence of such broken symmetry
state has crucial effects on energy interconversion with HPM-based
QDs. This is because the energy current is obtainable as a sum of the
Poynting vector, the kinetic energy flow and mass energy flow of the
particles. It is physically plausible that the Coulombic many-body
interactions in the QD renormalize the single electron state in the
presence of quasiparticles leading to a dynamic bosonization of the
single electron state.

Some experimental methods of energy interconversion with
graphene quantum dots (GQDs) are derivable from their physical
and chemical properties leading to broad prospects in energy storage
and conversion. For instance, in addition to the excellent properties of
graphene, GQDs also have quantum confinement effects and edge
effects. The size of GQDs and types of their edges determine their
properties [111]. Carbon-based QDs can generate electron-hole pairs,
and well as act like an electron sink to suppress electron-holes pairs
recombination. Due to their high carrier conductivity, the graphene-
based QDs can effectively transport photo-generated electrons
through its conductive networks in solar cells [112, 113]. Non-
etheless, the main arguments advanced herein for the experimental
realization of energy interconversion with QDs is from the perspective
of light-matter interaction in cavity quantum electrodynamics [114].
When the quasiparticle (e.g., a photon field) couples coherently to the
tunnelling ‘single’ electron from the QD (see Figure 7A), the electron
will be confined within a single mode cavity. The reduced
dimensionality of the QD enables the occurrence of few-level
systems with strong non-linear features akin to those that occur in
the process of energy conversion. This facile process can lead to the
formation of polarons, excitons or plasmons, etc as the quasiparticles
that play major roles in the energy conversion using a photovoltaic
[115, 116], optoelectronic [117, 118], excitonic [119, 120] or photonic
[121, 122] device. These analyses suggest that a suitable device can be
designed to implement the weak or moderate couplings of the QD to
specific bosonic (i.e., quasiparticle) modes, which is realizable in
practice with the single photon coupling mode at minimized
dissipation [103].

4 Conclusion

To summarize, a multiscale multi-physics study has been
presented to unravel the Kondo resonance effects in carbon
nanoline embedded hexagonal boron nitride quantum dots.
The mesoscale transport calculations rely on solutions of the
quantum master equation performed using flat band levels
determined from accurate first principles calculation of the
electronic structure. The GLLBSC functional was used in the
calculations to determine quasiparticle gap to take into
consideration the presence of broken symmetry states. Using
an embedded short carbon line and hexagonal ring carbon
nanoline as models of a high-performance monolayer

hexagonal boron nitride material-based quantum dot coupling
to metallic leads, computational solutions of the quantum master
equations were obtained in a spinful orbital and spinless quantum
dots. The electronic signatures of the Kondo resonance were
obtained. The predicted Kondo temperature of the two
quantum dot models are 10 K and 50 K. This suggests that the
Kondo temperature is structure tunable. The lower bound of these
results is consistent with the experimentally measured Kondo
temperature of ~4 K evaluated from the measured width of the
zero-bias conductance peak of graphene quantum dots prepared
by electron-beam lithography and reactive-ion etching. The upper
bound of the estimated Kondo also agrees with the Kondo
temperature of up to 90 K obtainable in defective-tunable
graphene quantum dots. These show that the Kondo
temperature is structure tunable. This work illustrates the
insights that can be obtained when ab initio calculations of
materials are combined with exact diagonalization calculations
of mesoscopic transport properties. These calculations provide a
useful framework for understanding the non-equilibrium
dynamics that arises from the field coupling of itinerant
electrons and local magnetic moments in typical energy
application processes.
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