[image: image1]Hitting time for random walks on the Sierpinski network and the half Sierpinski network

		ORIGINAL RESEARCH
published: 09 December 2022
doi: 10.3389/fphy.2022.1076276


[image: image2]
Hitting time for random walks on the Sierpinski network and the half Sierpinski network
Yu Sun*, Xiaobei Liu and Xiaoyan Li
School of Mathematical Sciences, Jiangsu University, Zhenjiang, China
Edited by:
Dun Han, Jiangsu University, China
Reviewed by:
Lifeng Xi, Ningbo University, China
Zu-Guo Yu, Xiangtan University, China
Min Niu, University of Science and Technology Beijing, China
* Correspondence: Yu Sun, sunyu88sy@163.com
Specialty section: This article was submitted to Social Physics, a section of the journal Frontiers in Physics
Received: 21 October 2022
Accepted: 23 November 2022
Published: 09 December 2022
Citation: Sun Y, Liu X and Li X (2022) Hitting time for random walks on the Sierpinski network and the half Sierpinski network. Front. Phys. 10:1076276. doi: 10.3389/fphy.2022.1076276

We consider the unbiased random walk on the Sierpinski network (Sn◦N) and the half Sierpinski network (HSn◦N), where n is the generation. Different from the existing works on the Sierpinski gasket, Sn◦N is generated by the nested method and HSn◦N is half of Sn◦N based on the vertical cutting of the symmetry axis. We study the hitting time on Sn◦N and HSn◦N. According to the complete symmetry and structural properties of Sn◦N, we derive the exact expressions of the hitting time on the nth generation of Sn◦N and HSn◦N. The curves of the hitting time for the two networks are almost consistent when n is large enough. The result indicates that the diffusion efficiency of HSn◦N has not changed greatly compared with Sn◦N at a large scale.
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1 INTRODUCTION
In recent decades, complex networks have attracted great interest in the scientific community [1,2] and are considered valuable tools for describing real-world systems in the nature and society [3]. They also have a significant impact on mobility patterns, network sampling, community detection, signal transmission, virus spreading, epidemic control, and link prediction [4,5]. In recent years, complex networks have not only been studied in the field of mathematics due to their intersectionality and complexity but also more scholars in other disciplines have begun to pay attention to them, which involves system science, statistical physics, computer and information science, etc. [6–9] Common analysis methods and tools include the graph theory, combinatorial mathematics, matrix theory, probability theory, and stochastic process.
A fractal is a rough or fragmented geometric shape that can be divided into multiple parts, and each part is approximately a reduced-version copy of the whole. According to this definition, a fractal feature is a property known as self-similarity, which means that a fractal has self-similarity [10–13]. In recent years, fractals have attracted a surge of attention in various scientific fields [14,15]. The fractal theory [16,17] has always been a very popular and active theory. This is due to the self-similar structure that exists and the crucial impact of the idea of fractals on a large variety of scientific disciplines, such as molecular biology, pharmaceutical chemistry, optics, economics, and ecology [18]. In addition, many complex networks and real networks are generated by the self-similar fractal network [19–22]. There are many classical fractal models, such as the Cantor set, the Koch curve, and the Sierpinski gasket [23,24]. These structures have obviously become the focus of research, and many potential characterizations have been discovered. In 25–36, the network evolved from the Sierpinski carpet and some vital properties of the Sierpinski gasket were considered.
It has a great theoretical and practical significance to study the hitting time of random walks, which is the mean of the first-passage time of a random walker starting from any site on the network to a trap (a perfect absorber). It can characterize various other dynamical processes taking place on the network, such as mobility patterns and virus spreading. For example, in the communication and information industry, the hitting time of a random walk model can be used to study and simulate information transmission and latency, data collection, quantification and the prediction of communication and search costs, etc. In the field of biology, random walk models can be used to study and describe the spread of infectious diseases and metabolic fluxes among organisms. In the computer industry, the study of characteristics results in community detection, computer vision, collaborative recommendation, and image segmentation. It also describes the diffusion efficiency of different networks. Kozak and Balakrishnan [37,38] studied random walks on a two-dimensional Sierpinski gasket, three-dimensional Sierpinski tower, and d-dimensional Sierpinski model and gave the analytical expression of the hitting time. Wu [39] studied the random walk on the half Sierpinski gasket and gave the formula for the hitting time. Qi [40] got the expression of the hitting time for several absorbing random walks on Sierpinski graphs and hierarchical graphs.
In this paper, we study random walks and discuss the hitting time on the Sierpinski network model (Sn◦N) and the half Sierpinski network model (HSn◦N) obtained by vertically cutting Sn◦N based on the symmetry axis. Compared with Sn◦N, the global self-similarity structure of HSn◦N is lost, and only the local self-similarity is preserved. We expect to obtain the exact expression of the hitting time on HSn◦N from the complete symmetry of Sn◦N and show whether there is any effect on the diffusion efficiency of the cut network. The mathematical combination method and fractal theory are applied. The remainder of this paper is organized as follows: in Section 2, we introduce our models. In Section 3, we have a detailed calculation of the hitting time of Sn◦N. Also, the detailed calculation of the hitting time of HSn◦N is given in Section 4. In the last section, we draw the conclusion.
2 PRELIMINARIES
In this section, we introduce the structure of Sn◦N and HSn◦N and some concepts about several types of random walks, which will be used in the following.
2.1 The structure of Sn◦N and HSn◦N
Actually, Sn◦N can be constructed in a nested manner with a self-similar structure. We separately define a triangle and a 3-regular graph as S and N. As shown in Figure 1, we can make three copies of the 3-regular graph N and then embed N into S by nodes to obtain the initial generation, which is recorded as S1◦N. Making three copies of S1◦N and then embedding the initial generation S1◦N into S to produce the second generation is known as S(S1◦N). For the convenience of the following description, the second generation is abbreviated as S2◦N. We get the nth generation S(Sn−1◦N) by repeating the aforementioned process, making three copies of Sn−1◦N and then embedding the (n−1)th generation Sn−1◦N into S, which is abbreviated as Sn◦N. Specifically, Sn◦N is divided into three parts marked as [image: image] with i = 1, 2, and 3, according to the structure and iteration method. The upper half of Figure 2 shows the first two generations of Sn◦N. It should be noted that all nodes will be labeled sequentially from the top to the bottom by the site index i. The corner node 1 is the trap node, also called the target node. Otherwise, the corner node 1, the left-hand corner node, and the right-hand corner node of the bottom row on Sn◦N are represented by the set A. Therefore, it is convenient to refer to these three corner nodes as 1, L, and R, respectively. Also, the hitting time is represented by [image: image], [image: image] and [image: image], where n is the generation.
[image: Figure 1]FIGURE 1 | Generation process of the initial generation S1◦N.
[image: Figure 2]FIGURE 2 | First two generations of Sn◦N and HSn◦N for n = 1 and 2.
As shown in the lower half of Figure 2, HSn◦N is obtained by cutting the corresponding Sn◦N along the vertical symmetry axis. The cutting method of the network cannot equally divide all the nodes because vertices on the partition line will be retained during segmentation.
From the aforementioned construction, we can easily derive the total number of nodes on Sn◦N and HSn◦N to be
[image: image]
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The three connecting vertices C1, C2, and C3, which are named after connecting the three regions [image: image] on Sn◦N, are marked separately by the numbers as follows: [image: image], [image: image], and [image: image]. According to the position of the three connecting nodes relative to the trap node 1, we divide them into two categories, denoted by sets [image: image] and [image: image], i.e.,
[image: image]
[image: image]
In addition, we use [image: image] to denote the set of n non-trap nodes on the vertical secant line, except site 2.
2.2 Calculation of intermediate quantities
The hitting time is the mean of the first-passage time of a random walker starting from any site on the network to a trap node. In order to determine the hitting time for Sn◦N, we introduce the following intermediate quantities, all of which are the probability of a Markov chain on Sn◦N ending at corner node 1. In the process, the chain starts at a certain vertex and stops whenever it visits any of the three corner nodes of Sn◦N, where n is the generation.
pn: The starting state is a corner node other than site 1. At least one transition is performed.
p1(n): The starting state is a special vertex belonging to [image: image].
p2(n): The starting state is a special vertex belonging to [image: image].
[image: image]
The first equality of the equation group is explained. A random walk in Sn+1◦N, starting from the corner node L and ending whenever the walker reaches any three corner nodes of Sn+1◦N, is limited to jumping at least one step. By definition, the walker stops at the corner node R or 1 with probability pn+1. In addition, the walker must first reach a connecting vertex C1 or C3 in order to reach one of the corner nodes R or 1. By definition and symmetry, the probability of reaching each of the connecting vertices C1 or C3 is pn, where the connecting vertex C1 belongs to [image: image] and the other connecting vertex C3 belongs to [image: image], and the walker has the remaining probability 1−2pn returning to the corner node L, where it stops walking. Therefore, the first equality is obtained.
We next certify the second equality in the equation system (Eq. 5). Considering a random walk in Sn+1◦N, which starts from the connecting vertex C1 and ends whenever the walker reaches any three corner nodes of Sn+1◦N, it jumps at least one step. By definition, the probability that the walker stops at corner node 1 is p1(n + 1). The probability of getting in [image: image] and [image: image] is [image: image]. If it enters [image: image], it has a probability of pn to arrive at corner node 1, where the walker stops jumping. Also, the walker reaches the other two corner nodes of [image: image] with probability 1−pn, i.e., connecting vertices C1 and C2 belonging to [image: image]. As a result, we can write the first item on the right side of the second equality. Similarly, if it enters [image: image], it reaches the corner node L or the connecting vertex C3 with the same probability pn. When it reaches the corner node L, it stops walking. When it reaches the connecting vertex C3, it will continue to walk to the target node. Then, the walker has a probability 1−2pn of returning to the connecting vertex C1. Therefore, we can write the second item on the right side of the second equality. From these analyses, the aforementioned equality is obtained.
Ultimately, we testify to the third equality of the system of Eq. 5. A random walk in Sn+1◦N, starting from the connecting vertex C3 and ending whenever the walker reaches any three corner nodes of Sn+1◦N, jumps at least one step. By definition, the probability that the walker stops at corner node 1 is p2(n + 1). The probability of getting into [image: image] and [image: image] is [image: image]. If it enters [image: image], the probability of the walker reaching the corner node L is pn, and the walker will stop walking at this point. In addition, the probability of the walker reaching the connecting vertex C1 is pn, and the probability of returning to the starting site C3 is 1−2pn. As a result, we can draw up the primary item on the right side of the last equality in the system of Eq. 5. Due to the complete symmetry of Sn+1◦N, the random walk on [image: image] is the same as that of [image: image]. Therefore, the last equation is true.
It is easy to know that the initial value [image: image]. Through simplification, the final solution is obtained:
[image: image]
We next define the corresponding hitting time. Corner nodes 1, L, and R are represented by set A, where site 1 is set as the trap node; connecting vertices C1, C2, and C3 are indicated by set I.
TL→1(n): The hitting time from the corner node L to the corner node 1 in the nth generation.
TL→A(n): The hitting time from the corner node L to any node in set A in the nth generation.
TI→A(n): The hitting time from any vertex in set I to any node in set A in the nth generation.
[image: image]
We now attest to the first equality in the equation system (Eq. 7). TL→1(n) is the hitting time for a random walk in Sn◦N starting from the corner node L and ending at the trap node 1. According to the structure of Sn◦N, the walker must first reach any of the three corner nodes of Sn◦N in order to reach trap node 1, taking expected timesteps TL→A(n). In such a process, the probability of reaching destination node 1 is pn, where the walker stops jumping. Also, the probability of reaching corner nodes R and L is 1−pn, from which the walker must continue to bounce TL→1(n) steps to reach trap node 1. Thus, we get the first expression.
Subsequently, we prove the second equality in the equation system (Eq. 7). TL→A(n + 1) is the hitting time for a random walk starting from the corner node L to any of the three corner nodes of Sn+1◦N for the first time, under the limitation that the walker jumps at least one step. In order to reach any of corner nodes in Sn+1◦N, the walker starting from the corner node L must first visit one of the corner nodes in Sn◦N. It is worth noting that these points belong to [image: image]. This process is expected of TL→A(n) timesteps. In this process, there is the same probability of reaching the connecting vertices C1 and C3, which is pn. The probability of returning to the corner node L is 1−2pn, stopping at this point. If the walker reaches any of the connecting vertices C1 and C3, it will continue to jump TI→A(n + 1) steps to visit any of the corner nodes of Sn+1◦N.
Ultimately, we testify to the third equality of the system in Eq. 7. Consider a random walk, which starts from any one of the connecting nodes C1, C2, and C3 and ends whenever it reaches any corner nodes on Sn+1◦N. By definition, the hitting time is TI→A(n + 1). We now study the random walk from the connecting vertex C3, which may perform the following two processes. Both processes happen with the probability of [image: image]. In the first process, the walker goes inside [image: image], taking TL→A(n) timesteps to reach the three corner nodes of [image: image]. The probability of reaching the corner node L is pn, where the walking process is over. Also, the probability of reaching the other two corner nodes belonging to [image: image] is 1−pn, i.e., the connecting vertices C1 and C3. The walker needs to take further TI→A(n + 1) timesteps before being absorbed. According to the symmetry of Sn◦N, the second process is the same as the first one.
By substituting the value of [image: image] into the aforementioned equation and simplifying it. In addition, it is easy to know TL→A(1) = 4, so we can get the following:
[image: image]
3 FORMULA OF HITTING TIME ON SN◦N
The Sierpinski network in any given generation n, using arrays (a, b, c) to represent a piece of interior points, for instance, (2, 5, 6) or (10, 16, 17), as shown in Figure 3; let (I1, J1, K1) label the three vertices of the smallest triangle containing the three interior points (a, b, c), simultaneously, for instance, (1, 7, 9) or (7, 20, 22). According to the numerical results, the hitting time can be rewritten as follows:
[image: image]
[image: Figure 3]FIGURE 3 | Generation of the n = 3 Sierpinski network.
Let (i1, j1, k1) label the three sites, which are one of any minimum size 1 lacunary triangle on Sn◦N. For example, (3, 4, 8) or (12, 13, 21); (I1, J1, K1) also label the three vertices of the triangle containing (i1, j1, k1) as its central lacunary region, such as (1, 7, 9) or (7, 20, 22), referring to Figure 3. According to the numerical results, it is easy to see the following:
[image: image]
In the same way, we now let (i2, j2, k2) denote the three vertices of a lacunary region of size 2 in the network, such as (7, 9, 22) or (35, 37, 63); (I2, J2, K2) label the three vertices of the triangle containing (i2, j2, k2) as its central lacunary region, such as (1, 20, 24) or (20, 61, 65). It then follows the scaling derived previously that is as follows:
[image: image]
Therefore, moving up the hierarchy, if (ir, jr, kr) are the sites demarcating a lacunary triangle of size r in the ascending order of size, starting from the smallest in size 1, and if (Ir, Jr, Kr) label the vertices of the triangle with (ir, jr, kr) as the central lacunary region, then
[image: image]
The foregoing suggests how the hitting time Ttotal(n) may be computed for the arbitrary n. This is carried out by suitably regrouping the terms in the sum [image: image] and systematically and repeatedly using Eq. 12 as one moves upward through triangles of increasing sizes. It needs some combinatorics and involves the enumeration of the number of lacunary triangles of each size in the network. The final result can be expressed entirely in terms of the known numerical factors and the combination [image: image]. Since T1(n) ≡ 0, while TL(n) = TR(n) = 3 ⋅ 5n, this leads directly to the desired expression for Ttotal(n). As an illustration of the procedure, consider the network of generation n = 3, with Nn = 69. Dropping for a moment the generation superscript for brevity and with L = 61 and R = 69, as shown in Figure 3, we obtain the following:
[image: image]
Thus, Ttotal(3) has been recast in terms of the sum (T1 + TL + TR) of the hitting time from the three primary sites. The meaning of 32 of the second term on the right side of the equation is that there are nine pieces of interior points in S3◦N. It should be noted that the modulus 32 of the third term represents the number of regions of size 1, the coefficient 31 of the factor multiplying 9 ⋅ 51 is the number of lacunary triangles of size 2, and 30 of the factor multiplying 9 ⋅ 52 is the number of lacunary triangles of size 3 on the n = 3 network.
We may now carry out a similar procedure for the case of general n. The analog of Eq. 13 yields the following:
[image: image]
The numerical value is substituted to get the following result:
[image: image]
Therefore, the hitting time on Sn◦N is as follows:
[image: image]
4 FORMULA OF HITTING TIME ON HSN◦N
We divide the random walk into two processes on Sn◦N and HSn◦N, except node 2. The first process is that a walker starts from the starting point to node 3 or 4, which is the sum of the hitting time called Tg(n). The second procedure is a random walk from node 3 or 4 to the trap node, which is called T3(n). In addition, T2(n) denotes the hitting time from site 2 to trap node 1.
Similarly, the first process of HSn◦N is a random walk from any site to node 3, and the hitting time of this process is recorded as Hg(n). The second process is recorded as H3(n), and H2(n) represents the hitting time from site 2 to trap node 1 on HSn◦N. Thence, we have the following equations:
[image: image]
Let Tr(n) be the mean of the first return time for a random walker starting from node 3 in the first process of HSn◦N. Then, Tr(n) can also be the mean of the first return time to node 3 or 4 in the first process of Sn◦N. Therefore, according to the structure of HSn◦N and Sn◦N, we have the following relationship:
[image: image]
Moreover, from the numerical results, we have T2(n) = 3 ⋅ 3n and H2(n) = 2 ⋅ 3n. So, we get the following relation:
[image: image]
Because the nodes on the cut line are retained, the hitting time Ti(n) from any node i on the secant line to the goal node 1 is also divided into two parts. The first process is a random walk from node i to node 3 or 4, which is denoted as Ti→3,4(n). The hitting time of the second process is denoted as T3(n), which represents a random walk from site 3 to destination node 1. Therefore, Ti(n) can be rewritten as follows:
[image: image]
Consequently, the formula for the hitting time of nodes that belong to [image: image] is as follows:
[image: image]
In Sn◦N, in addition to the nodes on the secant line, other nodes are evenly divided on both the sides in the segmentation process. HSn◦N contains the nodes on the left half of the secant line and the nodes in set [image: image]. Therefore, it can be obtained by the following:
[image: image]
Eqs 17 and 20 are inserted into the aforementioned formula to get the following solution:
[image: image]
Then, substituting the aforementioned expression (Eq. 22) into the second formula in the equation group (Eq. 17), we get the following:
[image: image]
We focus on solving the expression of Tf(n). In order to facilitate the calculation, we rewrite the three connecting vertices C1, C2, and C3 of Sn◦N as dn, en, and fn, respectively. According to the structural characteristics of Sn◦N, the sites dn and en in the nth generation can be labeled as the corner nodes Ln−1 and Rn−1 in the (n−1)th generation. The labeling method of nodes on Sn◦N can be seen in Figure 4.
[image: Figure 4]FIGURE 4 | Labeling method of nodes on Sn◦N.
If corner nodes 1, Ln, and Rn are set as goal nodes, then the walker starting from site fy(y = 1, …, n) is captured by the trap set A after 3 ⋅ 5y−1 random walks on average in Sn◦N, which can be seen from the analysis of the equation group (Eq. 7) and results. In addition, the arriving node Ly or Ry has a probability of [image: image]. Thus, [image: image] can be denoted as follows:
[image: image]
Similarly, starting from the point dy+1(y = 1,…, n) and getting to the site Ly or Ry has a probability of [image: image] after 3 ⋅ 5y random walks on average. Then, the walker is captured by the trap set A. In addition, there are [image: image] and [image: image] probabilities reaching nodes Ly+1 and Ry+1, respectively. Therefore, the aforementioned equation can be expressed as follows:
[image: image]
Here, [image: image] and the expression for the hitting time of nodes that belong to [image: image] is as follows:
[image: image]
Therefore, substituting Eq. 15 and Eq. 25 into Eq. 23, the expression of Htotal(n) is as follows:
[image: image]
Then, the hitting time on HSn◦N is as follows:
[image: image]
In order to compare it with the exact formula for the hitting time of a random walk on Sn◦N and HSn◦N, we draw the numerical simulation diagram of [image: image] and [image: image] for n = 1, 2, …, 7, as shown in Figure 5. The figure shows that the difference in the hitting time between Sn◦N and HSn◦N is small when n is large enough. Therefore, the curves of both the networks are nearly merged for large scales, which indicate that the diffusion efficiency of HSn◦N is consistent with Sn◦N for a large scale.
[image: Figure 5]FIGURE 5 | Numerical simulation diagram of [image: image] and [image: image]
5 CONCLUSION
In this paper, we study analytically the unbiased random walk on the Sierpinski network (Sn◦N) and the half Sierpinski network (HSn◦N), which is obtained by vertically cutting Sn◦N along the symmetry axis. After cutting, the global self-similarity of Sn◦N is destroyed, but only the local self-similarity is maintained. We have analytically obtained the closed-form expression of the hitting time for a random walk on the nth generation HSn◦N, which is [image: image]. However, the hitting time of Sn◦N is found to be [image: image]. The hitting time is the quantity that characterizes the diffusion efficiency of the network. The curves of the two networks show that the hitting time of HSn◦N is practically similar compared with Sn◦N when n is large enough, and our results show that the diffusion efficiency of HSn◦N has little effect compared with Sn◦N at a large scale. Our work is further helpful in understanding the properties of Sierpinski networks.
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