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Multiplex networks are generally considered as networks that have the same set

of vertices but different types of edges. Multiplex networks are especially useful

when describing systems with several kinds of interactions. In this paper, we

study the analytical solution of the k-core pruning process on multiplex

networks. k-Core decomposition is a widely used method to find the dense

core of the network. Previously, the Non-Backtracking Expansion Branch

(NBEB) has been found to be able to easily derive the exact analytical results

in the k-core pruning process. Here, we further extend this method to solve the

k-core pruning process on multiplex networks by designing a variation of the

method called theMulticolor Non-Backtracking Expansion Branch (MNEB). Our

results show that, given any uncorrelated multiplex network, the Multicolor

Non-Backtracking Expansion Branch can offer the exact solution for each

intermediate state of the pruning process.
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1 Introduction

Graphs are often used to model systems that consist of interacting people or entities,

where the vertices represent people or entities and the edges represent connections.

Nowadays, many graphs are built in this way, from a variety of systems and applications,

such as online social networks, e-commerce platforms, and even protein interaction

networks. One of the most important tasks in analyzing these graphs is to find the densest

part of the network where the vertices are closely related to each other [1–4]. The most

commonly used algorithm for this problem is called the k-core decomposition [5], in

which the goal is to find the subgraph consisting of the vertices that are left after all vertices

whose degrees less than k are removed. k-Core decomposition is widely used to identify

the important nodes of networks [6–8], help visualize network structures [9,10],

understand and explain the collaborative process in social networks [11,12], describe

protein functions based on protein–protein networks [13,14], and promote network

methods for large text summaries [15].

Previously, many researchers [12,16–18] have focused on solving the k-core

decomposition problem on a single-layer network. Wu [19] showed that the Non-

Backtracking Expansion Branch can be used to obtain the exact results of the k-core
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pruning process on single-layer networks. The Non-

Backtracking Expansion Branch is an alternative

representation to the usual adjacency matrix of a network,

which is constructed as an infinite tree having the same local

structural information as the given network when observed by

non-backtracking walkers.

These findings are important for our understanding of the

structure of complex networks. Meanwhile, in real-world

scenarios, it is common that we have to deal with systems

that consist of many different types of interactions. As a

result, systems cannot be represented by a single-layer

network. For systems with multiple kinds of connections, we

naturally use multiplex networks [20] that have the same set of

vertices but different kinds of edges to represent these systems.

Multiplex networks are also called multirelational networks, in

which the edges between vertices can represent several different

types of interactions. These multiplex networks can be used to

describe real networks [21] or dynamic processes [22]. In recent

years, there has been a trend in network research to study

k-kernels on multiplexed networks. Azimi-Tafreshi [23]

derived the self-consistent equation, obtained the birth point

and relative size of the k-core of the uncorrelated multiplex

networks with arbitrary degree distribution, and found hybrid

phase transition. Subsequently, by analyzing different real

multiplex networks, Osat [24] proposed a new multiplex

network model and showed that interlayer correlations are

important in characterizing their k-core structure, that is, the

organization in the shell layers of nodes with increasing degrees.

Radicchi [25]found that for larger numbers of layers, adding new

layers increases the robustness of the system by creating

redundant interdependencies between layers. Shang [26]

revealed that there is a tipping point in the number of layers

beyond which the multilayer k-core suddenly collapses.

Boccaletti [20] proposed a comprehensive overview of the

organization and dynamics between the components (layers)

is given and several related issues are covered, ranging from a

complete redefinition of fundamental structural measures to

understanding how the multilayered nature of networks

affects processes and dynamics. In a multiplex network, each

kind of connection is represented by a unique layer, and the same

vertex is allowed to have different network structures in different

layers. Figures 1A–C show a simple example of a multiplex

network.

These existing papers show that both intra-layer and

inter-layer correlations have important effects on k-core

phase transition. For a long time, due to the lack of

mathematical tools, theoretical analysis of the k-core

process on multiplex networks has been rare. Here, we

show that by assigning different colors to distinguish the

types of interactions, we can use the Multicolor Non-

Backtracking Expansion Branch (MNEB) method to

analytically obtain the results of each step in the k-core

pruning process in a multiplex network.

2 Materials and methods

k-Core decomposition on multiplex networks is used to find

the largest subgraph in which the degree of each vertex is at least

ki in the ith layer (here k is a non-negative integral vector). In the

previous paper [23], the researchers gave the analytical result of

the final size of the k-core on multiplex networks. Here, we show

that the Non-Backtracking Expansion Branch (NBEB) method

can be used to obtain the complete solution of k-core

decomposition on the multiplex, in which not only the final

FIGURE 1
Example of a two-layer network. (A) First layer; (B) second
layer; (C) two-layer network consists of the two layers (A) and (B).
(D) Multicolor Non-Backtracking Expansion Branch B(e[2],(1,2), 2)of
the two-layer network is shown (B). Here, e[h],(i,j) denotes the
edge that connects the vertex i and vertex j in the hth layer. The
purple, green, and red boxes represent the first, second, and third
strata of the MNEB, respectively. It should be noted that the excess
neighbor stub set S(e[2],(1,2), 2) = {(e[2],(2,3), 3), (e[1],(2,1), 1), (e[1],(2,3), 3)}.
The child stubs of the stub (e[2],(1,2), 2) are all the elements in
S(e[2],(1,2), 2), as shown in the green box. The three blue boxes
represent the child stubs of the three corresponding stubs in the
second stratum, respectively.
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state but also each intermediate state of the pruning process can

be obtained analytically.

Given a multiplex network in which each layer is a simple

graph, the standard pruning algorithm for k-core decomposition

is as follows: for a given sequence of ki, at each step, we remove

these nodes whose degrees in any of these layers are less than the

corresponding k. In the following, we analyze, in detail, the

pruning process and attempt to give the size of the remaining

vertices after each step.

First of all, we introduce the definitions of the terms that are

used in the remainder of the paper. Suppose a given multiplex

network has R layers. For convenience, we assign each layer

with a color ci to distinguish the edges that belong to different

network layers. A “stub” is defined as a combination of an edge

e[i] and one of its end vertex V, denoted by (e[i], V), where the

subscript [i] here means that it belongs to the ith layer, and i

can be any integer in [1, R]. Obviously, the stub (e[i], V) has the

color ci. We denote by ki the degree of the vertex V in the ith

layer. In the ith layer, we define the neighbor stub set of the

vertex V: Si(V) � {(e[i],1, V[i],1), (e[i],2, V[i],2), . . . (e[i],ki, V[i],ki)};
here, {V[i],1, V[i],2, . . . , V[i],ki} are the neighbors of V in the ith

layer, and {e[i],1, e[i],2, . . . , e[i],ki} are the edges connecting them
to V, and the excess neighbor stub set of any stub (e[i], V) in the

ith layer is found to be the complementary set of {(e[i], V*)} in

Si(V), which is Si(e[i], V) = Si(V)/{(e[i], V*)}(V* is the neighbor

of V via e[i]).

Consequently, for the whole multiplex network, we define the

neighbor stub set of the vertex V as

S V( ) � ⋃
R

j�1
Sj V( ) (1)

and the excess neighbor stub set of (e[i], V) as

S e i[ ], V( ) � ⋃
R

j�1,j≠i
Sj V( )( ) ∪ Si e i[ ], V( ). (2)

It should be noted that the aforementioned expression of the

excess neighbor stub set S(e[i], V) is equivalent to the

complementary set of {(e[i], V*)} in S(V).

Similar to the definition of the Non-Backtracking Expansion

Branch (NBEB) in one layer network, starting from any stub (e[i],

V), we can define such a tree-like structure, which we call the

Multicolor Non-Backtracking Expansion Branch(MNEB).

The chosen stub (e[i], V) (with color ci) is the root of the MNEB,

regarded as thefirst stratum. For any knownnth stratumof theMNEB,

we can further find the child stubs of each stub in the nth stratum that

are all the elements in its excess neighbor stub set, and all these child

stubs constitute the (n+1)th stratum of the MNEB. For example, if we

have a stub (e[i]* ,V*) in the nth stratum, its child stubs are all the stubs

that belong to S(e[i]* ,V*). We can continue this process so that we

obtain theMNEB of the stub (e[i],V), denoted by B(e[i],V). Obviously,

there can be different colored stubs in oneMNEB. Figure 1D provides

an illustration of how the MNEB is constructed.

For a given R-dimensional positive integral vector k = (k1, k2,

. . ., kR), we can find a set of MNEBs Y[i],n (n is a positive integer)

for each 1 ≤ i ≤ R that meet the following two conditions: 1. the

root of the MNEB is colored with ci; 2. there exists a sub-branch

of the MNEB that contains the root stub; for each vertex colored

with cj in the first n strata of this sub-branch, it has at least kj−1

child vertices colored with cj and at least kl child vertices colored

with cl for every l ≠ j(1 ≤ l ≤ R). Figure 2 shows the details of how

to decide whether an MNEB belongs to Y[i],n. When n = 0, for

each 1 ≤ i ≤ R, we define Y[i],0 as all the MNEBs whose roots are

colored with ci. Obviously, Y[i],0 ⊃ Y[i],1 ⊃/ ⊃ Y[i],n ⊃. . . . We

denote SMNEB(V) as the set of MNEBs of all the stubs in S(V) and

SMNEB(e[i],V) as the set of MNEBs of all the stubs in S(e[i],V). It is

easy to obtain the following theorem from the definition of Y[i],n:

FIGURE 2
Graphic illustration of Y[1],n of the two-layer network shown in
Figure 1. The MNEB B(e[1],(1,3), 3) has the root colored with c1 =
black. For example, we perform k = (1, 2)-core decomposition on
the network. The green dashed line is the indication line of
the first n stratum of the MNEB. The solid lines in the MNEB
represent the stubs that fulfill condition 2 under the given k. The
condition that an MNEB belongs to Y[1],n is then decided by
whether the MNEB has a solid sub-branch crossing the green
dashed indication line. (A) shows that B(e[1],(1,3), 3) ∈ Y[1],1. (B) shows
that B(e[1],(1,3), 3) ∈ Y[1],2. (C) shows that B(e[1],(1,3), 3) ∈ Y[1],3. In
addition, for k = (2, 2), we can also see that B(e[1],(1,3), 3) ∈ Y[1],1 (A)
and B(e[1],(1,3), 3) ∈ Y[1],2 (B). But for n= 3, we cannot find such a sub-
branch that for each black vertex in the first three strata of this sub-
branch, the number of red child vertices is no less than 2, and the
number of black child vertices is no less than 1, and for each red
vertex in the first three strata of this sub-branch, the number of red
child vertices is no less than 1, and the number of black child
vertices is no less than 2. Therefore, B(e[1],(1,3), 3)∉Y[1],3. Here, the
discs represent the vertices that have child vertices, and the
squares represent the vertices without child vertices.
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Theorem 1. For a stub (e[i],V) in the i
th layer, the MNEB B(e[i],V)

belongs to Y[i],n if and only if among all the MNEBs in SMNEB(e[i],

V), at least ki−1 MNEBs belong to Y[i],n−1 and kl MNEBs belong

to Y[l],n−1 for every l ≠ j (1 ≤ l ≤ R).

Let Sn be the set of the remaining vertices after nth pruning,

and the following theorem can be established.

Theorem 2. It is denoted byV, a vertex in the network,V ∈ Sn,
if and only if among the MNEBs in SMNEB(V), for every 1 ≤ l ≤ R,

at least kl MNEBs belong to Y[l],n−1.

The proof of Theorem 2 is given in Appendix. An illustration

of the five MNEBs in SMNEB(1) of the network from Figure 1

along with a short exemplary analysis using Theorem 2 is

presented in Appendix as well.

3 Analysis on large uncorrelated
multiplex networks

As a special case, we start with the partly uncorrelated

multiplex networks, in which the degrees of vertices are

uncorrelated in each layer but the degrees of vertices in

different layers are allowed to be interdependent.

For a random vertex V, it has the degree series (i1, i2, . . .,

iR) on a large uncorrelated multiplex network, where i1, i2, . . .,

iR represent the degrees of a vertex in 1, 2, . . ., R layers of the

network, respectively. The joint degree distribution

probability of the vertex is denoted by pi1 ,i2 ,...,iR, and the

joint excess degree distribution of the vertex in the jth layer

is denoted by q[j]i1 ,i2 ,...,iR , which is the probability that follows a

randomly chosen edge in the jth layer, and one of its endpoints

has the excess degree ki, while in the hth layer(h ≠ j), its degree

is ih. After that, we can define the following two generating

functions:

G0 z1, z2, . . . , zR( ) � ∑∞
i1�0

. . . ∑∞
iR�0

pi1 ,i2 ,...,iRz
i1
1 ·/ · ziRR , (3)

G
j[ ]

1 z1, z2, . . . , zR( ) � ∑∞
i1�0

. . . ∑∞
iR�0

q
j[ ]

i1 ,i2 ,...,iR z
i1
1 ·/ · ziRR , (4)

where the superscript in the second definition indicates the

generating function defined in the jth layer.

These two generating functions are related by

G
j[ ]

1 z1, z2, . . . , zR( ) � 1
cj

zG0 z1, z2, . . . , zR( )
zzj

, (5)

where cj is the average degree of the jth layer network. For

convenience, we introduce the following denotation:

∑t
i�x

� ∑t1
i1�x1

∑t2
i2�x2

. . . ∑tR
iR�xR

,

where x and t are two fixed integral R dimensional vectors. The

aforementioned denotation means to take the sum for i from the

first component to the last component. Of course, there must be

tj ≥ xj for each 1 ≤ j ≤ R.

Let y[j],n be the probability that an MNEB whose root is

colored with cj belongs to Y[j],n, then from Theorem 1, we can

obtain the recursive relationship:

y j[ ],n � ∑∞
i�kj

q
j[ ]

i ∑i
m�kj

∏R

l�1
il
ml

( ) y l[ ],n−1( )ml 1 − y l[ ],n−1( )il−ml

� ∑∞
m�kj

z m1+/+mR( )G
j[ ]

1

zzm1
1 . . . zzmR

R

∣∣∣∣∣∣∣∣∣∣z�1−yn−1 ∏
R

l�1

y l[ ],n−1( )ml

ml!
,

(6)
where y[j],0 = 1 for every 1 ≤ j ≤ R. In the aforementioned

equation, it should be noted that the summation indexes i = (i1,

i2. . .iR) and m = (m1, m2. . .mR) are vectors. When performing a

k-core on the multiplex network (k is a vector), we define an R-

dimensional integral vector kj = (k1, . . ., kj−1, kj−1, kj+1. . .kR). yn−1
denotes the R-dimensional vector (y[1],n−1, y[2],n−1. . .y[R],n−1).

Therefore, 1−yn−1 is the R- dimensional vector (1 − y[1],n−1,

1 − y[2],n−1, . . .1 − y[R],n−1).

Then, we denote by sn the probability that a randomly chosen

vertex belongs to Sn.

sn � ∑∞
i�k

pi ∑i
m�k

∏R
l�1

il
ml

( ) y l[ ],n−1( )ml 1 − y l[ ],n−1( )il−ml

� ∑∞
m�k

z m1+/+mR( )G0

zzm1
1 . . . zzmR

R

∣∣∣∣∣∣∣∣∣z�1−yn−1 ∏
R

l�1

y l[ ],n−1( )ml

ml!
.

(7)

In the completely uncorrelated multiplex network, where

there exists no correlation in different layers, we have

pi1 ,...,iR � pi1 · pi2/piR; hence, the generating function can be

simplified:

G0 z1, z2, . . . , zR( ) � ∏R
j�1

G j[ ],0 zj( ), (8)

G
j[ ]

1 z1, z2, . . . , zR( ) � G j[ ],1 zj( ) ∏R
h�1,h≠j

G h[ ],0 zh( ). (9)

Here, G[j],0(zj) and G[j],1(zj) are the generating functions of

the degree distribution and excess degree distribution of the jth

layer network, respectively. Substituting these two generating

functions into Eqs 6, 7, we obtain

y j[ ],n � 1 − ∑kj−2
m�0

y j[ ],n−1( )m

m!
G m( )

j[ ],1 1 − y j[ ],n−1( )⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× ∏R

h�1,h≠j
1 − ∑kh−1

m�0

y h[ ],n−1( )m
m!

G m( )
h[ ],0 1 − y h[ ],n−1( )⎡⎣ ⎤⎦

(10)

and:

sn � ∏R
h�1

1 − ∑kh−1
m�0

y h[ ],n−1( )m
m!

G m( )
h[ ],0 1 − y h[ ],n−1( )⎡⎣ ⎤⎦. (11)
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We further perform several numerical simulations to validate

the theoretical results, as given in Section 4.

4 Numerical simulations

To validate our method, we perform several k-core

decompositions on completely uncorrelated multiplex

Erdős–Rényi networks (ER networks) and scale-free

networks (SF networks). The ER networks are randomly

generated with the parameter c to denote the average

degree of vertices, and the order of power–law

distribution on SF networks is denoted by γ. In the

numerical simulation, we build a multiplex network for

the same group of vertices, and different layers of the

network have different interaction topologies. At each

pruning step, we examine the changes of all layers at the

same time; as long as the degree of a vertex in a certain layer

is less than the corresponding k of that layer, this node will be

removed from all layers. The results are shown in Figure 3. It

can be observed that our theoretical results are in perfect

accordance with the numerical simulations. Figures 3A-D

show the theoretical results and numerical results on 4 types

of pruning process on several networks. Interestingly, we can

find that on ER networks, (1,1)-core pruning is a continuous

phase transition. Compared to this, Figure 3B shows that in

the three-layer ER network, the phase transition of the k-core

near the critical point shows a discontinuous phase

transition, which is also reflected in [26], in which it is

observed that as the number of layers of the network

FIGURE 3
Theoretical results (solid lines) and numerical simulation results (dots) for k-core decompositions on multiplex networks with identical
parameters. All simulations are performed on networks with 107 vertices, except that in the simulations of c = 2.45 (B), c = 3.81 (C), and γ= 2.1 (D), the
networks contain 5 × 107 vertices. (A) Results of the (1,1)-core pruning process on three different two-layer uncorrelated ER networks. It should be
noted that in this case, it shows a continuous phase transition. (B) Results of the (1,1,1)-core pruning process on three different three-layer
uncorrelated ER networks. In this case, the networks exhibit a discontinuous phase transition. (C) Results of the (2,2)-core pruning process on three
different two-layer uncorrelated ER networks. It should be noted that in this case, the networks exhibit a discontinuous phase transition, different
from the case shown (A). (D) Results of the (2,2)-core pruning process on three different two-layer uncorrelated SF networks. In this case, the (2,2)-
core does not exist for γ > 2.
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increases, the system tends to collapse drastically. In

addition, as shown in Figure 3C, discontinuous phase

transitions also occur in the (2, 2)-core of the two-layer

network. The same is shown in Figure 3B; the k-core pruning

process also exhibits rich critical behavior when c is slightly

lower than the critical point. The system will go through a

long-term transient process and finally collapse, forming a

discontinuous phase transition.

5 Conclusion

Overall, in this paper, we derive a new variation of the

Non-Backtracking Expansion Branch called the Multicolor

Non-Backtracking Expansion Branch, specially designed to

solve the k-core pruning process on multiplex networks. In a

multiplex network, each layer of the network is assigned a

unique color, and then, the Multicolor Non-Backtracking

Expansion Branch is constructed as an infinite tree having

the same local structural information as the given multiplex

network, when observed by non-backtracking walkers. We

find that with this representation, one can obtain the

analytical results of the k-core pruning process on any

given multiplex network, regardless whether the correlation

exists or not. The theoretical results obtained by our method

are further validated by numerical simulations. Due to the

diversity of edges in multiplex networks, the types of

interactions that can be expressed will be much richer than

those in a single-layer network. Many characteristic behaviors

lacking in single-layer networks emerge in multilayer

networks. For example, the phase transition of the k-core

in a multi-layer network shows a different behavior compared

to that of a single-layer network, as shown in Figure 3, and our

method can be used for both single-layer and multi-layer

networks and can obtain the analytical results of its k-core.

Our method opens new possibilities to analytically solve the k-

core pruning process on any given multiplex network, which is

valuable for both theoretical studies and real-world

applications.
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Appendix

6.1 Proof of Theorem 2

We use mathematical induction to prove the theorem. It

is obvious that the theorem holds for n = 1. Now, we prove

that if the theorem is true for n−1, the theorem can be

established for n.

First, we prove the sufficiency, that is, for every 1 ≤ l ≤ R,

when at least klMNEBs in SMNEB(V) belong to Y[l],n−1, there must

beV ∈ Sn. Since for every 1 ≤ l ≤ R, Y[l],n−1 ⊂ Y[l],n−2, we obtainV ∈
Sn−1, and in any given layer (for instance, the ith layer), suppose

that {B(e[i],j1, Vj1), . . . , B(e[i],jm, Vjm)} ⊂ SMNEB(V) belong to

Y[i],n−1, here m ≥ ki; so for each 1 ≤ r ≤ m, in

SMNEB(e[i],jr, Vjr), at least ki−1 MNEBs belong to Y[i],n−2, and

klMNEBs belong to Y[l],n−2 for every l ≠ j(1 ≤ l ≤ R). On the other

hand, B(e[i],jr, V) ∈ Y[i],n ⊂ Y[i],n−2, so in SMNEB(Vjr), for every
1 ≤ l ≤ R, at least kl MNEBs belong to Y[l],n−2. The induction

hypothesis gives Vjr ∈ Sn−1. Therefore, in (n−1)th pruning, in any

given ith layer, at least ki neighbors of V are retained. We can

conclude that V is still retained in the nth pruning.

Next, we prove the necessity. We attempt to prove that

when there exists an l in [1, R], which satisfies that at most kl−1

MNEBs in SMNEB(V) belong to Y[l],n−1, there must be V∉Sn.
Since for an MNEB B(e[l],r, Vr) whose root is colored with cl in

SMNEB(V) that does not belong to Y[l],n−1, from Theorem 1, we

know that in SMNEB(e[l],r, Vr), either at most kl−2 MNEBs

belong to Y[l],n−2, or there exists h ≠ l, 1 ≤ h ≤ R that at most

kh−1 MNEBs belong to Y[h],n−2. Therefore, in SMNEB(Vr), there

exists 1 ≤ h ≤ R that at most kh−1 MNEBs belong to Y[h],n−2.

From the induction hypothesis, we know that Vr∉Sn−1, which
means after (n−1)th pruning, in the lth layer, at most kl−1

neighbors of V survived. So either V has been pruned in

(n−1)th pruning or even before, or it survived in the (n−1)th

pruning but would be deleted in the nth pruning since its

remaining neighbors in the lth layer are less than kl after the

(n−1)th pruning; then, we have V∉Sn.
At this point, sufficiency and necessity are proved, and

Theorem 2 can be established.

6.2 An example of Theorem 2

Figure A1 are B(e[1],(1,3), 3), B(e[1],(1,2), 2), B(e[2],(1,2), 2),

B(e[2],(1,5), 5), and B(e[2],(1,8), 8), respectively. For k = (2, 1)

core decomposition, we can find B(e[1],(1,3), 3) ∈ Y[1],∞,

B(e[1],(1,2), 2) ∈ Y[1],∞, B(e[2],(1,2), 2) ∈ Y[2],∞, B(e[2],(1,5), 5) ∈
Y[2],∞, and B(e[2],(1,8), 8)∉Y[2],1. So in SMNEB(1), there are two

MNEBs that belong to Y[1],∞ and two MNEBs that belong to

Y[2],∞. So we have the vertex 1 ∈ S∞. For k = (2, 2), we can find

that B(e[1],(1,3), 3) ∈ Y[1],2, but it does not belong to Y[1],3.

B(e[1],(1,2), 2) ∈ Y[1],3, but it does not belong to Y[1],4.

B(e[2],(1,2), 2) ∈ Y[2],3, but it does not belong to Y[2],4.

B(e[2],(1,5), 5) ∈ Y[2],1, but it does not belong to Y[1],2.

B(e[2],(1,8), 8)∉Y[2],1. So we can conclude that vertex 1 survives

in the first two steps but will be deleted in the third pruning step.

FIGURE A1
All five MNEBs in SMNEB(1) of the network shown in Figure 1.
(A–E) represent the MBEB of e[1],(1,3), e[1],(1,2), e[2],(1,2), e[2],(1,5),
e[1],(1,8), respectively.
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