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Strong-field induced valence electron excitation is a common process in strong

field interaction with atoms and molecules. In the case of polyatomic

molecules, the effects of ionization from low-lying molecular orbitals and

nuclear dynamics during the interaction can play critical roles for electron

excitation. In this work, we investigate the involved molecular orbitals in the

electron excitation of singly ionized acetylene in a strong laser field using

alignment dependence and laser intensity dependence. Additionally, the

involved nuclear dynamics during the electron excitation are identified from

the difference in the kinetic energy release and the angular distribution of laser-

induced dissociation with different pulse durations and intensities. The laser

intensity dependence clearly shows the relative strength change of two

excitation pathways in the measured momentum and angle-resolved

distributions.
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Introduction

The ultrafast dynamics of valence electrons play essential roles in the properties and

reaction behaviors of atoms and molecules [1]. In general, the valence electron dynamics

happens on a time scale of sub-femtosecond or attosecond. Therefore, laser-induced

molecular dynamics involving valence electron excitation is of general interest in strong

field and attosecond sciences [2]. In a strong laser field, its electric field strength can be

equivalent to the Coulomb potential field of valence electrons. When a molecule is

exposed to such a laser field, valence electrons can be released through strong-field

ionization [3]. After ionization, the electron density of the molecules will be redistributed

on a time scale of femtoseconds or sub-femtoseconds and the geometry of the molecule

will change to find a new equilibrium accordingly. In many cases, the molecule will

become unstable, which leads to the breakage of chemical bonds through molecular

dissociation, or the formation of new chemical bonds through molecular isomerization

[4–7]. Most of such laser-induced molecular reactions involve electronically excited states.

Therefore, valence electron excitation is critical for studies of laser-induced molecular

reactions.
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Previous experiments demonstrated that there exist several

different mechanisms for strong-field electron excitation

connected with strong-field ionization. In general, in these

experiments, the driving laser field is a non-resonant field

with respect to the molecular energy level structure. The four

most common processes are 1) electron excitation through laser-

induced strong-field ionization from low-lying molecular orbitals

[5, 8–13]; 2) electron excitation through laser-induced electron

rescattering after strong-field ionization [14–17]; 3) laser-

induced electron excitation through single- or multi-photon

transitions after strong-field ionization (so-called bond

softening process) [18–21]; and 4) laser-induced electron

recapture to electron excited states after strong-field ionization

[22–25]. All four electron excitation processes start with strong-

field ionization.

One important feature of molecular strong-field ionization in

a strong laser field is that the ionization rate depends on the angle

between the molecular axis and the laser polarization direction

[5, 13, 26–29]. The angular ionization probability of a molecule is

determined by the shape and symmetry of the involvedmolecular

orbitals [30]. For example, strong-field ionization of electrons

from the HOMO of C2H2, a π-orbital, reaches a maximum when

the laser is polarized perpendicular to the molecular axis, while

for the ionization from a σ-orbital, the maximum ionization

probability appears when the laser polarization direction is

parallel to the molecular axis [5]. Therefore, using the angular

dependence of strong-field ionization, we could determine the

contributions from certain molecular orbitals in

experiments [13].

The laser pulse duration is one of the critical parameters in

strong field interaction [21, 31–33]. In the case of molecules,

nuclear dynamics can be involved during the interaction.

Previous studies showed that the so-called bond-softening

process in H2 can be strongly suppressed when using laser

pulses with a pulse duration of shorter than 10 fs [21]. Within

a short pulse, the effect of nuclear motion can be minimized

because nuclear dynamics is much slower than electron

dynamics. Therefore, using the dependence on pulse duration,

we can possibly identify the effect from nuclear dynamics.

In this work, using C2H2 as an example, we investigate the

electron excitation of polyatomic molecules in a strong laser field.

We exploit the ionization and dissociation signals of pre-aligned

C2H2 in a strong laser field with two different pulse durations to

reveal the involved molecular orbitals and nuclear dynamics in

electron excitation processes.

Experiment

In the experiment, we use a Cold Target Recoil Ion

Momentum Spectroscopy (COLTRIMS) apparatus to measure

charged particles (electrons and ions) from the laser-molecule

interaction [16, 34, 35] with 800 nm and 25 fs laser pulses from a

Ti:Sapphire amplifier. From the measurements, we identify non-

dissociative and dissociative processes after single and double

ionization of C2H2 . In this work, we focus on electron excitation

after single ionization. Figure 1A shows the measured ion signal

distribution over the time-of-flight and x position on the

detector. In the distribution, non-dissociative ionization

signals (C2H+
2 and its isotopic species) appear as sharp spots,

while ion signals (C2H
+) from dissociation exhibit a broader ring-

like or plate-like distribution due to the energy released from the

chemical bond breakage. As marked in the figure, we can

distinguish the C2H+
2 signal from non-dissociative and

dissociative single ionization. It is to be noted that large ring-

like signals belong to the dissociation of doubly ionized C2H2+
2 ,

which is confirmed using two-body coincidence detection of

C2H
+ and H+.

The molecular axes of molecules in the gas phase are, in

general, randomly aligned. When the molecules are exposed to a

strong and short laser pulse, they can be aligned through so-

called impulsive laser alignment [36]. For the alignment

measurements, we split the laser beam into an ionization

beam and an alignment beam with a beam splitter. Both

beams are linearly polarized along the same direction. The

peak intensity of the alignment beam at the focus is below

1 × 1013 W/cm2 to excite a rotational wave packet in the

molecule [36], while the ionization beam with a peak intensity

of 4 × 1014 W/cm2 arrives at the target with a certain time delay

controlled by a motorized linear stage. The laser peak intensity is

calibrated with the time-of-flight spectrum of H2 [37]. As shown

in Figure 1B, the rotational revival structures are presented in the

measured C2H2+
2 signal over the time delay between the

alignment and the ionization pulse. In the same figure, we

also plot the calculated the alignment quality of C2H2, the

expectation value to cos2θ with θ the angle between the

molecule axis and the laser polarization direction [5]. The

measured ion signals overall follow the structures in the

simulated data, except for a phase-flip which is introduced by

the ionization process from the HOMO of C2H2 [5].

To achieve 4.5 fs laser pulses for the short pulse

measurement, the ionization beam is focused into a gas-filled

hollow capillary in which its spectrum is broadened [38]. After

re-collimation, the beam is compressed with chirped mirrors,

and a wedge pairs down to 4.5 fs[39]. The pulse duration of the

ionization pulses is characterized by a stereo-ATI device [39, 40].

Results and discussions

KER distributions

Since the ground state of C2H+
2 is metastable and the excited

states of C2H+
2 are mostly dissociative [5], in the experiment, we

used the dissociation from single ionization to study the electron

excitation of C2H+
2 . In this work, we focus on the dissociation of
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the C-H bond breakage after single ionization, in which the

nuclear dynamics is faster than that of the C-C bond breakage.

Using momentum conservation, we calculate the kinetic energy

released (KER) with the measured momentum of C2H
+ through

EKER � p2
C2H

(1/mC2H + 1/mH)/2. In Figure 2, we depict the KER

distributions for the two pulse durations with all C2H
+ signals.

The KER distributions show one peak close to zero and another

at about 3.8 eV. In the figure, we include also the KER

distributions of the two-body fragmentation (C2H
+/H+) from

double ionization, which exhibit a peak at 3.8 eV. It is clear that

the high energy peak of the measured KER with dominant

C2H
+ signals comes from the dissociation of doubly ionized

molecules, while the lower energy signals with energy lower

than 2 eV are dominantly from the dissociation after single

ionization. Thus, we can separate the dissociation signal of

single ionization from double ionization. The discrepancies at

large energies between the KER distributions from two-body

coincidence selection and those from one ion selection are due to

the overlap with background water (H2O
+) signals which are

excluded in the coincidence selection. The relative strength of the

background signal is sensitive to the gas density and the laser

focusing conditions.

Alignment dependence

Comparing the results between 4.5 fs and 25 fs for the

dissociation after single ionization in Figure 2, we find that

the KER distribution of the measurement with 4.5 fs pulses is

A

B

FIGURE 1
(A)Measured ion count distribution over the time-of-flight and x position on the detector. The peak intensity of the laser field is 4 × 1014 W/cm2,
and the pulse duration is 25 fs. (B) Measured C2H

2+
2 signal and simulated < cos2 θ > as a function of the time delay between the alignment and the

ionization pulse. For the simulation, the gas temperature of 200 K and the peak intensity of 1 × 1013 W/cm2 of the alignment pulse are used.

FIGURE 2
Measured KER distributions of laser-induced C-H
dissociation for the pulse duration of 4.5 fs and 25 fs, selected with
a single C2H

+ ion and with the two-body coincidence detection of
C2H

+ and H+.
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broader, which means more high-energy signals than those with

25 fs Since 4.5 fs pulses have a much broader bandwidth than

25 fs laser pulses, an intuitive explanation for the width difference

in the KER distributions could be the bandwidths of the driven

laser pulses. However, due to the momentum conservation for

the ejected electron and the rest of the molecule, the energy

gained from the laser field will be mostly carried by the electron

due to the significant mass difference between the electron and

the ion. Therefore, the kinetic energy release of laser-induced

molecular dissociation has minor influence from the laser

bandwidth but is rather determined by the initial distribution

of the nuclear wave packet and the slope of the involved potential

energy surfaces. The difference in KER implies involving of

different nuclear dynamics during the dissociation process. To

understand the beneath physical mechanism, we further analyze

the data of alignment measurements with the selection of KER

less than 2 eV for the dissociation of C2H2 after single ionization.

For the alignment dependence, we focus on signals around the

half-rotational revival, during which the molecules are first aligned

parallely at a delay time of 6.8 ps and afterward perpendicular to the

laser polarization direction at a delay time of 7.2 ps. Figures 3A,B

show the ion signals of non-dissociative and dissociative single

ionization of C2H2 around the half-rotation revival for the

measurement with 4.5 fs ionization pulses. As has been reported

previously, for 4.5 fs laser pulses, the C2H+
2 signal has a maximum

at the perpendicular alignment because of ionization from the

HOMO, while the C2H
+ signal shows an opposite dependence

on the alignment with the major contribution to ionization from

HOMO-2 [5].

Figures 3C,D depict the ion signals for the measurement with

25 fs ionization pulses. The C2H+
2 signal over the pump-probe delay

is similar to that with 4.5 fs laser pulses, which indicates dominant

ionization from HOMO as well. However, the C2H
+ signal with

25 fs exhibits an opposite dependence on the alignment from that

with 4.5 fs: the peak signal appears at the perpendicular alignment of

the molecular axis to the direction of the laser polarization. Such

dependence is the same as the C2H+
2 and infers that the strong-field

ionization is dominantly from HOMO.

Laser-induced electron excitation
mechanics

To understand the dependence on laser pulse duration, we

draw the potential energy curves of C2H2 over the C-H

coordination in Figure 4. The removal of a HOMO electron

FIGURE 3
Measured ion signals as a function of the time delay between the alignment and the ionization pulse around the half rotational revival. Panels
(A,C) are for the signals of non-dissociative C2H

+
2, while (B,D) are those for the dissociative of C2H

+
2 to C2H

+/H. The measurements with pulse
durations of 4.5 fs and 25 fs are shown in (A,B) and (C,D), respectively. The laser peak intensity is 4 × 1014 W/cm2 for both measurements.
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brings the molecule into the ground state of the cation (X state),

and the removal of a HOMO-2 electron directly prompts the

molecule into the lowest electronic excited state (A state) of the

cation, which is dissociative over the C-H coordination. There

are two possible pathways to reach the A state from a neutral

C2H2. The first one is strong-field ionization directly from

HOMO-2. The second one happens sequentially through first

reaching the X-state through the removal of a HOMO electron

and then a HOMO-2 electron being excited to the hole in the

HOMO formed through ionization. The measured signal of

C2H+
2 over alignment pump-probe delays show a clear

signature of strong-field ionization of a HOMO electron for

both laser pulse durations. On the other hand, the dissociative

single ionization shows opposite behavior on the molecular

alignment, which refers that the involved ionization and

excitation processes are not the same.

In the case of 4.5 fs laser pulses, the C-H coordinate can be

treated as frozen during the laser interaction, and therefore, the

ionization happens dominantly at the Franck–Condon region. The

measured results, shown in Figure 3B, indicate that the population

of the dissociative channel is dominated by direct ionization from

HOMO-2, which exhibits a peak signal at the parallel alignment.

However, the scenario of the dissociation with 25 fs laser pulses is

different. The measured results in Figure 3 D show dependence on

the alignment from the ionization of a HOMO electron. As we

mentioned, with the ionization of a HOMO electron, the molecule

ends at the stable X state of the cation. Therefore, to reach the A

state, further actions are necessary to excite the cation. After the

strong-field ionization at around the peak of the laser field, the tail of

the laser pulse can still have actions on the molecule. There are

several possible ways to excite an electron from the HOMO-2 to

HOMO to reach the A state. The first one is excitation through

electron rescattering: the removed HOMO electron is accelerated in

the laser field and can be driven back and scattered with its parent.

Such electron rescattering can either kick out or excite a second

electron, depending on the rescattering energy. In our experimental

condition with a peak intensity of 4 × 1014 W/cm2, the rescattering

energy can be as high as 76 eV, which is sufficient to excite C2H+
2

from the X state to the A state. This energy difference in the

distribution also rules out the major contribution from electron

rescattering. For an electron rescattering process, the scattering

mainly happens within one optical cycle of the laser field which

is 2.7 fs. In such a short time scale, the stretching of the C-H bond is

minor. Therefore, the nuclear wave packet populated on the A state

is still approximately the Franck–Condon region, which shall lead to

a similar energy distribution as the direct ionization fromHOMO-2.

The second possible pathway is molecular dissociation

involving nuclear dynamics, similar to the bond softening in

the dissociation of H+
2 in a strong laser field [18]. In the first step,

one electron is released from HOMO at the Franck–Condon

region, and the ion ends at the X state with vibrational excitation.

The C-H stretching of C2H+
2 can occur on a fast time scale with a

vibrational period of 10.3 fs for asymmetric stretching and 10.6 fs

for symmetric stretching [41]. Therefore, when the laser pulse

has pulse duration longer than the vibrational period, the nuclear

wave packet on the X state can move toward the new equilibrium

geometry through the stretching of the C-H bond within the laser

pulse. The energy gap between the X and A states is about 5.4 eV

which is away from the multi-photon resonance of 800 nm [42,

43]. Along the stretching, the energy gap between the X state and

the A state changes as well. The transition from the X state to the

A state occurs once the energy gap becomes the three-photon

resonance (4.65 eV) of 800-nm photons. After the transition,

dissociation from the A state happens with a slightly lower

dissociation energy, as shown in Figure 4. Comparing the

distribution in the low energy between measurements with the

two pulse durations, we notice that the energy edge shifted to the

higher value by about 0.5 eV for the 4.5 fs at the half maximum.

This observation is direct evidence that the initial nuclear wave

packet is at a different position on the potential energy surface,

and it supports the bond-softening scenario for the 25 fs case.

On the other side, when the laser pulse duration is 4.5 fs, it is

much shorter than the C-H vibrational period. After single

ionization, the laser field drops off rapidly before significant

stretching of the C-H bond, which prevents the multiphoton

transition at a large C-H distance. Therefore, the excitation to the

FIGURE 4
Schematic view of electron excitation of C2H2 in a strong
laser field. Two pathways are represented with arrows of different
colors. TheHOMO-2 pathway: for the interactionwith a short laser
pulse with a pulse duration shorter than the C-H vibrational
period, strong field ionization (SFI) of a HOMO-2 electron directly
leads to the electronically excited and dissociative A state. The
HOMO pathway: for the interaction with a long laser pulse with a
pulse duration longer than the C-H vibrational period, first, an
electron is removed from the HOMO which launches a vibrational
wave packet on the potential surface of the C2H

+
2 ground state.

The vibrational wave packet moves toward a larger C-H distance
and resonant three-photon transition (TPT) occurs once the
energy gap fits the energy of three 800-nm photons. The potential
energy curves are adapted from Ref. [5].
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FIGURE 5
Measured ion signal distributions over the momentum and the angle to the laser polarization direction for different laser peak intensities with
the pulse duration of 25 fs(A–F) and 4.5 fs (G). (H) Normalized kinetic energy distributions of the molecular dissociation for different laser peak
intensities with the pulse duration of 25 fs. (I) Ion yields for different ionization and dissociation channels over laser intensity normalized to the non-
dissociative single ionization signal (C2H

+
2). (J) The ion yield ratio between the direct (HOMO-2) and indirect (HOMO) dissociative single

ionization over laser intensity.
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A state is dominant by direct ionization from HOMO-2, and the

dissociation ends with a higher KER than that of a bond-

softening pathway.

As mentioned, there is one more possible way for valence

electron excitation, which is electron recapture after strong-field

ionization [22, 24, 25]. Electron recapture after double ionization

will lead to singly ionized C2H2. It will lead to either stable high-

lying Rydberg states of C2H+
2 or dissociation of C2H+

2 . In case of

dissociation, the KER will be similar to that from doubly ionized

due to the weak screening effect from the high-lying Rydberg

electron to the molecular dissociation of C2H2 [23, 44].

Therefore, the signals induced by electron recapture have no

contribution to the measured dissociation signals of single

ionization with a KER less than 2 eV.

Dependence on laser intensity

Strong laser field-induced molecular ionization and

dissociation are highly non-linear processes; therefore, laser

intensity is a critical parameter for these processes. For the

electron excitation process of singly ionized C2H2, both the

strong-field ionization and possible transition between two

electronic states are sensitive to the laser intensity which shall

lead to laser intensity dependence. To demonstrate such

dependence, we perform measurements with different laser

peak intensities in the range from 8.8 × 1013 to 5.4 × 1014 W/

cm2 with a pulse duration of 25 fs. In the data analysis for the

dependence on laser intensity, we integrate signals with all delays

between the alignment and the ionizing pulses, with, therefore,

no preferential alignment of the molecules. Figure 5H presents

the normalized KER distributions for six laser peak intensities.

With the increase of the laser peak intensity, the dissociative

double ionization signals peaking at 3.8 eV increase

monotonically, and the signals around 2 eV increase as well.

From the experiment, we obtain three-dimensional momentum

vectors of ions. Therefore, in addition to the KER (or

momentum) distribution, angular distributions of ions can be

derived from the momentum vectors. In Figures 5A–G, we plot

the two-dimensional ion (C2H
+) signal distributions over the

momentum (pr �
�����������
p2
x + p2

y + p2
z

√
) and the angle to the laser

polarization direction (θ = tan−1 (py/pz)) for different intensities.

First, let us focus on the distribution at one certain intensity.

For instant, in Figure 5B, with the laser peak intensity of 4 ×

1014 W/cm2 and the pulse duration of 25 fs, we can identify three

different regions from the distribution: the first region with

momentum less than 9 a.u. (KER< 0.6 eV), the second region

with momentum larger than 9 a.u. but less than 19 a.u.

(0.6<KER< 2.8 eV), and the third region with momentum

larger than 19 a.u. (KER> 2.8 eV). We know that the first and

second regions are dissociation signals after single ionization,

while the third region originates from double ionization,

according to Figure 2. Since the ion ejected along the

molecular axis, the measured angle θ represents the molecular

axis to the laser polarization direction. For the first region, the

angular distribution exhibits a minimum at 0° (parallel to the

laser polarization direction) and maxima at ±90° (perpendicular

to the laser polarization direction). Such angular distribution

indicates strong-field ionization from a π orbital (HOMO) has

peak ionization probability when the molecular axis is

perpendicular to the laser polarization direction, which is

consistent with the findings from the alignment dependence.

On the other hand, the angular distribution for the third region

(C2H
+/H+) shows an opposite behavior, maximum at 0° and

minima at ±90°, which indicates at least one electron removed

from HOMO-2 σ orbital [5]. We notice that the angular

distribution for the second region (9<pr < 19 a.u.) is different

from the first and third regions. The distribution displays

maximum at 0° and minima at ±90°, which is opposite to that

of the first region and similar to that of the third region but with a

narrower distribution. Such distribution implies single ionization

from the HOMO-2 which has a maximum ionization probability

when the molecular axis is parallel to the laser polarization

direction. One previous study on the dissociation from double

ionization [5] demonstrated double ionization leading to the

C2H
+/H+ channel involves one HOMO and one HOMO-2

electron. The convolution of the ionization probability from

the HOMO and HOMO-2 broadens the angular distribution

and, therefore, yields broader distribution than that of single

ionization with one HOMO-2 electron (the second region).

Figure 5G shows the two-dimensional angle-momentum

distribution for the same peak intensity but with a pulse

duration of 4.5 fs. To compare with the distribution of 25 fs

in Figure 5B, the overall structures are similar but the relative

signal strength in the three regions are different and with broader

angular distributions for the second and third regions. This

observation also explains the difference in the KER

distributions shown in Figure 2. More signals in the second

region for the measurement with 4.5 fs pulses lead to a broader

KER distribution for the dissociation of singly ionized C2H2 . As

discussed previously, for the case of 4.5 fs, the dissociation from

single ionization happens dominantly from the direct removal of

a HOMO-2 electron, which agrees with maximum signals at 0° in

the angular distribution for the second region. The narrower

angular distributions in the second and third regions for the pulse

duration of 25 fs can be explained by the laser-induced alignment

after strong-field ionization [45], which has been previously

observed in C2H4 experiments [6].

In the angle–momentum distributions, we can explicitly

identify two pathways with different momentum and angular

distributions for the molecular dissociation after single ionization

from HOMO and HOMO-2: ionization from HOMO leads to

dominant signals at the perpendicular direction with momentum

less than 9 a.u. (KER< 0.6 eV) and ionization from HOMO-2

yields dominant signals at the parallel direction with momentum

larger than 9 a.u. and less than 19 a.u. ((0.6<KER< 2.8 eV)).
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Such behaviors agree well with the findings in the alignment

experiments and support the proposed direct (ionization from

HOMO-2) and indirect (bond-softening after ionization from

HOMO) electron excitation mechanisms.

Now, let us continue to the dependence of the laser-induced

dissociation on the laser intensities with the pulse duration of

25 fs. Figures 5A–F reveal that the dominant dissociation signals

from single ionization shift from the first region to the second

region with the increasing of the peak intensity from 8.8 × 1013 to

5.4 × 1014 W/cm2, while the dissociation signals from double

ionization increase monotonically. To quantify the dependence

on the laser peak intensity, we integrate the signals in the three

regions and compare them with the yields of non-dissociative

single (C2H+
2 ) and double (C2H2+

2 ) ionization. Figure 5I

illustrates the ion yields which are normalized to that of non-

dissociative single ionization (C2H+
2 ). In the plot, we note that the

dissociative (C2H
+/H+) and non-dissociative (C2H2+

2 ) double

ionization yields monotonically increase along the increasing

of the laser peak intensity and approach saturation at the peak

intensity of 5.4 × 1014 W/cm2. On the other hand, the two

pathways of dissociation from single ionization (C2H
+/H)

exhibit different intensity dependence. The signals from the

ionization of HOMO (π orbital) first decrease in the low-

intensity regime and increase again in the high-intensity

regime. This behavior can be explained by the interplay

between the depletion of the single ionization to higher charge

states with the increasing of laser intensities and the focal volume

effect. The signals from the ionization of HOMO-2 (σ orbital)

stay on a low level when the peak intensity is below 2 × 1014 W/

cm2, and when the intensity is above this level, the signals start to

increase. The ratio between the yield of the two pathways is

depicted in Figure 5J, which represents the increase of the

HOMO-2 (σ orbital) pathway with respect to the HOMO (π

orbital) pathway with a significant increase from 0.2 to 1.5. The

HOMO pathway is dominant in the low-intensity regime, but

when the intensity increases to above 5 × 1014 W/cm2, the

HOMO-2 pathway becomes stronger.

These results show that not only the absolute yields but also

the relative yields of molecular dissociation between different

pathways strongly depend on the laser intensity. Therefore,

together with the pulse duration and the molecular alignment,

the laser intensity can be used as an effective knob to control the

laser-induced electron excitation and following molecular

dissociation.

Conclusion

In conclusion, we experimentally distinguished the two

dominant electron excitation pathways in single ionization of

C2H2 by strong laser fields. With the alignment dependence of

the dissociation signal, we could determine the involved

molecular orbitals in the electron excitation. Additionally,

the influence of nuclear dynamics after ionization can be

identified from the dependence of the dissociation KER on

the pulse duration and the intensity of the ionizing laser pulse.

The observed electron excitation processes in C2H2 can be

general in polyatomic molecules since strong-field ionization

from low-lying molecular orbital is not a rare process, and

nuclear dynamics on the 10 femtosecond timescale, within the

duration of laser pulses used in many experiments, takes place

in many molecules, in particular those containing C-H bonds.

Moreover, the momentum and angle-resolved distributions

contain information on both the orbital from which an

electron is released and the nuclear dynamics happening

during strong-field interaction. In turn, these distributions

provide information on the ultrafast electron and nuclear

dynamics in polyatomic molecules taking place during and

after strong-field ionization.
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