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In this paper, we study the finite-time synchronization problem of a Kuramoto-

oscillator network with a pacemaker. By constructing a cyber-physical system

(CPS), the finite-time phase agreement and frequency synchronization of the

network are explored for identical and non-identical oscillators, respectively.

According to the Lyapunov stability analysis, sufficient conditions are deduced

for ensuring the phase agreement and frequency synchronization for arbitrary

initial phases and/or frequencies under distributed strategies. Furthermore, the

upper bound estimations of convergence time are obtained accordingly, which

is related to the initial phases and/or frequencies of oscillators. Finally, numerical

examples are presented to verify the effectiveness of the theoretical results.
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1 Introduction

Synchronization of complex networks has been extensively investigated by researchers due

to its numerous practical applications. As one of the most celebrated periodic-oscillator

models, Kuramoto model [1] and its variations have been widely used for explaining various

synchronization phenomena, and they have attracted considerable attention from researchers

in diverse fields ranging from biology [2, 3], mathematics [4], physics [5, 6] and engineering

[7–10]. In the past decade, many progresses concerning on the synchronization of Kuramoto-

oscillator networks have been made by researchers in the control community [10–20], where

synchronization criteria with respect to constraints on coupling strengths and initial phases

have been developed. For example, in [10], the relationship between the algebraic connectivity

of a connected Kuramoto-oscillator network and critical coupling was revealed. In [11],

Chopra and Spong showed that initial relative phases should be confined to π/2 and a critical

coupling strength should be satisfied, which guaranteed the frequency synchronization of an

all-to-all connected Kuramoto network.

In [14, 15, 17, 20], researchers have taken the pacemaker (i.e. the so-called leader) into

consideration, where synchronization criteria were related to not only the constraint on

coupling strengths and initial phases, but also the selection of direct controlled oscillators.

Since the interactions between oscillators are usually in the sinusoidal form of phase
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differences, the theoretical results mentioned above were based on

the requirements of initial phases, and only local stability analyses

were provided. Based on the framework of cyber-physical systems

[21, 22], distributed linear controllers have been adopted to

synchronize Kuramoto-oscillator networks in [23, 24], where the

derived stability conditions were independent of the initial phases

such that the global synchronization was achieved. In [24], sufficient

criteria were established for the Kuramoto-oscillator network with a

pacemaker under distributed linear control.

The results aforementioned merely focused on the asymptotical

synchronization, which indicated that synchronization was realized

when t → ∞. Recently, in [18, 19, 25–27], more researchers have

focused on the finite-time synchronization of Kuramoto-oscillator

networks, which is also of significance in practical applications. For

example, power girds need to get rid of local power failures as soon

as possible in order to avoid the cascading failure. In [27],Wu and Li

investigated the finite-time and fixed-time synchronization of

Kuramoto-oscillator networks by employing a novel multiplex

control. However, the finite-time synchronization of Kuramoto-

oscillator network in present of a pacemaker has not been

investigated so far.

Inspired by the above literatures, it is worth investigating the

finite-time synchronization of Kuramoto-oscillator network with

a pacemaker. In this paper, we aim to explore finite-time

synchronization criteria of such network by adopting

distributed schemes based on CPS. The main contributions of

this paper are summarized as follows: Firstly, effective criteria are

established to deal with finite-time phase agreement and

frequency synchronization for Kuramoto-oscillator network

with a pacemaker, and the upper bound of synchronization

time is also provided; Secondly, synchronization can be

achieved for arbitrary initial phases, which only influence the

upper bound of synchronization time; Finally, the requirement

on the connectivity of physical system is relaxed, even if it is an

unconnected network.

The remainder of this paper is organized as follows. In

Section 2, the framework of CPS is constructed, which

consists of the physical Kuramoto-oscillator network system

and the cyber (controlling) system. Furthermore, two

definitions and some necessary mathematical preliminaries are

encompassed in Section 2. Finite-time phase agreement in an

identical Kuramoto-oscillator network and frequency

synchronization in a non-identical Kuramoto-oscillator

network cover the heart body of Section 3 and Section 4,

respectively. Section 5 presents the numerical simulation

results, and Section 6 concludes the whole paper.

2 Model and preliminaries

In the framework of CPS, a Kuramoto-oscillator network

consisting of N oscillators with control input ui can be

described as

_θi � ωi +∑N
j�1

aij sin θj − θi( ) + ui, i ∈ I, (1)

where I � 1, . . . , N{ }, θi and ωi are the phase and natural

frequency of the ith oscillator, respectively. A � (aij)N×N

denotes the adjacency matrix of an undirected network, where

aij = aji (i ≠ j) > 0 iff there is an edge between oscillator i and

oscillator j; otherwise, aij = 0. Let LA � DA − A be the Laplacian

matrix associated with the adjacency matrix A, where DA ∈ RN×N

is a diagonal matrix with DA
ii � ∑N

j�1aij (∀i ∈ I). The network

associated with the adjacency matrixA is called physical network.

Assume that there is a pacemaker with dynamics

_θ0 � ω0,

where θ0 and ω0 are the phase and natural frequency of the

pacemaker, respectively.

In this paper, we concern phase agreement and frequency

synchronization with respect to the pacemaker in finite time.

Definition 1. Network Eq. 1 with control input ui achieves

(pacemaker-based) finite-time phase agreement, if there exists a

settling time T > 0 depending on the initial states θi(0) (i ∈ {0}⋃I),

such that

lim
t→T

θi − θ0( ) � 0, i ∈ I, (2)

and θi − θ0 ≡ 0 for t ≥ T.

Definition 2. Network Eq. 1 with control input ui achieves

(pacemaker-based) finite-time frequency synchronization, if

there exists a settling time T > 0 depending on the initial

states _θi(0) (i ∈ {0} ⋃ I), such that

lim
t→T

_θi − _θ0( ) � 0, i ∈ I, (3)

and _θi − _θ0 ≡ 0 for t ≥ T.

In order to obtain the sufficient conditions, the following

Lemmas are needed.

Lemma 1. [28] For an undirected graph G with N nodes, xTLx �
1
2 ∑N
i�1

∑N
j�1

aij(xi − xj)2 holds, where x � (x1, x2, . . . , xN)T and L is

the Laplacian matrix of G.

Lemma 2. [29] Consider the system of differential equation

_x t( ) � f x t( )( ) (4)

where f: D → Rn is continuous on an open neighborhood

D ⊆ Rn of the origin and f (0) = 0. A continuously

differentiable function x: I → D is said to be a solution of Eq.

4 on the interval I ⊂ R if x satisfies Eq. 4 for all t ∈ I.

If there exists a continuous function V(x): D → R such that

(1) V(x) is positive definite;
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(2) There exist real numbers c > 0, 0 < ρ < 1, and an open

neighborhood D0 ⊆ D of the origin such

that _V(x)≤ − cVρ(x), x ∈ D0\{0}.
Then, the origin is a finite-time stable equilibrium of Eq. 4 and

the finite settling time T satisfies

T≤
V1−ρ x 0( )( )
c 1 − ρ( ) .

If in addition D0 � D � RN, the origin is globally finite-time

stable equilibrium.

For the sake of convenience, let ξi = θi − θ0, then
_ξi � _θi − _θ0 � _θi − ω0. For a real symmetric matrices L, let

λmin(L) be the minimum eigenvalue of matrix L. Denote

sig(x)α � sign(x)|x|α, where the signum function sign(x) is

defined as

sign x( ) �
1,∀x> 0,
0, x � 0,
−1,∀x< 0.

⎧⎪⎨⎪⎩

3 Finite-time phase agreement for
identical Kuramoto oscillators

In this section, we first concentrate on the case of oscillators

with identical natural frequency, i.e., ωi = ω0, ∀i ∈ I. Thus,

network Eq. 1 with control input ui becomes

_θi � ω +∑N
j�1

aij sin θj − θi( ) + ui, i ∈ I. (5)

For achieving finite-time phase agreement, a distributed

control strategy is constructed as

ui � ∑N
i�1

bij θj − θi( ) + fisig θ0 − θi( )α, (6)

where B � (bij)N×N denotes the adjacency matrix of an

undirected network with elements bij defined similar to aij,

fi ≥ 0, and parameter 0 < α < 1. The network associated with

the connections between the oscillators in the controller Eq. 6 is

called cyber network. Let LB be the Laplacian matrix associated

with the adjacency matrix B, where its elements are defined

similar to LA.

By transforming θi into ξi, network Eq. 5 with distributed

control strategy Eq. 6 becomes

_ξi � ∑N
j�1

aij sin ξj − ξ i( ) +∑N
j�1

bij ξj − ξ i( ) − fisig ξ i( )α. (7)

Theorem 1. Network Eq. 1 with identical oscillator under

distributed control strategy Eq. 6 achieves finite-time phase

agreement with the settling time bounded by

T1 ≤
ξ 0( )‖ ‖1−α
1 − α( )fmin

, (8)

if

λmin cos γ · LA + LB( )≥ 0,

where fmin = min{f1, . . ., fN}, ‖ξ(0)‖2 � ∑N
i�1

[ξi(0)]2 and γ ∈ (π, 2π)
satisfies tan γ = γ.

Proof 1. Consider the following Lyapunov functional candidate

V1 � 1
2
ξTξ � 1

2
∑N
i�1

ξ2i .

The derivation of V1 along trajectories Eq. 7 gives

_V1 � ∑N
i�1

ξ i _ξ i � ∑N
i�1

∑N
j�1

aijξ i sin ξj − ξ i( ) +∑N
i�1

∑N
j�1

bijξ i sin ξj − ξ i( )

−∑N
i�1

fiξisig ξ i( )α. (9)

According to Lemma 1 and the fact sin(θj−θi)
(θj−θi) ∈ [cos γ, 1], we

can obtain

∑N
i�1

∑N
j�1

aijξi sin ξj − ξi( ) � 1
2
∑N
i�1

∑N
j�1

aij ξi − ξj( )sin ξj − ξ i( )

� −1
2
∑N
i�1

∑N
j�1

aij
sin ξj − ξi( )

ξj − ξi( ) ξj − ξi( )2

≤ − cos γ
2

·∑N
i�1

∑N
j�1

aij ξj − ξi( )2
� −cos γ · ξTLAξ.

(10)

And,

∑N
i�1

∑N
j�1

bijξi ξj − ξ i( ) � −1
2
∑N
i�1

∑N
j�1

bij ξj − ξi( )2 � −ξTLBξ, (11)

∑N
i�1

fiξ isig ξ i( )α � ∑N
i�1

fiξisign ξi( ) ξi∣∣∣ ∣∣∣α ≤ ∑N
i�1

fi ξ i
∣∣∣ ∣∣∣1+α. (12)

Combining Eqs. 10–12, Eq. 9 yields

_V1 ≤ − ξT cos γ · LA + LB( )ξ −∑N
i�1

fi ξ i
∣∣∣ ∣∣∣1+α.

If λmin(cos γ · LA + LB)≥ 0, we get

_V1 ≤ −∑N
i�1

fi ξ i
∣∣∣ ∣∣∣1+α

� −∑N
i�1

fi ξi
∣∣∣ ∣∣∣2[ ]1+α2

≤ − fmin2
1+α
2

1
2
∑N
i�1

ξ i
∣∣∣ ∣∣∣2⎡⎣ ⎤⎦1+α2

� −21+α
2 fminV1

1+α
2 .
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By Lemma 2 and Definition 1, network Eq. 1 with identical

oscillator under distributed control strategy Eq. 6 achieves finite-

time phase agreement with the settling time bounded by

T1 ≤
∑N

i�1 ξ i 0( )( )2[ ]1−α2
1 − α( )fmin

� ξ 0( )‖ ‖1−α
1 − α( )fmin

.

This completes the proof.

Remark 1. According to (8), we find that the upper bound of

synchronization time is proportionate to initial state ‖ξ(0)‖, and is
inversely proportional to fmin. According to Theorem 1, it is

sufficient to achieve finite-time phase agreement if

λmin(cos γ · LA + LB)≥ 0. Therefore, even if the physical

network is not connected, phase agreement could be also

achieved with the help of cyber network, which relaxes the

requirement on the connectivity of the physical network.

4 Finite-time frequency
synchroniztion for non-identical
Kuramoto oscillators

Now we further concentrate on the case of oscillators with

non-identical natural frequencies, i.e., there exists some i ∈ I such
that ωi ≠ ω0. For achieving finite-time frequency

synchronization, a distributed control strategy ui is designed as

ui � ∑N
j�1

bij θj − θi( ) + Ui, (13)

where _Ui � fisig( _θ0 − _θi)α, fi ≥ 0, parameter 0 < α < 1, and bij
denotes the same as that in Eq. 6. Let LB be the Laplacian matrix

associated with the adjacency matrix B, where its elements are

defined similar to LA.

Theorem 2. Network Eq. 1 with non-identical oscillators under

distributed control strategy Eq. 13 achieves frequency

synchronization with the settling time bounded by

T2 ≤
_ξ 0( )

����� �����1−α
1 − α( )fmin

, (14)

if

λmin LB − LA( )≥ 0,
where ‖ _ξ(0)‖2 � ∑N

i�1
[ _ξi(0)]2.

Proof 2. By taking the derivation of Eq. 1, we obtain

€ξ i � €θi � ∑N
j�1

aij cos ξj − ξ i( ) _ξj − _ξ i( ) + _ui. (15)

Consider the following Lyapunov functional candidate

V2 � 1
2
_ξT _ξ � 1

2
∑N
i�1

_ξ i
2
.

The derivation of V2 along trajectories Eq. 15 gives

_V2 � ∑N
i�1

_ξi€ξ i � ∑N
i�1

_ξ i ∑N
j�1

aij cos ξj − ξ i( ) _ξj − _ξ i( ) + _ui
⎡⎢⎢⎣ ⎤⎥⎥⎦

� ∑N
i�1

_ξi ∑N
j�1

aij cos ξj − ξ i( ) _ξj − _ξ i( ) +∑N
j�1

bij _ξj − _ξ i( ) − fisig _ξ i( )α⎡⎢⎢⎣ ⎤⎥⎥⎦
� ∑N

i�1
∑N
j�1

_ξ iaij cos ξj − ξ i( ) _ξj − _ξ i( ) +∑N
i�1

∑N
j�1

bij _ξ i _ξj − _ξ i( )
−∑N

i�1
_ξ isig _ξi( )α. (16)

According to Lemma 1 and the fact |cos(θj − θi)|≤ 1, we can
obtain

∑N
i�1

∑N
j�1

_ξ iaij cos ξj − ξ i( ) _ξj − _ξ i( ) � −1
2
∑N
i�1

∑N
j�1

aij _ξj − _ξ i( )2 cos ξj − ξ i( )
≤
1
2
∑N
i�1

∑N
j�1

aij _ξj − _ξ i( )2� _ξ
TLA

_ξ. (17)

And,

∑N
i�1

∑N
j�1

bij _ξ i _ξj − _ξ i( ) � −1
2
∑N
i�1

∑N
j�1

bij _ξj − _ξ i( )2 � − _ξTLB
_ξ, (18)

∑N
i�1

_ξ isig _ξ i( )α � ∑N
i�1

fi
_ξisign _ξ i( ) _ξ i

∣∣∣∣∣ ∣∣∣∣∣α ≤ ∑N
i�1

fi
_ξ i
∣∣∣∣∣ ∣∣∣∣∣α+1. (19)

Combining Eqs. 17–19, Eq. 16 yields

_V2 ≤ − _ξ
T LB − LA( ) _ξ −∑N

i�1
fi

_ξ i
∣∣∣∣∣ ∣∣∣∣∣α+1.

If λmin(LB − LA)≥ 0, we get

_V2 ≤ −∑N
i�1

fi
_ξi
∣∣∣∣∣ ∣∣∣∣∣α+1

� −∑N
i�1

fi
_ξ i
∣∣∣∣∣ ∣∣∣∣∣2[ ]1+α

2

� −fmin2
1+α
2

1
2
∑N
i�1

_ξ i
∣∣∣∣∣ ∣∣∣∣∣2⎡⎣ ⎤⎦1+α

2

� −21+α
2 fminV

1+α
2
2 .

By Lemma 2 and Definition 2, network Eq. 1 with non-

identical oscillators under distributed control strategy Eq. 13

achieves finite-time frequency synchronization with the settling

time bounded by

T2 ≤
∑N
i�1

_ξ i 0( )( )2[ ]
1−α
2

1 − α( )fmin
�

_ξ 0( )
����� �����1−α
1 − α( )fmin

.

This completes the proof.
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Remark 2. According to Eq. 14, we find that the upper bound of

synchronization time is proportionate to initial state ‖ _ξ(0)‖, and is
inversely to the fmin. According to Theorem 2, it is sufficient to

achieve finite-time frequency synchronization if

λmin(LB − LA)≥ 0. Therefore, even if the physical network is

not connected, frequency synchronization could be also

achieved with the help of cyber network, which relaxes the

requirement on the connectivity of the physical network.

5 Numerical simulation

In this section, we assume networks associated with

adjacency matrices A and B as shown in Figures 1A,B,

respectively.

We first verify Theorem 1. Obviously,

λmin(cos γ · LA + LB) � 0. For simplicity, set ωi = 0 (i = 0, 1, 2,

3, 4, 5), α = 0.5, fi = 2 (i = 1, 2, 3, 4, 5), and (θ0 (0), θ1 (0), θ2 (0), θ3 (0),

θ4 (0), θ5 (0)) = (0.25,−0.1028,28.8866,−10.0289,5.3575,−17.3534)T.

In Figure 2A, phase differences θi − θ0 converge to zero, which

means finite-time phase agreement is achieved. Besides, it also shows

phase agreement is achieved about 2.2s, which is less than the upper

bound of settling time T1 = 5.9600s. Time evolutions of the

controller Eq. 6 of each oscillator are showed in Figure 2B.

Secondly, we verify Theorem 2. Obviously, λmin(LB − LA) � 0.

Set α = 0.5, fi = 2 (i = 1, 2, 3, 4, 5), _θ0(0) � ω0 � 2, (ω1, ω2, ω3, ω4,

ω5) = (−10,−4,0,4,10)T, and ( _θ1 (0), _θ2(0), _θ3(0), _θ4(0), _θ5(0))
� (44.5324,−4.2299, 17.8956,−39.9282,−18.2699)T. In Figure 3A

frequency differences _θi − _θ0 converge to zero, which means finite-

time frequency synchronization is achieved. Besides, it also shows

frequency synchronization is achieved about 0.825s, which is less

than the upper bound of settling time bound T2 = 2.1147s. Time

evolutions of the controller Eq. 13 of each oscillator are showed in

Figure 3B.

Finally, we move to see the influence of parameter α on

synchronization time. In the simulations, we set α = 0.1, 0.3, 0.5,

FIGURE 1
(A) Network associated with adjacency matrix A. (B) Network associated with adjacency matrix B.

FIGURE 2
(A) Time evolutions of phase differences θi − θ0 (i = 1, 2, 3, 4, 5) under distributed control strategy Eq. 6. (B) Time evolutions of the distributed
control strategy Eq. 6.
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0.7, 0.9. In Figure 4, it is showed that the synchronization time

decreases as α grows.

6 Conclusion

In this paper, the problems of finite-time phase agreement

and frequency synchronization of Kuramoto-oscillator networks

with a pacemaker have been investigated. Two distributed

control strategies, based on the CPS, have been designed to

drive the Kuramoto-oscillator networks. In the light of finite-

time stability theory, the sufficient criteria have been derived for

guaranteeing the phase agreement and frequency

synchronization of identical and non-identical Kuramoto-

oscillator networks with a pacemaker. At the same time, the

upper bounds estimation of convergence time of Kuramoto-

oscillator networks have been given accordingly. Numerical

examples have validated the effectiveness of the derived

theoretical results.

However, the convergence time estimations of this paper

are heavily related to initial phases and/or frequencies of

oscillators. Therefore, it is urgent to explore the fixed-time

synchronization of Kuramoto model with a pacemaker in the

future.

FIGURE 3
(A) Time evolutions of frequencies differences _θi − _θ0 (i � 1, 2, 3,4,5) under distributed control strategy Eq. 13. (B) Time evolutions of the
distributed control strategy Eq. 13.

FIGURE 4
(A) Time evolutions of ‖ξ(t)‖ under the distributed control strategy Eq. 6 with respect to different parameters α = 0.1, 0.3, 0.5, 0.7, 0.9. (B) Time
evolutions of ‖ _ξ(t)‖ under the distributed control strategy Eq. 13 with respect to different parameters α = 0.1, 0.3, 0.5, 0.7, 0.9.
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