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Recent developments in single-molecule localization microscopy (SMLM)

enable researchers to study macromolecular structures at the nanometer

scale. However, due to the complexity of imaging process, there are a

variety of complex heterogeneous noises in SMLM data. The conventional

denoising methods in SMLM can only remove a single type of noise. And,

most of these denoising algorithms require manual parameter setting, which is

difficult and unfriendly for biological researchers. To solve these problems, we

propose a multi-step adaptive denoising framework called MSDenoiser, which

incorporates multiple noise reduction algorithms and can gradually remove

heterogeneous mixed noises in SMLM. In addition, this framework can

adaptively learn algorithm parameters based on the localization data without

manually intervention. We demonstrate the effectiveness of the proposed

denoising framework on both simulated data and experimental data with

different types of structures (microtubules, nuclear pore complexes and

mitochondria). Experimental results show that the proposed method has

better denoising effect and universality.
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1 Introduction

The spatial resolution of conventional optical microscopy techniques is limited to

about half the wavelength of light. This is mainly due to the diffraction of light: when the

light source passes through the optical imaging system, it will form a spot on the focal

plane, which we call point spread function (PSF). PSF has normally a central peak of about

200–300 nm in width. Super-resolution microscopy overcomes the resolution limit, and

achieves a spatial resolution on the order of 10–20 nm [1]. Among a variety of super-

resolution imaging techniques, single-molecule localization microscopy (SMLM) with a
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straightforward principle and outstanding spatial resolution

gains intensive attention from researchers [2]. SMLM is

primarily based on the fact that the spatial coordinates of

single fluorescent molecules can be established with high

precision, if their PSFs do not overlap with each other.

Currently, SMLM is able to image subcellular structures (such

as nuclear pores complexes, viruses, chromatin complexes, and

cytoskeletal filaments) with unprecedented details, and provides

great opportunities for biomedical researchers in resolving

biological structures at the nanoscale [3]. Unlike many other

super-resolution microscopy strategies, such as Stimulated

Emission Depletion (STED) [4] and Structured Illumination

Microscopy (SIM) [5] that generate grayscale images directly,

SMLM requires a series of complicated procedures to processes

the raw images and finally reconstructs a final super-resolution

image, as can be seen from the description below. Taking single

color SMLM as an example, we label biological structures with a

specific type of fluorescent molecules, and separate the spatially

overlapping fluorescent emissions from these molecules into a

series of sub images using the photophysical characteristics of the

fluorescent molecules. In each diffraction-limited region, we

control to excite only one or two fluorescent molecule. In this

case, we can keep a low overlapping probability. After

accumulating thousands of image frames of randomly

distributed fluorescent molecule images, we apply a proper

single molecule localization algorithm to the raw images to

precisely find the center locations of each molecule. We

combine all of the gathered localization points to create a

localization table, which contains at least x, and y positions of

individual emitters and sometimes complements by information

on localization uncertainty, and emitter intensity, etc. Finally, we

use the localization table to render a super-resolution image,

which can present super-resolution topography information of

the observed structures.

A typical SMLM image is usually suffered from a large

amount of mixed and complex background noises, which are

originated from autofluorescence, out-of-focus fluorescence,

camera noises, as well as non-specific labelled fluorescent

molecules. These background noises lead to the degradation of

super-resolution image quality and affect the subsequent data

analysis and processing [6, 7]. For example, in a cluster analysis

task, background noises may cause excessive molecule counts,

and this overcounting might lead to bias in cluster analysis and

wrong interpretations of the biological findings [8]. Therefore,

the localization table in SMLM should be cleaned before any

further quantification, and background noise removal in SMLM

data has an important engineering significance.

To remove background noises and improve the quality of

super-resolution image, researchers have made many attempts.

Usually, they first optimize the hardware in the imaging system

to obtain high quality raw images. For example, illumination via

Total Internal Reflection Fluorescence (TIRF) is introduced to

improve the signal to noise ratio (SNR) of the raw image [9].

And, the selection of image sensors with high sensitivity, such as

electron-multiplying charge-coupled device (EMCCD) and

scientific complementary metal-oxide semiconductor (sCMOS)

cameras, can further improve image SNR [10]. Due to the

complexity of the imaging process, a large amount of noises

are still introduced into the localization table, and thus should be

processed before reconstructing a final super-resolution image.

Although many image analysis strategies have been established

for conventional fluorescence microscopy images [11, 12], these

strategies cannot apply directly to localization-based super-

resolution images, because a conventional fluorescence image

is composed of pixels or voxels, while an SMLM image is

composed of a series of 2D or 3D localization coordinates.

The data form of the localization table makes many trivial

operations on conventional images (such as thresholding and

subtraction) to become challenging. One usual solution to these

challenges is to transform the localization table into a grayscale

image (that is, a reconstructed super-resolution image), and then

perform denoising analysis on the grayscale image. However, this

will inevitably lead to a loss of the precise localization

information, and affects the analysis results in downstream

tasks (such as clustering, co-location analysis) [13]. According

to above discussions, it would be greatly beneficial to perform

denoising directly from a localization table.

Most of the current denoising methods for localization table are

based on clustering algorithms. Andronov et al adopt Voronoi

Tessellation for clustering of protein complexes, where the

clustered localization points have smaller Voronoi cell areas than

the non-clustered points. The Voronoi Tessellationmethod uses this

feature to achieve the purpose of denoising [14]. For another

example, a background noise filter is included in the

ThunderSTORM plug-in [15], which adopts Density-Based

Spatial Clustering of Applications with Noise (DBSCAN) to filter

out the localization point with poor localization.However, DBSCAN

requires a careful parameter setting on radius and minimum

number, which seriously affects the efficiency of denoising [6].

Machine learning-based clustering methods are also propose to

denoise the localization data. For example, Williamson et al used

neural networks to classify points from localization table as either

clustered or non-clustered, based on a sequence of values derived

from each point’s nearest-neighbor distances, and the non-clustered

points are defined as noise [16]. However, these denoising

algorithms can only remove a certain kind of noises, which are

not sufficient for the remove of complex heterogeneous background

noises. In addition, most of these methods need to determine

manually the threshold or parameters, which is difficult and

unfriendly for biological researchers.

Inspired by the fusion denoising algorithms and techniques

in the field of image and point cloud processing [17–20], here we

propose a multi-step adaptive denoising framework for super-

resolution localization data, called MSDenoiser. This framework

makes full use of the different characteristics of reported

denoising algorithms (including Voronoi Tessellation [21],
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Local Outlier Factor (LOF) [22] and DBSCAN), and gradually

removes the free non-polymer localization points, non-polymer

localization points near the sample signal point area, and non-

specific localization points. To solve the problem of manual

parameter determination in the LOF and DBSCAN

algorithms, our MSDenoiser framework uses the G-means

algorithm to automatically generate a set of clusters with

centers, and adaptively estimates the parameters in LOF and

DBSCAN algorithms without manual intervention. At the same

time, to evaluate the effect of the denoising framework on

experimental microtubule datasets without groundtruth, we

propose an evaluation index based on skeleton information.

We proved that the evaluation index is consistent with the

existing denoising evaluation index. We verified the

performance of the proposed MSDenoiser framework in

simulated and experimental datasets (microtubule, nuclear

pore complexes, and mitochondrial protein). From

experimental results, we found that the MSDenoiser

framework can effectively eliminate the mixed noises, achieve

less detail loss and higher image SNR. Compared with the

commonly used denoising algorithm in SMLM, we showed

that the proposed framework has better performance and

convenience in processing localization data from different

types of biological structures.

2 Materials and methods

2.1 The multi-step adaptive noise
reduction framework for single-molecule
localization microscopy image

The proposedMSDenoiser framework includes four steps (as

shown in Figure 1). Firstly, a Voronoi Tessellation-based method

is used to remove free non-polymer localization points (The

green box in Figure 1). Secondly, G-means algorithm is used to

generate a group of clusters with centers. Features of the clusters

are counted, which are passed to the LOF and DBSCAN

algorithms as parameters (The orange box in Figure 1).

Thirdly, LOF is used to remove non-polymer localization

points near the sample signal area (The purple box in

Figure 1). Finally, DBSCAN is used to eliminate non-specific

localization clusters (The blue box in Figure 1).

2.1.1 Remove non-polymeric localizations using
Voronoi Tessellation

Voronoi Tessellation has been applied in various fields from

mathematics to natural sciences, and is usually used for

clustering tasks in the field of super-resolution imaging [14,

23]. In Voronoi Tessellation, an image is divided into multiple

polygonal regions centered on a set of points (seeds), with a single

localization point at the center [24]. Voronoi cell represents the

affected area of seed points, and the cell area provides an accurate

measurement of local density of seed points. This property makes

Voronoi Tessellations more suitable for describing the properties

and neighborhoods of single molecules. Large Voronoi cells will

be generated in low density area or randomly distributed points.

Therefore, for a set of localization points with density of less than

a given threshold, we can define it as noise.

2.1.2 Remove the noise near the structure point
using local outlier factor

Local Outlier Factor (LOF) is an unsupervised outlier

detection method [25]. LOF determines a point as an outlier

by comparing the density of each point with its k neighborhood

points, and considers the samples with densities much lower than

those of its neighbors to be outliers. However, some boundary

points may be excluded from the signal region, because their

FIGURE 1
Themulti-step adaptive noise reduction framework for SMLM image. The circles represent signal points, the triangles represent different type of
noise points. Orange triangles represent nonspecific clusters, green triangles represent free non-polymer localization points, and purple triangles
represent non-polymer localization points near the signal point.
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density is lower than that of the signal region. These

characteristics enable LOF to be a good algorithm to deal with

edge effect of point clouds, because LOF can remove non-

polymer localization points near the signal point.

2.1.3 Remove nonspecific clusters using density-
based spatial clustering of applications with
noise

Density-Based Spatial Clustering of Applications with Noise

(DBSCAN) is a typical density-based clustering method.

DBSCAN divides the region with sufficient density into

clusters, and can find clusters of arbitrary shapes in noisy

spatial dataset. DBSCAN defines two parameters:

neighborhood search radius (Eps), the minimum number of

points within the search radius (MinPts) [6]. The algorithm

starts from the point that has not been visited, and divides the

data points into three types according to these two parameters:

core points, boundary points, and noise points. DBSCAN has

good noise recognition ability, and can filter the background

noise. However, the setting of algorithm parameters is subjective,

and it is difficult to determine appropriate parameters to ensure

the quality of denoising.

2.1.4 Adaptive parameter selection using
G-means algorithm

LOF and DBSCAN algorithms are used to identify high-

density and low-density regions of point sets. The LOF algorithm

eliminates as many non-clustered localization points as possible

to minimize their interference to the DBSCAN algorithm in the

next step. In this way, LOF effectively separates biologically

relevant clusters from non-biologically relevant spurious

clusters. But, the LOF algorithm requires an input parameter:

k. The DBSCAN algorithm is able to distinguish noise points and

signal points, from any shapes of clusters. However, two

parameters are required for DBSCAN: Eps and MinPts.

To solve the problem of parameter selection in LOF and

DBSCAN, we automatically generate a group of clusters with

their centers by G-means algorithm, and count the features of the

clusters to estimate the parameters of LOF and DBSCAN. Since

the cluster centers generated by G-means can be affected by

isolated noise and offset, which will further affect the parameters

estimation, here we reprocess the data by Voronoi Tessellation to

remove the isolated noise, so that the cluster center can better

represent each cluster.

2.2 Simulated and experimental data

We simulated two representative kinds of biological

structures (filament and ring) with different localization

densities (1000 μm−2~10,000 μm−2) to evaluate the feasibility of

the proposed denoising framework, which can cover most

experimental scenes.

Step 1: Generation of groundtruth dataset with no

localization error or background noise. We firstly obtained a

ring structure image with a radius of 150 nm and a structure

diameter of 60 nm using Python language. Secondly, we

downloaded the microtubules data from an open dataset

website (https://srm.epfl.ch/Datasets). We used the QC-

STORM plug-in to locate and render the microtubule data,

and obtained the filament structure image [26]. Finally, we

merged the images of the two structures and obtained the

groundtruth dataset by ThunderSTORM plug-in.

Step 2: Generation of noise dataset. The noise dataset

includes background clusters and random noise. To simulate

false localization events due to background fluorescence, we

generated 30 background clusters with the same localization

density as the foreground. To better evaluate the effectiveness

of the proposed denoising framework, we generated random

noise with different noise level (from 5% to 50%), and the noise

level was defined as a percentage of the number of foreground

localization points.

Step 3: Generating simulated localization dataset with

filament and ring structures. We combined the datasets in

Step 1 and 2 to obtain a localization dataset with filament and

ring structures.

To verify the effectiveness of the framework in the context of

complex biological structures, we performed analysis on

experimental dataset of microtubules, nuclear pore complexes

and mitochondrial protein. Microtubules (alpha-tubulin) were

obtained by indirect immunolabeling with AlexaFluor647 (DOL

1–4) in COS7 cell staining. Nuclear pore complexes data were

obtained by staining the gp210 protein of the Xenopus nuclear

pore complex with Alexa647. Mitochondrial protein data were

obtained by labeling mitochondrial protein TOM22 with a

secondary antibody immunolabeling strategy in COS7 cells.

These experimental datasets include tube-like and amorphous

structures, and thus are excellent reference structures to verify the

denoising effect. These data are downloaded from ShareLoc.XY

(https://shareloc.xyz/#/).

2.3 Evaluation criteria

We evaluated the performance of algorithm using two

commonly used metrics in the simulated dataset with

groundtruth: Recall and F1-score. The calculation process is

formulated as follows:

Recall � TP

TP + FN

F1 − score � 2 * Precision * Recall
Precision + Recall

where Precision = TP/(TP + FP), and TP, FP, FN are true-

positive (TP), false-positive (FP) and false-negative (FN),

respectively. Recall represents the proportion of the total noise
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that is correctly removed. The larger of the value of recall, the

more noise is removed. The F1-score metric balances the results

of Precision and Recall. The value of F1-score ranges from 0 to 1,

with 1 representing the best result of the algorithm and

0 representing the worst output result.

Because the experimental dataset lacks groundtruth, we try to

extract skeleton from microtubule data as groundtruth, and use

pixel accuracy (PA) as the evaluation metric of microtubule

experimental data. The generation process of skeleton

groundtruth is as follows:

Step1: Calculate the microtubule width. We select a relatively

straight microtubule structure as our ROI, and then process the

ROI vertically. We calculate the width of the horizontal cross

section on each pixel of the ROI, and then fit it using a Gaussian

function. The full width at half maxima (FWHM) is used to

represent the microtubule width.

Step2: Extract the skeleton. We use the method mentioned in

[27] to extract the skeleton information of microtubule data.

Step3: Expand the skeleton and get the groundtruth. The

skeleton is expanded based on the calculated microtubule width.

The expansion process is to add pixel values to the edge of the

skeleton to expand the overall pixel value, and thus achieve the

skeleton expansion. In this way, we obtain the groundtruth of

microtubule data.

Based on skeleton groundtruth information, pixel accuracy

(PA) can be defined as follows:

PA � ∑
n
i�0∑

m
j�0Yij

∑
n
i�0∑

m
j�0Xij

wherem, n denote the number of vertical and horizontal pixel of

the image, respectively, X denotes the noisy Groundtruth image,

and Y denotes the noisy image calculated by the algorithm. PA

indicates the proportion of correctly labeled noise pixel to the

total noise pixel. Therefore, PA can be used to evaluate the

denoising efficiency of the algorithm.

3 Results and discussion

3.1 Validation based on skeleton
evaluation criteria

We simulated filament and ring data to verify the

effectiveness of the proposed evaluation metric (PA) based on

skeleton information. We selected the localization data with a

localization density of 4000 μm−2, and added random noise with

a noise level of 50% and 30 localization background clusters. We

used skeleton extraction algorithm in Section 2.3 to extract the

skeleton of the rendered image (see in Figure 2B). We calculated

the average microtubule width of the original image to be 45 nm.

To eliminate the error caused by the uneven distribution of

localization density of super-resolution image, we rounded up

the calculated microtubule width and took 50 nm as the basis for

the skeleton expansion. The expansion results were served as the

groundtruth image of the structure signal point in our

experiments, as shown in Figure 2C. We used the difference

operation between the signal point groundtruth image and the

original image to obtain the groundtruth image of noise data.

We performed quantitative evaluation using three

parameters (Recall, F1-score and PA) under different noise

reduction ratio (from 10% to 90%), as shown in Figure 2D.

We can see that the trends of all parameters (PA, Recall and F1-

score) are generally consistent with each other. When the

proportion of noise reduction is low, the correlation between

the three parameters is strong and keeps rising rapidly. With the

increase of the proportion of noise reduction, the rising of F1-

score value is not as fast as those in Recall and PA. The reason is

that, with the increase of proportion of noise reduction, some

structure signal points may also be recognized as noise and thus

removed, leading to the decrease of Precision and the affecting of

the F1-score value. In addition, the evaluation metric based on

skeleton has a disadvantage: it cannot evaluate the noise

reduction in an area close to the structure signal points. This

is also the reason for the difference in the value of Recall and PA,

despite the strong correlation. From this analysis, we shown that

the skeleton-based evaluation index PA is consistent with Recall

and F1-score, and thus PA can quantitatively evaluate the

denoising effect of experimental microtubule data.

3.2 Comparing the denoising performance
using simulated data

To test the image denoising performance of MSDenoiser, we

compared it with DBSCAN, Statistical Outlier Removal Filter

(SORF) [28] and Radius Outlier Removal Filter (RORF) [29]

using simulated data. DBSCAN is a commonly used denoising

method in the field of super-resolution microscopy, while SORF

and RORF are commonly used denoising methods in the field of

point cloud.We adopted grid search strategy to select the optimal

parameters of DBSCAN, RORF and SORF respectively in the

following experiments, as shown in Figure 3. DBSCAN algorithm

requires two parameters, Eps and MinPts. We set the input value

of Eps to be 20–200 nm and the input value of MinPts to be

10–100, and used a total of 100 sets of parameters to find the best

parameter combination. Similarly, the radius value of the RORF

algorithm ranges from 20 nm to 200 nm, and the num_points

value ranges from 10 to 100. The value of std_ratio for SORF

ranges from 0.2 to 2, and the value of num_neighours ranges

from 10 to 100. Note that RORF and SORF select the best

combination from sets of parameters. Under different noise

levels and localization densities, because the optimal

parameters of the compared algorithms will be different, we

select the optimal parameter combination for DBSCAN, RORF

and SORF. For example, we show the heat map with optimal

Frontiers in Physics frontiersin.org05

Feng et al. 10.3389/fphy.2022.1083558

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.1083558


parameter selection under different localization densities in

Figure 3. In contrast, our proposed MSDenoiser framework

can automatically compute parameters without manual

intervention.

Firstly, we compared the denoising performance of

MSDenoiser and the three reported algorithms (DBSCAN,

RORF and SORF) under the same localization density and

different noise levels. The localization density of simulated

data is 4000 μm−2 and the noise level ranges from 5% to 50%.

As shown in Figure 4, we find that all the four algorithms have

small detail loss, but MSDenoiser achieves a balance of less

detail loss and better SNR, and thus improves the quality of

super-resolution images. However, although the results were

similar at different noise levels, the value of Recall and F1-

score changed. This is because the amount of non-specific

clustering noise is unchanged. This finding also points out the

bottleneck of the compared algorithms, that is, they cannot

remove the non-specific clustering. At low noise level, the

denoising performance of MSDenoiser is slightly worse than

RORF, but it is still better than DBSCAN and SORF. The

Recall value of MSDenoiser is not affected by the increase of

noise, and reaches the maximum value of 0.86, when the noise

level is 50%. The F1-score reaches the maximum value of 0.92.

While the three reported algorithms benefit slightly from the

careful selecting parameters, our proposed MSDenoiser can

still achieve a good overall performance, without involving

manual parameter search. Experiments with different noise

levels demonstrate the robustness of our MSDenoiser method.

Then, we compared the denoising performanceX of

MSDenoiser and the other three compared algorithms

under the same noise level and different localization

densities. The noise level of simulated data is 50%, and the

localization densities ranges from 1000 μm−2 to 10,000 μm−2.

As shown in Figure 5, MSDenoiser performs slightly worse on

FIGURE 2
Comparison of the different evaluation metric. (A) Raw image. (B) The skeleton image. (C) The groundtruth image, which is the expanded
skeleton image. (D) Three evaluation results with different noise reduction ratio.
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simulated data with localization densities ranging from

1000 μm−2 to 3000 μm−2 (see in Figure 5G). When the

localization density increases to larger than 4000 μm−2,

MSDenoiser achieves the best denoising performance.

However, it is important to emphasize again, the

MSDenoiser produces the best overall denoising results

without the need of labor-intensive manual parameter setting.

Using the above discussions, we showed that MSDenoiser

is capable to provide good denoising performance on

simulated data with different localization densities and

different noise levels. This new framework fully integrates

the advantages of Voronoi Tessellation, LOF and DBSCAN,

and selects parameters adaptively according to localization

data, without reducing the effectiveness in removing mixed

noise in SMLM data.

3.3 Comparing the denoising performance
using experimental microtubule data

To verify the denoising ability of MSDenoiser in real dataset,

we compared the performance among MSDenoiser, DBSCAN,

RORF and SORF, using experimental microtubule data. Non-

polymeric localizations and nonspecific clusters are distributed

randomly within the field of view. We downloaded the

experimental microtubule data from ShareLoc.XYZ, which

includes 1231693 localization coordinates in the field-of-view of

300 μm2, and the localization density is 4106 μm−2. We showed in

Figure 6E the raw image and its local enlarged details (rendered at

100 nm and 20 nm, respectively). We extracted the skeleton as the

groundtruth of experimental microtubule data, and used them for

quantitatively evaluating the denoising algorithms.

FIGURE 3
Heat map for parameter selection of different algorithms with different localization density using grid search. (A)Heat mat of DBSCAN. (B)Heat
mat of RORF. (C) Heat map of SORF. The blue boxes indicate the optimal parameters.
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Firstly, we discussed the parameter selection strategy for the four

algorithms. The MSDenoiser can adaptively determine the

parameters in the denoising framework. The parameters, Eps and

MinPts, which are automatically calculated byMSDenoiser, can also

be used by DBSCAN. In fact, for the experimental microtubule data,

MSDenoiser sent the two parameters (Eps = 67 nm, MinPts = 215)

to DBSCAN. The parameters in RORF and SORFwere estimated by

experience. The average localization density of experimental data

was calculated to be 4106 μm−2. The initial parameters were found

according to the localization density in simulated data, and adjusted

repeatedly according to the denoising effect. Therefore, the

parameter are not required to be optimal at the beginning. The

parameters in RORF are radius = 60 nm and num_points = 100,

respectively. The parameters in SORF are std_ratio = 0.2 and

num_neighbors = 80, respectively. Note that MSDenoiser

framework does not require any manual intervention.

Then, we evaluated the denoising performance among these

methods using PA value.We used experimental microtubule data as

input data (as shown in Figure 6E, which were rendered from

localization table data), and applied the four denoising methods to

the localization table. We further analyzed the denoising

performance from these methods. We found that MSDenoiser

achieves the best denoising effect (that is, the highest PA value).

Actually, as seen in Figures 6A–D, the PA value are 0.90 from

DBSCAN, 0.92 from RORF, 0.90 from SORF, and 0.94 from

MSDenoiser, respectively. From the local enlarged image, we

FIGURE 4
Comparison on the denoising performance in simulated microtubule data with different noise levels. (A) Raw rendered image. (B) Denoised
image from DBSCAN. (C) Denoised image from RORF. (D) Denoised image from SORF. (E) Denoised image from MSDenoser. (F) Skeleton based
groundtruth. (G) The dependence of F1-score on noise level.
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observed that MSDenoiser removes nonspecific clusters, while

DBSCAN does not remove this type of noise (see the white

arrow in Figures 6A–D). Other methods removed these noises,

along with the signal points of the microtubule structure, since we

can see broken structures (see the yellow arrow in Figures 6A–D).

MSDenoiser removed noise, but kept more signal points from

microtubule structures.

3.4 Comparing the denoising
performance using experimental
amorphous structure data

In previous section, we demonstrated the applicability of

MSDenoiser in relatively uniform and tube-like structures

(microtubules). Here, we showed the denoising performance

of MSDenoiser in datasets from nuclear pore complexes and

mitochondrial protein (which contain amorphous features

commonly seen in SMLM). We compared the denoising

performance among MSDenoiser, DBSCAN, RORF, and SORF.

We downloaded experimental nuclear pore complexes and

mitochondrial protein datasets from ShareLoc.XYZ. In the

nuclear pore complexes dataset, a total number of

631214 fluorophores were identified from a field-of-view of

191 μm2, and the localization density is 3305 μm−2. In the

mitochondrial protein dataset, a total number of

2270989 fluorophores were identified from a field-of-view of

2668 μm2, and the localization density is 1002 μm−2. Since there

are no groundtruth for these experimental datasets, we only

showed the results before and after denoising.

The parameter selection strategy in these two datasets is

similar to that used in the experimental microtubule dataset.

FIGURE 5
Comparison on the denoising performance in simulated patch microtubule data with different localization density by different methods. (A)
Raw rendering image. (B)Denoised image fromDBSCAN. (C)Denoised image from RORF. (D)Denoised image from SORF. (E)Denoised image from
MSDenoiser. (F) Skeleton based groundtruth. (G) The dependence of F1-score on localization density.
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FIGURE 6
Comparison on the denoising performance of different methods using experimental microtubule data. (A) Denoised image from DBSCAN. (B)
Denoised image from RORF. (C) Denoised image from SORF. (D) Denoised image from MSDenoiser. (E) Raw rendered image. The white arrows in
(A–C) indicate noise, and thewhite arrow in (D) indicates the better denoising performance ofMSDenoiser at the same location. The yellow arrows in
(A–C) indicate broken microtubule structure, and the yellow arrow in (D) indicates the structure continuity from MSDenoiser at the same
location.

FIGURE 7
Comparison on the denoising performance of different methods using experimental nuclear pore complexes data. (A) Denoised image from
DBSCAN. (B)Denoised image from RORF. (C)Denoised image from SORF. (D)Denoised image fromMSDenoiser. (E) Raw rendered image. The white
arrows in (A–E) indicate noise in ring structure, the white arrow in (D) indicates the better denoising effect of MSDenoiser at the same location.
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The parameters in DBSCAN were determined from the

parameters automatically calculated by MSDenoiser. For the

experimental nuclear pore complexes dataset, the parameters in

DBSCAN are Eps = 42 nm and MinPts = 52, respectively. For

the experimental mitochondrial protein dataset, the parameters

in DBSCAN are Eps = 45 nm and MinPts = 58, respectively.

According to the average localization density of experimental

data (3305 μm−2 for nuclear pore complexes, and 1002 μm−2 for

the mitochondria), we empirically selected the parameters in

the RORF and SORF algorithms. For the experimental nuclear

pore complexes dataset, the parameters in RORF are radius =

70 nm and num_points = 100, respectively, and the parameters

in SORF are std_ratio = 0.2 and num_neighbor = 40,

respectively. For the experimental mitochondrial protein

data, the parameters in RORF are radius = 30 nm and

num_points = 90, respectively, and the parameters in SORF

are std_ratio = 0.2 and num_neighbor = 50, respetively. The

MSDenoiser framework can adaptively determine parameters

without manual intervention.

We then analyzed the denoising performance of the four

algorithms qualitatively using experimental nuclear pore

complexes and mitochondrial protein datasets. The results

are shown in Figures 7, 8. The reported three algorithms only

removed part of the nonpolymer localization points, and the

noise in the ring structure of the nuclear pore complexes was

not effectively removed (see the white arrows in Figures

7A–E). Similarly, the reported algorithms did not remove

the nonspecific clustering from the mitochondrial protein

data (see the white arrows in Figures 8A–E). However,

these problems can be effectively solved by our new

MSDenoiser algorithm, which is able to retain maximum

details of biological structures and remove most of the

noises. The experimental results on nuclear pore complexes

and mitochondrial protein datasets show that our proposed

algorithm also have good ability in removal of the mixed

noises that are common on experimental data.

From the above results, we show that our proposed

MSDenoiser framework can be applied to localization data

from different biological structures. Using this new

framework, we can not only obtain better denoising results,

but also adaptively determine parameters without manually

intervention.

4 Conclusion

We developed a new denoising framework, called

MSDenoiser, for improving the image quality in SMLM. In

this framework, we combine the advantages of different

reported denoising algorithms (Voronoi Tessellation, LOF and

DBSCAN) to remove the noise of different features, and

adaptively estimate the parameters required by the new

framework using the G-means algorithm. In this framework,

we aim to remove heterogeneous noises (free non-polymer

FIGURE 8
Comparison on the denoising performance of different methods using experimental mitochondrial protein data. (A) Denoised image from
DBSCAN. (B)Denoised image from RORF. (C)Denoised image from SORF. (D)Denoised image fromMSDenoiser. (E) Raw rendered image. Thewhite
arrows in (A–E) indicate nonspecific clustering, the white arrow in (D) indicates the better denoising effect of MSDenoiser at the same location.
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localization points, non-polymer localization points near the

sample signal point area, and non-specific localization points).

Using simulated and experimental datasets, we compared the

denoising performance of MSDenoiser with DBSCAN (a

commonly used denoising method in SMLM), RORF and

SORF (commonly used denoising methods in point cloud).

We found that MSDenoiser achieves better denoising effect

than the three reported methods in the removal of mixed

noises. Moreover, as compared with DBSCAN, RORF and

SORF, the MSDenoiser can adaptively obtain parameters

without manual intervention. We also verified the applicability

of MSDenoiser in amorphous biological structures (nuclear pore

complexes and mitochondrial protein), and proved that

MSDenoiser has good robustness on different biological

structures. Of course, there are still some limitations on our

proposed MSDenoiser framework. The main limitation is the

denoising speed, which needs to be improved for processing large

SMLM localization table data. Because the MSDenoiser

framework is composed of multiple algorithms, it takes a large

amount of time on the automatic parameter selection process

(G-means). When the field of view increases, the time spent in

the parameter selection will increase significantly. In the future,

we plan to develop a more efficient algorithm to take the place of

G-means algorithm, so that we could shorten the processing time

without reducing the denoising performance. Nevertheless, we

believe this study points out a new strategy for solving the noise

reduction challenge in SMLM.
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