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Rich dynamics of a
vegetation—water system with
the hydrotropism effect

Li Li**, Fang-Guang Wang* and Li-Feng Hou?

'School of Computer and Information Technology, Shanxi University, Taiyuan, Shanxi, China,
“Complex Systems Research Center, Shanxi University, Taiyuan, Shanxi, China

In recent years, with the abnormal global climate change, the problem of
desertification has become more and more serious. The vegetation pattern is
accompanied by desertification, and thus, the study of the vegetation pattern is
helpful to better understand the causes of desertification. In this work, we reveal
the influences of hydrotropism on the vegetation pattern based on a
vegetation—water system in the form of reaction—diffusion equations.
Parameter ranges for the steady-state mode obtained by analyzing the
system show the dynamic behavior near the bifurcation point. Furthermore,
we found that vegetation hydrotropism not only induces spatial pattern
generation but also promotes the growth of vegetation itself in this area.
Therefore, through the study of vegetation patterns, we can take
corresponding  preventive measures to effectively prevent land
desertification and improve the stability of the ecosystem in the region.

KEYWORDS

vegetation—-water model, Turing pattern, multi-scale analysis, vegetation
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1 Introduction

Vegetation is an important part of nature and plays a leading role in the ecosystem,
known as the “Ecological Engineer” [1, 2]. As a producer, vegetation can convert carbon
dioxide into carbohydrates through photosynthesis and release oxygen and store energy.
Moreover, vegetation coverage on the ground can not only reduce water and soil loss and
protect slope land but also prevent wind and sand fixation and prevent desertification [3,
4]. In nature, the growth of vegetation will be affected by climatic conditions, geographical
environment, and human activities. Nowadays, with the rapid development of
irrationality in the human society and global climate change, the vegetation ecosystem
has been seriously damaged, and the problem of land desertification is becoming more
and more serious [5-7].

In particular, in dry and semi-dry areas, because of its climatic characteristics, the
problem of land desertification is particularly prominent. In the process of land
desertification, vegetation distribution is uneven, but there are certain rules. We call
this uneven and regular spatial distribution of vegetation as the vegetation pattern [8-10].
In addition, different vegetation pattern structures have different significances to the
function of the ecosystem, such as the strip pattern can be used as a sign of semi-desert
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FIGURE 1

Schematic chart of hydrotropism of vegetation roots and the arrow direction indicates that the soil moisture is getting higher and higher. The

roots of vegetation grow in areas to obtain more water resources.
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FIGURE 2
Bifurcation diagram of system (2.3) in the parameter space
spanned by d and a. Among them, the red line represents the Hopf
branch line, and the blue line represents the Turing branch line.
The Turing area is marked with T. The parameter values are
m=15,d, =1 and d, = 1.8.

[11]. For the study of vegetation spatial patterns in these areas,
many scholars established a series of a dynamic system. Based on
ecologically realistic assumptions, Klausmeier established a
model with vegetation and water in 1999 and gave suitable
parameters, and two pattern types can be found by numerical
simulations (regular patterns and irregular patterns). This model
helps us understand how rainfall and grazing affect vegetation in
semi-arid regions and demonstrates the importance of non-
linear mechanisms to the spatial structure of plant community
[12].In 2001, Von Hardenberg proposed a new vegetation-water
system, which simulates the competition of vegetation roots for
water resources [13]. In 2007, Gilad constructed a mathematical
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system for the study of the woody plant ecosystem in arid areas
and captured various feedback mechanisms between biomass
and water resources through this system [14]. Water diffuses
freely in soil, and the original Klausmeier system does not
consider the diffusion of water. Therefore, Vander Stelt took
the diffusion of water into account on the basis of Klausmeier’s
system in 2012 [15]. In 2015, Zelnik simplified Gilad’s model and
combined with empirical data to study the dynamics of
Namibia’s Andromeda ecosystem. The research showed that
the pattern trend changes gradually in the spatially expanded
ecosystem [16]. Moreover, other scholars have also established
relevant systems to study vegetation patterns [17-25].

It is known to all that water is the source of life. Vegetation
needs water for photosynthesis and respiration to obtain
nutrients needed for vegetation growth. Moreover, when
transpiration takes away a lot of heat, water can maintain the
normal temperature of vegetation to maintain life activities [26,
27]. Vegetation absorbs water from the soil mainly through the
root system to provide water necessary for life activities. In
response to a moisture gradient, the roots of vegetation will
show the characteristics of hydrotropism [28-31]. In dry and
semi-dry areas, soil water distribution is uneven because of less
and concentrated rainfall [32, 33]. Therefore, the vegetation root
system will absorb the water in other humid areas through the
extension of the root system to meet its own growth and
development in these areas. At present, it is not clear how the
hydrotropism effect of vegetation roots affects the growth and
distribution of vegetation. Therefore, to reveal the influence of
hydrotropism of vegetation roots on vegetation growth and
distribution, we build a spatial system with root hydrotropism
effects based on the system of Klausmeier in this paper [34-36].

The following is the content arrangement of this article. In
the first place, we propose a reaction-diffusion system with
hydrotropism effects and analyze the existence and stability
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FIGURE 3

Dispersion relation of system (2.3): (N d =1, (INd =1.2,(ll) d =

1.4, (IV)d =16, and (V) d = 1.8. The other parameter values are a =
325, m=15d; =1 and d, = 18.

about the equilibrium point. In the next section, we derive the
amplitude equation and its coefficients through the method of
multi-scale analysis. In the fourth section, on the basis of the
theoretical results obtained in the previous section, we conduct a
numerical simulation to obtain the dynamic behavior and show
the hydrotropism of vegetation’s impact on the vegetation
pattern. Finally, the last section gives conclusions and
discussions on the effect of hydrotropism on vegetation
growth and distribution.

2 Mathematical model and analysis
2.1 Mathematical model

In dry and semi-dry regions, soil water replenishment was
mainly derived from rainfall due to their geographical

environment. After the rainfall reaches the ground, one part
of the rainfall penetrates into the soil and becomes groundwater

TABLE 1 Equation of different orders of «.

10.3389/fphy.2022.1084142

or surface runoff, and the other part is lost to the atmosphere
through the transpiration of vegetation and evaporation of the
ground. These areas receive less rainfall because of their climatic
conditions. Therefore, soil water distribution in these areas is
uneven, forming a moisture gradient. In response to a moisture
gradient, the roots of vegetation will show the characteristics of
hydrotropism to get more water for basic life activities (Figure 1).

The spatial motion of hydrotropism of vegetation roots is to
absorb more water. In this sense, it is assumed that the diffusion
rate of vegetation hydrotropism is proportional to the diffusion
speed of water. Consequently, based on the Klausmeier system
[12], we establish a system with water diffusion and vegetation
hydrotropism effects as follows:

oP

& _ RJWP? — MP + D,AP + DAW,

or @1
ow ow '
O A RWP?— LW + E22 4 D,AW,

ar ox D

where P is the vegetation biomass and W is the soil water volume;
parameters A, M, L, D;, D, represent rainfall, plant mortality,

evaporation rate, vegetation diffusion rate, and water diffusivity,

w
0xX

proportional to the slope of terrain, where ¢ is a constant
downhill runoff flow velocity, and the term RWP* indicates
the absorption of soil moisture by the roots of vegetation,

respectively. The term & 9% describes the surface runoff which is

reflecting the mechanism of long-distance inhibition and
short-distance promotion [37]. D is the hydrotropism rate of
the vegetation.

For the convenience of mathematical analysis, we reduce the
numbers of parameters by dimensionless transformation on the
system (2.1) and obtain the following system:

% _ wp? —mp +d,Ap + dAw,

ot

3 3 (2.2)
W A e

pra w(1+p)+fax+d2Aw.

In this paper, we mainly study the flat ground without
considering the slope’s influence on the formation of the
pattern structure. Therefore, our system is finally simplified as
follows:

Order Corresponding equation

€
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Pattern form Expression Existence interval Stability

Homogeneous state Bi=B.=Ps Arbitrary range U < s stable
U > Uy; unstable

Dot pattern B, = IhH\/ZW Hyh>0 U < s stable

91+292)
B, = Ih\fW Hi:h<0 U > phy; unstable
>

Strip pattern B, = \/% 40 u>0 U > ps; stable

Ba=ps=0 U < p3; unstable
Mixed pattern B, = gz"j‘g‘ u> s unstable

o f
Br=Bs= };.{fz

TABLE 3 Different values of parameters.

Serial number Range of u
1 45 15 434 1 1.5 1.12855309 0.00332226 (42> p13)

‘ 2 ‘ 325 ‘ 15 ‘ 2.32 1 1 ‘ 0.28523932 ‘ 0.10270569 ‘ (43> pha) ‘

‘ 3 ‘ 325 ‘ 15 ‘ 3.00 0.6 ‘ 1 ‘ -0.50772901 ‘ 0.19634026 ‘ (s + ) ‘
b5 Because the equilibrium point E,; is always unstable when
Py —mp+diAp + diw, o at pom o1 Y o
ot 2.3) diffusion is not considered, we will only study the equilibrium
ow ' oint E, given in the following section. First, linearize system
—=a-w(l+p)+d,Aw. p 2 8l : & ¥
ot (2.3) at E, to obtain

2.2 Mathematical analysis of the model

System (2.3) without considering diffusion is as follows:

%:wpz—mp,

(2.4)
Tea-w(i+p)
ity p)-

Make the right end of Eq. 2.4 equal to 0, and calculate the
equilibrium point. System (2.3) has three equilibrium points,
including a semi trivial steady-state solution and two non-trivial
steady-state solutions:

(1) Ey = (po> wo) = (0, a), which corresponds to no vegetation.
(2) Ei = (prywy) = (G2 e,

(3) Ex = (P wy) = (72—, v,

Frontiers in Physics

a_p =aup+apw+dAp +dAw,

ot
(2.5)
ow
- =ayptapw+ dzAw,
ot
where
_ _ atVa*-4m? _ _ -2
an =may = (EGEE an = —2m,anday, = 7t

We set a perturbation to the uniform stationary solution (p,,
w,) and expand it in Fourier space:

(5}) = ( 522 ) + ;( 22: >exp (At + ikr). (2.6)

Substituting Eq. 2.6 variables into Eq. 2.5, one can obtain its
following characteristic equation:

a — dlkz -2 ayp — de
as ax — d2k2 -1

‘ =0. (2.7)

It is equivalent to the following equation:

M +TA+ A =0, (2.8)
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FIGURE 4

For different pattern structures, the parameter values are shown in Table 3. (a;)-(c4) is the water pattern, and (az)-(cy) is the vegetation pattern.
Among them, (a;) and (a;) are spot patterns, (by) and (b,) are mixed patterns, and (c1) and (c) are strip patterns.

Ay = 1100021015+ (a1d—(a11dr+a2,d1)) kP +d  doK.
Ty = (dy+dy)k*~(ay + az,).
The characteristic value of system (2.3) is as follows:

~Ti+ [T} 40 —T—/T}—40
A1 = 5 Ak = 3 .

Then, necessary conditions for system (2.3) to generate

bifurcation behavior are as follows:
ap +apy = 0.
(andy +and, - ﬂ21d)2
4d1d2

(2.9)

andy, — appdy — <0. (2.10)
According to the necessary conditions of Hopf bifurcation
(2.9) and Turing bifurcation (2.10), we select a as the control
variable, and the system branch diagram of system (2.3) can be
drawn, as shown in Figure 2. At the same time, the dispersion
relationship of system (2.3) is demonstrated in Figure 3.
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Obviously, Figure 3 shows that within an appropriate
parameter range, as the parameter d increases, the real part of
the eigenvalue gradually increases and the Turing patterns
appear.

3 Amplitude equations

Generally, the pattern structure is influenced by the most
active mode of the system. The amplitude equation can describe
the system’s dynamic behavior around the most active mode
[10]. Therefore, we can use the amplitude equation to research
the system’s dynamic behavior around the Turing bifurcation
point. The pattern structure is represented by three pairs of

resonance modes (v;, — ¥;), which are 120° angles. For this paper,
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FIGURE 5
Different values of the parameter d, correspond to different vegetation patterns, (A) d> = 7.80, (B) d» = 8.21, (C) d» = 9.00, (D) d> = 10.20, (E) d> =
12.80, and (F) d, = 15.48. The other parameter values are a = 3.25, m = 150, and d; = 1.00.

FIGURE 6

Different values of the parameter d correspond to different vegetation patterns, (A) d = 1.52, (B) d = 2.34, (C) d = 3.81, (D) d = 5.86, (E) d = 7.23,
and (F) d = 9.56. The other parameter values are a = 3.25, m =15,d; =1, and d, = 1.
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FIGURE 7
Vegetation structure observed in the nature and pattern structure obtained by numerical simulation. Fig (a;-d;) shows realistic vegetation

pattern structures: (a;) Zambia, spot vegetation structure [4]; (b1) Niger, mixed vegetation structure [27]; (c1) Niamey and Niger, stripe vegetation
structure [12]; and (d;) SW Niger, gap vegetation structure [4]. Fig (a2-d>) shows corresponding numerical simulation patterns.
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FIGURE 8

Average density of vegetation changes with time t
corresponding to different values of the parameter d (1) d = 3.52, (II)
d =452 () d =552 (V) d = 652, and (V) d = 7.52. The other
parameter values are a = 3.25, m = 150, d; = 1.00, and

d, = 1.00.

through the method of multi-scale analysis, the amplitude
equation of system (2.3) and its coefficients are derived.

3.1 Multi-scale analysis

First, rewrite system (2.3) at the equilibrium point E, as

follows:
op
—=ayp+apw+ N, (p,w)+dAp+dAw,
ot G.1)
aailf = ﬂz]P +arw + Nz (P, w) + dzAw

Near a = ar, the solution can be written in the following form:
3./ AP
< ) z< A,J{,) xp(zvjr) +c.c. (3.2)

=1
Making ¢ = ( )

< ), system (3.1) can be written
as follows:

%—L +N (3.3)
or T '

where

L_(a11+d1A a12+dA>

ay ax + dzA

a- Va2—4m2p2+ 4m pw+ p?
- P pw+ pw
2 a—-Var —4am?

N =
a-Va’-4am* 4m

_ _ 12
2 P e TP
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Expand a, ¢, L, N as follows:
ar—a=¢ea, +a,+ -+,

e A2

L=1Lr+ (a-ar)b,
N =&k + &1 +o(e).
(3.4)

Ly, b, W%, W are as follows:
LT _ 611*1 +d1A 611*2 +dA b= bll b12
a% a$ +drA ) by by )
(a—\/a2—4m2) 2, 4m
w
P CCR e

a
2
h* = )

2 2 4m )
1Wq
- Va? - 4m?

a-Va —4m
(lez +p2w1) + wal

—~( 5 Pt -
(a-Va®—4m® )pips +

—(a—Va*—4m* )p1ps -

4m
a—Va* - am?

4m 5
ﬁ (prw; + powy) - piwi

Decompose the time scale (T = t, T; = ¢t, T, = €’t), then the
derivative of the amplitude A with respect to time is

dA _ 0A  ,0A

E—Sai’rl‘l'sai’rz‘l' (35)

Substituting (3.4) into formula (3.3), we get the equation of
different order of ¢ (see Table 1).

For the order of ¢,
b1 _
< X )LT =0, (3.6)

where Lt is the model’s linear operator at the critical point, and
< 5) ! > is a linear combination of the eigenvectors corresponding
1

to zero eigenvalues of the linear operator L. The solution of
equation is

< " > i i( ! >Wf exp(ivyr) + 00 (3.7)

i
apd, —atydy +a¥ d

ahdi+atdr-ay d
2112*1 dl

did,

with [ =

| |_ |,’T| ”T
Vj
For the order of 82,

p\_ 9 (p P _(F
() (8)a(2)w-(2) on

According to the solvability condition of Fredholm, to
guarantee the existence of equation’s non-trivial solution, the
right term of Eq. 3.8 must be the same as the L}, zero eigenvalue
conjugate.
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The zero characteristic value of L. is
1
d, . |e"" +o.0.
d

Use F‘{, and FJ, to represent the coefficients corresponding to
e in F, and F,,.

aw, NaZ — a2 8m R
- -4 Pt 1 |W5W
(F;) laT1 [(a “ m) a-Va® —am? e
) | aw | 8 .
! —(a—\/az—4m7)lz—7ml WsW,
oT, a—-Va —4m
bWy + b, W,
-a,
by Wy + bpW,
W, W
a—\/az—4mz] e

[—(a— Va2 —4mf)l2 - Siml]wl\/%
a

aT, - Va* —am?
b, W, + b, W,
—a
by, W, + bW,
ow, N ey A 8m -
a-Va —4m’ ' + ————==1 (W W
<F2> o, [( L A
E, ow,

8m _
[—(a— Va? — 4m? )lZ - ﬁl]w,wz

|
m< i oo
! j aNTE )
(
|
{

IbyWs +b,Ws
by W3 + by, W5
(3.9)

where [ = —W. According to the conjugation
condition,
d FI
(1, Sty r)=0
d, F
Then,
ow d
(1 >6Tll [lb11+b12——l (Iby; +by) ]w, <1+df>
8mi
—Va* —4am* )P 7WW,
[(“ CRE D e ol
d),ow. d d;
(1 -é)l E)T,Z =a,|lby, + by, -dfz(wz, +bzz)]w2 +(1 +d7>
l (3.10)
8m _
VA —a VP — ——— |W W5,
[<“ S i M
d\,ow d d,
(1_572)1%13 a, zb“+bu—df;1(1bﬂ+bzz)]w3+(1+d7>
_ 2 _ 2 2 T w A7
|:(a Va® - 4m )l +aim]wlw

It can be found that the second-order term’s coefficient
value is more than 0 from all the aforementioned
equations, which will cause the amplitude of W; to
diverge, and higher-order terms need to be introduced to

Frontiers in Physics

10.3389/fphy.2022.1084142

saturate it. Therefore, the solution of Equation 3.8 is written
in the following form:

3 3
P2>:<Po>+ <Pj >ei11jr+ <ij >ei2vjr
Py, ir (v1-v2) Py, ir (v2-73)
+ e + e
( Wi > W

+< P >eir(v3—w) +o00. (j=1,23). (3.11)
W31

Substituting formula (3.11) into Eq. 3.8, we get

Po N\ _(Po\s3 w2 p_ o
(20)- ()i e
Pjj Pu P P+ o
JJ — 2 J - .
<Wjj> = <7~U11 )Wj, <ij) = (w* )W]Wk,

J = (o VAT + el

a?—4m
Po = m [(aty +a%)]],
Wy = gt [~ (afi +as)]],
Pu =1 74d|v%)(ufz—4d2vf)—azﬂ (an—ad)) (-3 (4dvi +4dyvi - ars —a)]],
Wi = (a“—4dlvz)(a21—4dlzvz) 5 (at, —4d2) (-3 (adi +aii —4d)]],

2 2
pe= (af1-3d,7}.) (a5~ 3d2’/ ) —a3 (a12-3d72) [ (deT + 3dsz —ars —axp )]]

W = G 3do) (- 3sz Y o [~ (@d +afi = 3dvp)])

For the order of &,
alb( o > B a2b< v )
w, w;

n(8)=am(8) o (l)-

— h3
— HP
= H, )

Similarly, use Hi, and H{U to represent the coefficients

(3.12)

corresponding to e”/" in H, and H,,.

% ZBWI
H, oT, oT, by, W, +biw, bV, + b,V
P = + -a, -a;
H, oV, ow, by W, + bypw, by Vi + b,V
Ty oT,
(KIWAP = LWL P = WSl)
K|"Vl|2 *'L(|sz|2 - |W3|2)
4ml
—(a —Va® —am? )12 —_—
v o B (W, 4 VW),
m
a-Va¥—am? )P 4 — —
( ) a-Va® —an’

(3.13)

where
K =—(a—Va?>-4m*1(p1 + po)) —
(p11 + po)) — 312 and
— (- NT=EPL (p,+ po) -
(p, + po)) — 6%
According to the solvability condition of Fredholm,

\/— (H(wyy +wo)+

a*—4m?

A (1 (ws + wo)t

we get
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o 1=\ (W, 9V = (V) +a;,W))
4, )\or, Tor,) T MVt eM
d
X lbll + blz - l— (lb21 + bzz)
d,

2
W1 Y GIW,P =W, W)

i=1
d] — = — =
+1 1+ d_ P(W2V3 + W3V2),
2
(3.14)
where G; = (1 + j—;)K and G, = (1 + j—;)L.

Change the subscript to get the other equation. Then, the
amplitude M; can be expressed as follows:

M; = eW; + &U; +o(&). (3.15)

Combine Eqs 3.10, 3.14, 3.15 to get the following amplitude
equation:

M, v Y 2 2
=uM, + hM,M; — 92M1|M2| - 92M1|M3|

o,
- g MM, P, (3.16)
where
_ ar—a
-y

€ =
ar[lby, + by, —l (lbn + bzz)]
g1 = d1 >
ar[lby, + by, - ld_z (Iby; + by)]

gz = GZ and

ar[lbyy +bip - lj—; (16 + bzz)])
((a—Va> —4m?)I? + —frl—) (1 +19)
© arllby + by - 19 by + b))

Change the subscript to get the other equation. Then, the
amplitude equation of system (2.3) is

M 2 2 2
T, = uM, + hM,M; — g MIM,|* — g2 M IM5* = gi MM, %,

€o=r

M. o
BTZ =uM, + hM M; — gz]\/fz|1\/11|z - gzMz|M3|z - 91M2|M2|2» (3.17)
t

€o

M
aT, *#Ms"'hM Mz ﬂzM3|M1|z—92M3|Mz|z—91M3|M3|2A

€05

3.2 Stability analysis

Each amplitude equation can be expressed into the product
of its mode f3; = |M| and its corresponding phase angle y;, which
is M; = B; exp (iy;). Substituting it into the amplitude Eq. 3.17,
we get
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1 o (3.18)
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where ¥ = Y +yo+ys.

The aforementioned

siny,

system has four solutions,
corresponding to four different pattern structures. Table 2

summarizes the stability of the four pattern structures.
29119, K2

(92-g) and p, = (92-291)°

Kg
M 4(g1+2g2 > o = 0, Uy = (92-9

4 Main results

For the study of the spatial model, we cannot use analytical
methods to obtain its dynamic behavior. Therefore, in this section,
we simulate system (2.3) using the method of numerical
simulation and reveal the influence of vegetation hydrotropism
on vegetation growth and distribution. The selected area is M x N,
where M = N = 100. Its boundary conditions meet Neumann
boundary conditions, that is, the study area is not connected with
its surrounding environment. We set the time zone to [0,10000],
time step to At = 0.1, and spatial step to Ah = 1. The initial value is
the random disturbance at the equilibrium point E,.

4.1 Basic pattern structures

In this part, the theoretical analysis of the third part is verified by
numerical simulation. Choose the values of different parameters a, m,
d, d,, and d,. We can calculate the values of 1, g1, g2, 1, o> 3, and iy,
according to the expression of the amplitude equation coefficients in
section 3. In order to observe the simulation results, we have selected
three sets of parameter values in Table 3, and the corresponding
results are shown in Figure 4; among them, Figure 4 (a;)-(c;) is a
water pattern and Figure 4 (a,)-(c,) is a vegetation pattern. When the
first set of parameters is selected, the value of y is between y, and ps,
and system (2.3) has a dot pattern, as shown in Figure 4 (a;) and
Figure 4 (a,); when the second set of parameters is selected, the value
of p is between p3 and py, and system (2.3) has a mixed pattern, as
shown in Figure 4 (b;) and Figure 4 (b,); when the third set of
parameters is selected, the value of u is greater than py, and system
(2.3) has a stripe pattern, as shown in Figure 4 (¢;) and Figure 4 (c,).
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4.2. Pattern phase transition induced by
soil water diffusion

In this section, we will study the influence of soil water diffusion
on vegetation in dry and semi-dry places. In these areas, the lack of
water resources causes the diffusion of soil water mainly caused by
concentration differences, that is, absorption water feedback. For
different vegetation, the ability to absorb water is different, which will
lead to the concentration difference of soil water. It is reflected in the
parameter d, in our model; the greater the concentration difference of
soil water, the greater is the parameter d,. In order to better reveal the
effects of different water diffusion intensities on the vegetation
pattern, we do not consider the hydrotropism of vegetation and
fix the parameters d = 0 and d; = 1; then, we can change the
parameter d, to reflect different water diffusion intensities.

Figure 5 shows the change in the corresponding vegetation
pattern with the change in the parameter d,. With the increase in d,
the vegetation pattern structures change in the following sequence,
gap pattern, mixed pattern, strip pattern, and spot pattern.
Moreover, we also find that when d, < d;, no vegetation pattern
is generated; when d, > d;, with the increase in the parameter d,, the
gap between the pattern becomes larger and larger. In fact, the
difference in the soil water concentration reflects the difference in
the water absorption capacity among vegetation. The greater the
diffusion intensity of the water beside the vegetation, the stronger is
the absorption capacity of the vegetation for water, which will
promote its own growth more. Conversely, as the intensity of
diffusion of water next to the vegetation increases, more water
will flow to its location, which will suppress the growth of the nearby
vegetation. It shows that the vegetation pattern is formed through
the long-range competition and short-range promotion mechanism.

4.3 Influence of hydrotropism on the
vegetation pattern

Due to the climatic conditions and geographical environment
in dry and semi-dry regions, the soil water resource distribution is
uneven, and a water gradient is formed. Because of the presence of
the moisture gradient, roots exhibit hydrotropism characteristics.
For different vegetation, the intensity of the hydrotropism of the
vegetation root is different. Some vegetation roots are sensitive to
soil moisture, but some vegetation roots are relatively weak.
Therefore, in this section, we study the influence of different
vegetation growth abilities of water on the vegetation in the
area. In our spatial model, we fixed other diffusion parameters,
thatis, d; = 1, d, = 1, and observed the influence of hydrotropism
on the vegetation pattern structures by changing the parameter d.
Figure 6 shows the pattern structures of vegetation under different
root hydrotropism intensities. Through theoretical analysis and
numerical simulation, we know that when we do not consider the
hydrotropism of vegetation roots in our model, let d; = d,, in which
no vegetation pattern will be generated. Therefore, the
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hydrotropism of vegetation roots can induce the generation of
vegetation patterns.

In Figure 6, we show the influence of the parameter d on the
vegetation pattern structures. When the parameter d is small, the gap
pattern appears (Figure 6A). When the parameter d increases slightly,
the gap pattern begins to disappear, the strip pattern appears, and the
vegetation pattern structure becomes mixed gap and strip pattern
structures (Figure 6B). When the parameter d continues to increase,
the gap pattern completely disappears, showing the strip pattern
structure (Figure 6C). Subsequently, with the increase in the d
parameter, the spot pattern gradually appears (Figures 6D,F). To
sum up, gradually enhance the hydrotropism effect of roots, then the
vegetation pattern’s structure changes in the following sequence: the
gap pattern, mixed pattern, strip pattern, and spot pattern. In
show the
corresponding to numerical simulation pattern structures.

Figure 7, we realistic ~ vegetation distribution
Moreover, in Figure 8, we show the relationship between the
root hydrotropism effect and average vegetation biomass. We can
find that with the increasing intensity of the hydrotropism of the
vegetation root, the average density of vegetation increases.
However, as the intensity of vegetation to grow toward water
increases, the interval of plants also becomes larger, which means
that the stability of the ecosystem in the region is also reduced.
Owing to the fact that water at the location of the vegetation
itself is not enough to meet the needs of its own growth, the
vegetation has to extend to the humid area to obtain water
resources through the roots, which makes the root system of the
vegetation exhibit hydrotropism. For different vegetation, the
degree of development of the root system is different. When the
root system of vegetation is developed, vegetation has higher
hydrotropism effects, which means it can absorb more water and
other vegetation cannot obtain enough water resources because
of limited water resources in these dry regions. A large amount of
vegetation died due to the lack of water, resulting in vegetation
degradation. In other words, increasing the intensity of the
hydrotropism of roots in a range can increase the average
biomass of vegetation. However, excessively increasing the
intensity of the hydrotropism of roots will lead to desertification.

5 Conclusion

In our paper, we mainly analyze spatial dynamics with
hydrotropism effects. First, on the basis of Klausmeier’s
system, a spatial system is established considering the
hydrophilic effect. Then, the existence and stability of the
system equilibrium point are analyzed. Second, through the
method of multi-scale analysis, the amplitude equation of the
system and its coefficients are derived [38-40]. Finally, we
numerically simulated the system to show the influence of
vegetation root hydrotropism on vegetation growth distribution.

Bases on the numerical results, we find that the hydrotropism
of vegetation roots can induce pattern generation. Furthermore,
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with the enhancement of the root hydrotropism effect, pattern
structures change as follows: the spot pattern, mixed pattern,
strip pattern, and gap pattern. Moreover, we also study the
relationship between the root hydrotropism effects and
average vegetation biomass. We find that increasing the
intensity of the hydrotropism of roots in a range can increase
the average vegetation biomass which is consistent with the
results in [35, 41]. However, excessively increasing the
strength of root hydrotropism, the spacing between the
vegetation pattern also increases, which means that the
ecosystem stability is reduced and prone to land desertification.

We all know that many factors will affect vegetation
distribution in the real world, including climatic conditions
(such as temperature, light, and carbon dioxide
concentration), topographic conditions (such as mountains
and plains), and human activities (such as deforestation and
grazing) [41-50]. However, in our system, we only consider
rainfall and vegetation root hydrotropism effects. Therefore, in
order to better protect vegetation, prevent land desertification,
and improve the stability of the ecosystem, we hope to establish a
more realistic vegetation dynamic system, including climatic
conditions, internal growth mechanism of vegetation, human
activities, and other factors, to better study the dynamic
mechanism of spatial vegetation and reveal relevant factors

affecting the structure of the vegetation pattern.

Data availability statement
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