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The tunable manipulation of guided waves in plates brings out great potential

applications in engineering practices, and the electromechanical coupling

effects of piezoelectric material with shunting circuits have exhibited

powerful tunability and flexibility for guided wave propagation. In this paper,

a theoretical model is established to analyze the guided wave propagation in

one-dimensional periodic piezoelectric plate constructed from a periodic array

of anisotropic piezoelectric materials under periodic electrical boundary

conditions. The extended Stroh formalism incorporating with the plane wave

expansion method is developed to transform the wave motion equations of the

periodic piezoelectric plate into a linear eigenvalue system, and a more concise

and elegant solution of generalized displacement and generalized stress can be

derived. There are various dispersion relations in terms of the altering electrical

boundary conditions to be acquired, if the thin electrodes with shunting circuits

are attached periodically to both surfaces of the piezoelectric plate. Analytical

results show that the coupling of the local electric resonant mode and

propagating elastic wave modes can induce hybridization bandgaps, and the

bandgaps of Lamb waves and SH waves in the piezoelectric plate can be tuned

by designing appropriate material polarization orientations and shunting

circuits. In addition, the Bragg bandgaps can also be influenced by the

external circuits. Results indicate that the proposed theoretical model can

effectively analyze the performances of guided waves in periodic

piezoelectric plate and provide useful theoretical guidance for designing

smart wave control devices.
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1 Introduction

Phononic crystals/metamaterials as kinds of artificial

composite materials can achieve various fantastic

performances [1–5] and have been attracting more and more

attention for a wide variety of potential applications [6–11].

Especially, phononic crystals/metamaterials with anomalous

dynamic characteristics can fulfill special functions, like wave

resistance [12], vibration reduction [13, 14], vibration and wave

motion control [15–17], which are significant for maintaining

safety and stability of engineering structures. Phononic crystals

are based on the Bragg scattering in periodic structures to reduce

vibration and manipulate wave propagation by adjusting their

band structures [18, 19], and the most concern is the Bragg

bandgaps. The wavelength corresponding to the Bragg bandgap

is of the same order as the lattice constant. However,

metamaterials mainly focus on the locally resonant bandgaps

at lower frequency range by changing the local mechanical

properties, and the vibration reduction and wave propagation

can be controlled at a deeply subwavelength scale [20].

Nowadays, many bandgap-based dynamic behavior altering

design combine the characteristics of both phononic crystals

and metamaterials [21], so there is no rigorous distinction

between them.

The Bragg bandgaps of phononic crystals depend on the

periodicity of the structure and are normally fixed and invariable.

However, it is meaningful to design phononic crystals with

tunable and controllable band structures in practical

applications [22]. Consequently, multi-physics coupling

phononic crystals have been introduced to manipulate the

performances of guided waves propagation by adjusting the

multi-physics coupling effects. For one-dimensional

piezoelectric or piezomagnetic phononic crystals, Guo et al.

investigated the influences of initial stresses [23], mechanically

and dielectrically imperfect interfaces [24], and functionally

graded interlayers [25] on the dispersion relations of elastic

waves. For nanoscale periodic layered piezoelectric composites

[26, 27] or piezoelectric/piezomagnetic laminates [28], the

influences of nanoscale size and multi-physics coupling on

elastic waves were discussed based on the non-local theory.

For the piezoelectric plate with a periodic arrangement of

electrodes on both surfaces, its electrical Bragg bandgaps can

be optimized by changing the crystallographic orientation of the

piezoelectric plate [29], and the Bragg gaps of guided wave modes

can be controlled by the electrical boundary conditions via either

floating potential or short circuit [30, 31]. However, most

researches lack discussion on how to control the dynamic

behaviors of the piezoelectric plate by using the

electromechanical coupling effect, but it is vital for designing

phononic crystals with the tunability of band structures.

Since 1979 Forward [32] introduced electric damping to

control the vibration of the structure, the design of

piezoelectric transducers with shunting circuits has been

applied to actively attenuate noise and vibration in structures

[33, 34]. In most cases, the periodic piezoelectric patches with

shunting circuits are attached to the surfaces of elastic structures

as metamaterials to change the equivalent properties of elastic

materials, and the band structures of guided waves can be

relatively manipulated by external circuits. For an elastic beam

with periodic piezoelectric patches, its band structures can be

altered by different external circuits to induce local resonances,

such as inductance circuits [35], an inductor in series with a

positive or negative resistor [36], in series or in parallel negative

capacitance and negative inductance circuits [37] or digital

circuits with feedback control loops [38]. Sugino et al. [39]

proposed a piezoelectric bimorph beam with mechanical and

electromechanical resonators, and two resonant bandgaps could

bemerged to form a broaden bandgap of flexural wave by altering

the mechanical resonator and shunting circuit. For an elastic

plate with periodic piezoelectric patches, different external

circuits such as inductance-capacitance circuits [40] or

negative capacitance circuits [41, 42] have also been used to

design the tunable band structures of Lamb waves and SH waves.

However, for the multi-mode guided waves in piezoelectric plate,

the interactions between mechanical and electric resonant modes

are too difficult to analyze, so that the researches on the

mechanism of manipulating guided wave propagation in

piezoelectric plate with shunting circuits are relatively limited.

For a homogeneous piezoelectric plate periodically covered

electrodes with external circuits, spectral element method was

applied to reveal the electromechanical coupling effect on the

resonance bandgaps of symmetric mode Lambwaves by shunting

inductance-capacitance circuits [43]. Kherraz et al. found the

external inductance circuits could cause an electric resonant

mode to form a hybridization bandgap by coupling with both

symmetric and antisymmetric mode Lamb waves [44–46].

Nevertheless, there is no theoretical analysis of all guided

wave modes in composite plates with alternative arrangements

of different piezoelectric materials for a broad tunability range of

guided waves, because it is too complicated to describe the

electromechanical coupling effect on bandgaps induced by the

coupling of shunting circuits and all guided wave modes. The

very challenging task is how to study the wave motion in periodic

piezoelectric plate by considering the anisotropic property of

piezoelectric material and the electromechanical coupling effect

of external circuits simultaneously.

As a representative theory of anisotropic elasticity, the Stroh

formalism was established by Stroh [47, 48] in 1958 and

systematically reconstructed by Ting [49] and Tanuma [50],

and it has been developed to solve the static problems about

piezoelectric and magneto-electro-elastic solids [51], magneto-

electro-elastic composite laminates [52, 53] and homogenized

piezoelectric plates [54]. For dynamic problems, the pseudo-

Stroh formalism was proposed by solving the eigenvalue problem

to conduct forced vibrations analysis [55, 56] and study the

dynamic responses of piezoelectric plates [57] and magneto-
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electro-elastic plates [58]. Furthermore, based on the elegant

mathematical form of Stroh formalism, the wave motion and

dispersion relations of plates have been studied, such as SH waves

in multilayered piezoelectric semiconductor plates [59], Lamb

waves in piezoelectric and elastic multilayered plates [60], both

Lamb waves and SH wave in a magneto-electro-elastic laminate

[61] or in a single piezoelectric semiconductor plate [62]. Due to

the unique piezoelectric effects of piezoelectric materials which

can achieve energy conversion between electric fields and

mechanical deformations, there are many smart devices to be

made of piezoelectric materials. Although Stroh Formalism has

been developed to be an efficient way for theoretically solving

multi-physics coupling problems, it still needs to be improved to

solve the wave propagation problems in anisotropic periodic

piezoelectric plates, especially with external circuits. In fact, the

periodic piezoelectric plate with shunting circuits can be treated

as a perfect combination of phononic crystal with periodic

structure and metamaterial with varying external circuits, and

it can reveal more fascinating performances by periodic

arrangement of piezoelectric materials and altering electrical

boundary conditions.

In this paper, for a one-dimensional periodic piezoelectric

plate, which consists of periodically alternating two piezoelectric

materials with thin electrodes shunted electric circuits to be

attached on both surfaces, a novel theoretical model based on

Stroh formalism is proposed for investigating the propagation

features of elastic waves in the periodic piezoelectric plate. The

rest of the paper is organized as follows. In Section 2, the

extended Stroh formalism is derived for the theoretical model

of wave motion in a periodic piezoelectric plate, and the solutions

of generalized displacement and generalized stress are provided

based on the plane wave expansion method for calculating the

dispersion relations by a linear superposition of the

corresponding eigenvalues and eigenvectors. After that, the

effects of electrical boundary conditions on the dispersion

relations are discussed in Section 3, and the corresponding

dispersion relations of guided waves are derived for revealing

the electromechanical effects. There are some typical examples to

discuss the electromechanical coupling effects on guided waves

by changing the polarizations of piezoelectric materials and the

external circuits in Section 4. Finally, the conclusions of this

paper are addressed in Section 5.

2 Theoretical model of wave motion
in periodic piezoelectric plate

2.1 Wave equations of piezoelectric
medium

For an anisotropic piezoelectric plate, if the 3D Cartesian

coordinate system is coincident with its three material principal

axes, the mechanical stress tensor σ and the electric displacement

vector D are related to the strain tensor ε and electric field vector

E by the following constitutive equations,

σ ij � ∑3
k,l�1

Cijklεkl −∑3
k�1

ekijEk,

Dj � ∑3
k,l�1

ejklεkl +∑3
k�1

ϵjkEk,

i, j � 1, 2, 3, (1)

where Ek � − zϕ
zxk

, εkl � 1
2 (zukzxl

+ zul
zxk

), u and ϕ are the displacement

vector and electric potential, and C, e,  are the elasticity tensor,

piezoelectric tensor and dielectric tensor, respectively.

Because of the symmetry of piezoelectric material, there are

Cijkl = Cjikl = Cijlk = Cklij, elij = elji, εjk = εkj, and then Eq. 1 can be

rewritten as

σ ij � ∑3
k,l�1

Cijkl
zuk

zxl
+∑3

k�1
ekij

zϕ

zxk
,

Dj � ∑3
k,l�1

ejkl
zuk

zxl
−∑3

k�1
ϵjk

zϕ

zxk
,

i, j � 1, 2, 3. (2)

In order to unify the variables in Eq. 2, the generalized

displacement vector and generalized stress tensor are defined by

~uK � uK, K � 1, 2, 3,
ϕ, K � 4,

{
~σIj � σIj, I, j � 1, 2, 3,

Dj, I � 4, j � 1, 2, 3,{
and a new material parameter tensor B is introduced as

BIjKl �
CIjKl, I, j, K, l � 1, 2, 3,
elIj, I, j, l � 1, 2, 3, K � 4,
ejKl, j, K, l � 1, 2, 3, I � 4,
−ϵjl, j, l � 1, 2, 3, I � K � 4,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
so that Eq. 2 can be written equivalently by

~σIj � ∑4
K�1

∑3
l�1

BIjKl
z~uK

zxl
, I � 1, 2, 3, 4, j � 1, 2, 3. (3)

For the piezoelectric plate without body force and free

charge, the dynamic governing equation and the electric

equilibrium equation are given by

∑3
j�1

zσ ij
zxj

� ρ
z2uI

zt2
, i � 1, 2, 3,

∑3
j�1

zDj

zxj
� 0.

(4)

Based on the notations of generalized displacement vector and

generalized stress tensor, Eq. 4 can be simplified as

∑3
j�1

z~σIj
zxj

� ρ
z2~uI

zt2
∑3
α�1

δIα⎛⎝ ⎞⎠ , I � 1, 2, 3, 4. (5)

Combining Eqs 3, 5, the wave equation of anisotropic

piezoelectric plate can be derived as
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∑3
j�1

∑4
K�1

∑3
l�1

z

zxj
BIjKl

z~uK

zxl
( ) � ρ

z2~uI

zt2
∑3
α�1

δIα⎛⎝ ⎞⎠, I � 1, 2, 3, 4.

(6)
Therefore, the wave motion in piezoelectric plate can be obtained

by solving Eq. 6 under initial and boundary conditions.

2.2 Periodic piezoelectric plate

Considering a piezoelectric composite plate with periodically

alternating two piezoelectric materials in one dimensional series as

shown in Figure 1A, the Cartesian coordinate system with the

original point lying at the center is used, and the plate has a finite

thickness h along x3 axis and infinite size in x2 axis. The unit cell as

shown in Figure 1B consists of two piezoelectric materials marked

as part I (blue) and part II (gray) with segment lengths l1 and 2 × l2
2

to form a symmetric structure along x1 axis with the lattice

constant l = l1+l2. Their material parameter tensors are BI and

BII, and densities are ρI and ρII. It needs to emphasize that the

material parameter tensors BI andBII have to be transformed from

their material coordinate system to Cartesian coordinate system

before substituting into Eq. 6. Set the center of each unit cell as its

location, the unit cells along the positive direction of x1 axis are

listed as the 1st, 2nd,/ , Jth unit cell in sequence, and the Jth unit cell

is located along the x1 coordinate axis in the range O � [Jl − l
2, Jl +

l
2] with the corresponding ranges of part I OI � [Jl − l1

2 , Jl + l1
2] and

part II OII � [Jl − l
2, Jl − l1

2] ∪ [Jl + l1
2 , Jl + l

2], separately.

Due to the spatial periodicity of piezoelectric plate, the

material parameter tensor B can be expanded into Fourier

series in the x1 direction as

B x1( ) � ∑m�+∞

m�−∞
Bm ei

2πm
l x1 , (7)

where i � ���−1√
is the unit imaginary number, and m is integer.

Bm is the Fourier expansion coefficient matrix for each unit cell,

and it can be calculated for the Jth unit cell by

Bm � 1
l
∫Jl+ l

2

Jl− l
2

B x1( )e−i2πml x1dx1,

so,

Bm �
BI
l1
l
+ BII

l2
l
, m � 0,

1
mπ

BI − BII( )sin mπ
l1
l

( ), m ≠ 0.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
In addition, the density of the periodic plate can be silimlarly

expanded into Fourier series as the material parameter tensor.

For the spatial periodicity of piezoelectric plate along x1 axis, the

Fourier expansion coefficient matrix is the same for all the unit

cells.

Here, we only consider the wave propagation along x1
direction, and the plane strain condition is adopted [63] to

simplify Eq. 6, i.e., z/zx2 = 0. Therefore, the basic form of

generalized displacement vector is

~u x1, x3, t( ) � aeik3x3 eik1x1 e−iωt, (8)

where k1 and k3 are the wave vector components along x1 and x3
axes, respectively, ω is the angular frequency, a is the unknown

coefficient vector. The periodicity along x1 indicates that the

solution of the generalized displacement vector can be expanded

by the form of Fourier series based on the Bloch theorem as

a � ∑+∞
n�−∞

ane
i2πnl x1 . (9)

Substituting Eq. 9 into Eq. 8, we obtain the generalized

displacement vector in one-dimensional periodic structure as

~u x1, x3, t( ) � e−iωteik3x3 ∑+∞
n�−∞

ane
i k1+2πn

l( )x1 . (10)

In order to get the solution of generalized displacement, the main

attention is focused on solving the wave vector component k3 and

coefficient vectors an.

2.3 The extended Stroh formalism for
elastic dynamics

For simplicity, several matrices related to are introduced as

FIGURE 1
(A) Schematic of the periodic piezoelectric plate covered by
periodic electrodes on both sides, (B) its corresponding unit cell,
and (C) the considering electrical boundary conditions.
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QIK � BI1K1, RIK � BI1K3, TIK � BI3K3, I, K � 1, 2, 3, 4. (11)
Because the material parameters are functions of x1, then, Eq. 6 is

rewritten as

zQ
zx1

z~u
zx1

+ zR
zx1

z~u
zx3

+ Q
z2~u
zx2

1

+ R + RT( ) z2~u
zx1zx3

+ T
z2~u
zx2

3

� ρY
z2~u
zt2

, (12)

where Y = diag(1, 1, 1, 0). Substituting Eqs 7, 10 into Eq. 12, and

set p = m + n, we obtain

∑+∞
p�−∞

∑+∞
n�−∞

Fn
p−nane

i k1+2πp
l( )x1 ei k3x3−ωt( ) � 0, (13)

where

Fn
p−n � Qp−n k1 + 2πn

l
( ) k1 + 2πp

l
( ) + Rp−nk3 k1 + 2πp

l
( )

+ RT
p−nk3 k1 + 2πn

l
( ) + Tp−nk

2
3 − ρp−nYω

2. (14)

If the elementary solution is set by

H k1, p, x1( ) � ei k1+2πp
l( )x1 ,

the orthogonality condition can be satisfied, i.e.

∫a+l

a
H k1, p, x1( )H −k1,−q, x1( )dx1 � lδpq, (15)

where a is an arbitrary real number. In practice, the infinite sums

in Eq. 13 are truncated by a finite value N, and only 2N + 1 terms

are considered. Taking advantage of the orthogonality relation in

Eq. 15, the finite expansion of Eq. 13 can be equivalently

expressed into a system of 2N + 1 linear equations, and it is

∑N
n�−N

Fn
q−nan � 0 (16)

for any integer q ∈ [−N, N].

The generalized stress on the plane perpendicular to x3 axis is

~t � ~σI3 � RT z~u
zx1

+ T
z~u
zx3

. (17)

Substituting Eqs 7, 10 into Eq. 17, and defining

bp � ∑N
n�−N

Gn
p−nan, (18)

where

Gn
p−n � RT

p−n k1 + 2πn
l

( ) + k3Tp−n. (19)

It derives

~t � ∑p�N
p�−N

ibpe
i k1+2πp

l( )x1 ei k3x3−ωt( ).

Setting all the 2N + 1 vectors of an as a new column vector ~a

and the 2N + 1 vectors of bp as a new column vector ~b in Eq. 18,

they have the relation as

~b � ~S~a + k3~T~a, (20)

where the matrices of ~S and ~T are

~S �

RT
0 k1 + 2π −N( )

l
( ) / RT

−N k1 + 2π0
l

( ) / RT
−2N k1 + 2πN

l
( )

..

. ..
. ..

.

RT
N k1 + 2π −N( )

l
( ) / RT

0 k1 + 2π0
l

( ) / RT
−N k1 + 2πN

l
( )

..

. ..
. ..

.

RT
2N k1 + 2π −N( )

l
( ) / RT

N k1 + 2π0
l

( ) / RT
0 k1 + 2πN

l
( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

~T �

T0 / T−N / T−2N
..
. ..

. ..
.

TN / T0 / T−N
..
. ..

. ..
.

T2N / TN / T0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Because the matrix ~T is symmetric and invertible, ~T
−1

exists [50].

Hence, from Eq. 20, we get

k3~a � −~T−1~S~a + ~T
−1~b. (21)

From Eqs. 14, 19, the matrix F can be expressed by G as

Fn
p−n � Qp−n k1 + 2πn

l
( ) k1 + 2πp

l
( ) + Rp−nk3 k1 + 2πp

l
( )

+ k3G
n
p−n − ρp−nYω

2. (22)

Combining Eq. 22 and the qth linear equation in Eq. 16, when q

takes all the integers from −N to N, the linear system of 2N + 1

equations can be rearranged as

~Q~a + k3~R~a + k3~b − ~ρω2~a � 0, (23)
where ~Q, ~R and ~ρ are

~Q �

Q0 k1 + 2π −N( )
l

( ) k1 + 2π −N( )
l

( ) / Q−N k1 + 2π −N( )
l

( ) k1 + 2π0
l

( ) / Q−2N k1 + 2π −N( )
l

( ) k1 + 2πN
l

( )
..
. ..

. ..
.

QN k1 + 2π0
l

( ) k1 + 2π −N( )
l

( ) / Q0 k1 + 2π0
l

( ) k1 + 2π0
l

( ) / Q−N k1 + 2π0
l

( ) k1 + 2πN
l

( )
..
. ..

. ..
.

Q2N k1 + 2πN
l

( ) k1 + 2π −N( )
l

( ) / QN k1 + 2πN
l

( ) k1 + 2π0
l

( ) / Q0 k1 + 2πN
l

( ) k1 + 2πN
l

( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

~R �

R0 k1 + 2π −N( )
l

( ) / R−N k1 + 2π −N( )
l

( ) / R−2N k1 + 2π −N( )
l

( )
..
. ..

. ..
.

RN k1 + 2π0
l

( ) / R0 k1 + 2π0
l

( ) / R−N k1 + 2π0
l

( )
..
. ..

. ..
.

R2N k1 + 2πN
l

( ) / RN k1 + 2πN
l

( ) / R0 k1 + 2πN
l

( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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~ρ �

ρ0Y / ρ−NY / ρ−2NY
..
. ..

. ..
.

ρNY / ρ0Y / ρ−NY
..
. ..

. ..
.

ρ2NY / ρNY / ρ0Y

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Therefore, from Eqs. 21, 23, we obtain the following eigen

relation as

Nξ � k3ξ,

where

N � −~T−1~S ~T
−1

−~Q + ~ρω2 + ~R~T
−1~S −~R~T−1[ ] , ξ � ~a

~b
[ ] .

The solution ξ is called Stroh eigenvector, where ~a and ~b

represent generalized displacement vector part and generalized

stress vector part, respectively. Because the size of the matrixN is

8(2N + 1) × 8(2N + 1), there are 8(2N + 1) eigenvalues k3 of

complex conjugate pairs and corresponding eigenvectors ξ, and

the solutions of generalized displacement and stress vectors are

(omitting the ranges of p ∈ [−N, N] and r ∈ [1, 8(2N + 1)] for

notation simplicity below)

~u x1, x3, t( ) � e−iωt ∑
p

∑
r

creik
r
3x3arp⎛⎝ ⎞⎠ei k1+2πp

l( )x1 , (24)

and

~t x1, x3, t( ) � ie−iωt ∑
p

∑
r

creik
r
3x3brp⎛⎝ ⎞⎠ei k1+2πp

l( )x1 . (25)

where the unknown coefficients cr can be determined by different

given boundary conditions on the surfaces of plate.

In order to study the propagations of elastic waves in periodic

piezoelectric plate, the electromechanical coupling effect needs to

be considered by the mechanical and electrical boundary

conditions on the surfaces. The dispersion properties can be

changed by various electrical boundary conditions, so that the

tunable band structures can be achieved.

The traction free boundary conditions on the surfaces of

periodic piezoelectric plate can be expressed by

σ31 � 0, σ32 � 0, σ33 � 0, x3 � ± h/2. (26)

No matter what kinds of external circuits are shunted via the

electrodes whose thickness is negligible, the electrical boundary

conditions can be expressed as functions of electric potential ϕ

and normal component of electric displacement vector D3 on

surfaces, that is

f±
e ϕ, D3( ) � 0, x3 � ± h/2. (27)

By considering the orthogonality condition in Eqs. 15, a

combination of the mechanical and electrical boundary

conditions in Eqs. 26, 27 can be conducted by multiplying

H(−k1, − q, x1) and integrating them along x1 axis from Jl − l
2

to Jl + l
2 for each unit cell, and the boundary conditions can be

equivalently transformed into a system of 8 × (2N + 1) linear

equations as

M k1,ω( )c � 0, (28)

where c is a column vector consisting of unknown coefficients cr.

In order to get the non-trivial solution, the determinant of

coefficient matrix must be equal to zero. Then, the dispersion

relation between wave number k1 and angular frequency ω can be

obtained by

det M k1,ω( ) � 0. (29)
Therefore, the dispersion relations of periodic piezoelectric plate

can be obtained by solving Eq. 29 to explore the characteristics of

guided wave motion.

3 Piezoelectric plate with periodic
shunting circuit

3.1 Electrical boundary conditions

When the periodic piezoelectric plate is located in a vacuum,

the normal components of electric displacement in the vacuum

are D+
3(x3 ≥ h

2), D−
3(x3 ≤ − h

2), respectively. For the unit cell with
shunting circuits as shown in Figure 1C, the thin electrodes cover

the entire surfaces of part I and connect external circuits. If φ±
JI

indicates the external electric potentials on electrodes of the Jth

unit cell, the electrical boundary conditions can be written as

ϕ|x3�±h
2
� φ±

JI, x1 ∈ OI,

D3 −D±
3( )|x3�±h

2
� 0, x1 ∈ OII.

{ (30)

The electric potentials in the vacuum are ϕ± and satisfy the

Laplace equation, i.e. ▽2ϕ± = 0. Because the electric potentials

gradually decrease in the vacuum and vanish at infinite, they can

be expressed as

ϕ+ � ∑
p

C+
pe

i k1+2πp
l( ) x1+ispx3( )e−iωt, x3 ≥

h

2
,

ϕ− � ∑
p

C−
pe

i k1+2πp
l( ) x1−ispx3( )e−iωt, x3 ≤ − h

2
,

(31)

where

sp �
1, Re k1 + 2πp

l
( )≥ 0,

−1, Re k1 + 2πp
l

( )< 0.

⎧⎪⎪⎨⎪⎪⎩
From Eq. 24, the electric potential in the plate is

ϕ � e−iωt ∑
p

∑
r

creik
r
3x3vrp⎡⎣ ⎤⎦ei k1+2πp

l( )x1 , (32)

where vrp is the corresponding component ϕ in arp. Using the

continuity of electric potential on surfaces, ϕ±|x3�±h
2
� ϕ|x3�±h

2
, the
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normal components of electric displacement in the vacuum D±
3

can be expressed by the electric potential in plate ϕ as

D+
3 � −ϵ0ϕ+

,3 � ϵ0k1ϕ + ϵ0 ∑
p

∑
r

crvrpe
ikr3

h
2 ei k1+2πp

l( )x1

k1 sp − 1( ) + 2πp
l
sp( )e−iωt, x3 � h

2
,

D−
3 � −ϵ0ϕ−

,3 � −ϵ0k1ϕ − ϵ0 ∑
p

∑
r

crvrpe
−ikr3h2 ei k1+2πp

l( )x1

k1 sp − 1( ) + 2πp
l
sp( )e−iωt, x3 � −h

2
. (33)

where ϵ0 = 8.854 × 10–12 F/m is the dielectric constant in the

vacuum.

Using Eq. 25, the normal component of electric displacement

of the plate can be expressed as

D3 � i∑
p

∑
r

creik
r
3x3wr

p
⎡⎣ ⎤⎦ei k1+2πp

l( )x1 e−iωt, (34)

where wr
p is the corresponding component D3 in brp. Moreover,

by Eqs. 33, 34, we can get

D3 −D+
3( ) � −ϵ0k1ϕ +∑

p

∑
r

fr
p( )+creikr3h2 ei k1+2πp

l( )x1 e−iωt, x3 � h

2
,

D3 −D−
3( ) � ϵ0k1ϕ +∑

p

∑
r

fr
p( )−cre−ikr3h2 ei k1+2πp

l( )x1 e−iωt, x3 � −h
2
,

(35)

where (fr
p)± � iwr

p ∓ ϵ0vrp(k1(sp − 1) + 2πp
l sp). As a

consequence, the electrical boundary conditions in Eq. 30 can

be rewritten by electric potentials as

ϕ|x3�±h
2
� φ±

JI, x1 ∈ OI,
φ±
JII, x1 ∈ OII,

{ (36)

where the electric potential φ±
JII on the surfaces of part II is the

same for each unit cell and can be calculated by Eq. 35 as

φ±
II � φ±

JII � ±
1

ϵ0k1
∑
p

∑
r

fr
p( )±cre±ikr3h2 ei k1+2πp

l( )x1 e−iωt.

In addition, the charge densities on surfaces are θ± �
± (D3 −D±

3 ) and combining them with Eqs. 30, 35, the total

charges on the electrodes of the Jth unit cell per unit length in x2
direction can be calculated by

Q+
J � −ϵ0k1l1φ+

JI +∑
p

∑
r

fr
p( )+creikr3h2g k1, p, J( )e−iωt,

Q−
J � −ϵ0k1l1φ−

JI −∑
p

∑
r

fr
p( )−cre−ikr3h2g k1, p, J( )e−iωt, (37)

where

g k1, p, J( ) � ∫Jl+ l1
2

Jl− l1
2

H k1, p, x1( )dx1

� 2l
k1l + 2πp

eik1Jl sin k1 + 2πp
l

( ) l1
2

[ ].

Therefore the electric potential φ±
JI on the electrodes of part I can

be obtained from Eq. 37 by the electric charge Q±
J determined

under different external circuits on the Jth unit cell. Substituting

φ±
JI and φ

±
II into Eq. 36 and performing the orthogonal integration

in the range of O, the electrical boundary conditions of Eq. 27 can

be provided by a system made of 2(2N + 1) linear equations as

Fe(q)
± = 0, q = 0, ±1, / ± N, with

Fe q( )+ � ∑
p

∑
r

creik
r
3
h
2 e−iωt vrplδpq −

1
ϵ0k1

fr
p( )+ lδpq − g 0, p − q, J( )( )[ ]

− g −k1,−q, J( )φ+
JI,

Fe q( )− � ∑
p

∑
r

cre−ik
r
3
h
2 e−iωt vrplδpq +

1
ϵ0k1

fr
p( )− lδpq − g 0, p − q, J( )( )[ ]

− g −k1,−q, J( )φ−
JI .

(38)

Correspondingly, the influences of electrical boundary

conditions on dispersion relations of periodic piezoelectric

plate can be analyzed to investigate the manipulating mechanism.

3.2 Loaded with shunting circuit

3.2.1 Electrically open circuit
When the Jth unit cell is electrically isolated, each electrode is

recognized as an equipotential body and satisfies the condition of

charge conservation to make the total charge of Eq. 37 equal to

zero, so that the electric potentials φ±
JI on the electrodes of part I

can be derived as

φ+
JI �

1
ϵ0k1l1

∑
p

∑
r

fr
p( )+creikr3h2g k1, p, J( )e−iωt,

φ−
JI � − 1

ϵ0k1l1
∑
p

∑
r

fr
p( )−cre−ikr3h2g k1, p, J( )e−iωt. (39)

Substituting Eq. 39 into Eq. 38, the electrical boundary

conditions of electrically open circuit on both surfaces can

be expressed by

Fe q( )+ � ∑
p

∑
r

creik
r
3
h
2 e−iωt

vrplδpq −
1

ϵ0k1
fr
p( )+ lδpq − g 0, p − q, J( )( ) − 1

l1
g k1 , p, J( )g −k1 ,−q, J( )( )[ ],

Fe q( )− � ∑
p

∑
r

cre−ik
r
3
h
2 e−iωt

vrplδpq +
1

ϵ0k1
fr
p( )− lδpq − g 0, p − q, J( )( ) − 1

l1
g k1 , p, J( )g −k1 ,−q, J( )( )[ ].

(40)

3.2.2 Electrically short circuit
If the electrodes of the Jth unit cell are connected to the

ground, their electrical potentials are forced to zero, that

is φ±
JI � 0. Taking advantage of Eq. 38, the electrical boundary

conditions of electrically short circuits on both surfaces are
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Fe q( )+ � ∑
p

∑
r

creik
r
3
h
2 e−iωt vrplδpq −

1
ϵ0k1

fr
p( )+ lδpq − g 0, p − q, J( )( )[ ],

Fe q( )− � ∑
p

∑
r

cre−ik
r
3
h
2 e−iωt vrplδpq +

1
ϵ0k1

fr
p( )− lδpq − g 0, p − q, J( )( )[ ].

(41)

3.2.3 Loaded external circuit
If the impedances on the upper and lower electrodes of the Jth

unit cell are Zu, Zd, separately, as shown in Figure 1C, the charges

on the electrodes of the Jth unit cell can be derived as

Q+
J � 1

iωZu
φ+
JI, Q−

J � 1
iωZd

φ−
JI. (42)

Combining Eqs. 42, 37, the electric potentials on the electrodes of

the Jth unit cell can be expressed as

φ+
JI �

1
iωZu

+ ϵ0k1l1( )−1 ∑
p

∑
r

fr
p( )+creikr3h2g k1, p, J( )e−iωt,

φ−
JI � − 1

iωZd
+ ϵ0k1l1( )−1 ∑

p

∑
r

fr
p( )−cre−ikr3h2g k1, p, J( )e−iωt.

(43)
Substituting Eq. 43 into Eq. 38, it leads to

F q( )+ � ∑
p

∑
r

creik
r
3
h
2 e−iωt vrplδpq −

1
ϵ0k1

fr
p( )+ lδpq − g 0, p − q, J( )( )[

− 1
iωZu

+ ϵ0k1l1( )−1
fr
p( )+g k1 , p, J( )g −k1 ,−q, J( )],

F q( )− � ∑
p

∑
r

cre−ik
r
3
h
2 e−iωt vrplδpq +

1
ϵ0k1

fr
p( )− lδpq − g 0, p − q, J( )( )[

+ 1
iωZd

+ ϵ0k1l1( )−1
fr

p( )−g k1 , p, J( )g −k1 ,−q, J( )].
(44)

Obviously, when the impedances Zu or Zd → ∞, the circuit

becomes electrically open case, and Eq. 44 can be degenerated to

Eq. 40. When the impedances Zu or Zd = 0, the circuit can also be

equivalently transformed into electrically short case with Eq. 44

degenerated to Eq. 41. Otherwise, for different values of

impedances Zu or Zd, there are various electrical boundary

conditions to be provided.

The different kinds of electrical boundary conditions are

converted into a set of linear homogeneous equations.

Combining the wave motion equation in Eq. 6 and boundary

conditions in Eqs. 26, 27, the eigenvalues and eigenvectors in Eqs.

28, 29 can be determined, and the generalized solutions Eqs. 24,

25 can be obtained in an accurate form with infinite N or an

approximate form with the truncating finite terms of N.

4 Electromechanical coupling effects
on guided waves

In order to discuss the electromechanical coupling effects on

the guided wave propagation in the periodic structure, a periodic

piezoelectric plate made of PZT-5H is considered and the

material parameters based on its three material principal axes

are listed in Table 1 with the Voigt notation. Each unit cell of the

periodic piezoelectric plate is constructed by two PZT segments

with separately polarized directions and shunted external

circuits. Based on the theoretical model, the dispersion curves

of both Lamb waves and SH waves in the periodic piezoelectric

plate can be calculated under different electrical boundary

conditions. By changing the polarization directions of PZT

segments in a unit cell or shunting different types of external

circuits, the dispersion properties of periodic piezoelectric plates

can be easily altered to control the performances of guided waves

propagations.

If the sizes of unit cell in Figure 1B are set l = 5 mm, h = 3 mm

the dimensionless wave number k1l and dimensionless frequency

Ω � ωl����
C44/ρ

√ are introduced, and the dispersion curves are

calculated in the range k1l = [0, π] for the symmetry of the

periodic piezoelectric plate. Finite element method is also

conducted by COMSOL Multiphysics for comparison. In

COMSOL Multiphysics calculations, the Floquet periodicity is

applied to unit cell boundaries perpendicular to x1 direction.

Providing the wave number k1 by parametric sweep, the

corresponding eigenfrequencies can be obtained.

4.1 Polarized along the x2 axis

If the unit cell in Figure 1B is designed by a combination of part I

with l1 = 0.8 L and part II with l2 = 0.2 L, both parts are made of

PZT-5H with the polarization directions along x2 axis as illustrated

in Figure 2 with red crosses, and only the surfaces of part I are fully

covered with thin electrodes. It means that there is no difference

between the piezoelectric materials in part I and part II except part I

can connect external circuits. For discussing the influences of

external circuits on the dispersion properties of the periodic

piezoelectric plate, the shunting inductance circuit is considered.

Compared to the electrically open case in Figure 2A, the external

inductance circuit is set by connecting inductance L on the upper

electrode, and the lower electrode is connected to the ground as

shown in Figure 2B, i.e. Zu = iωL, Zd = 0. If the inductor in Figure 2B

is chosen by L = 50 μHand L = 30 μH, separately, the corresponding

dispersion curves of Figures 2A,B can be calculated by Eq. 29 and

results are shown in Figure 3. For the case without external circuits

in Figure 2A, the dispersion curves of Lamb waves and SH wave are

the same as homogeneous plate as shown in Figure 3A, and the

corresponding finite element results are obtained by the commercial

software COMSOL Multiphysics and illustrated by gray rhombus

marks. In Figure 3A, these two results are in complete agreement, so

that the effectiveness and reliability of Eq. 29 is verified.

If the external circuits are involved, the dispersion curves of

Lamb waves and SH wave are also calculated by Eq. 29 and

shown in Figures 3B,C, and there is an extra electric mode (red

lines) to couple with the guided waves compared to Figure 3A.
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The corresponding finite element results calculated by

COMMOL Multiphysics are not presented here because the

“Electrical Circuit” interface of COMSOL is unstably

supported for eigenvalue problem. Therefore, the reliability of

Eq. 29 when the shunting circuits are involved is verified by the

dispersion relation of the electric mode before coupling with

guided waves, which can be derived from the equivalent-circuit

model [44] as

ω � 2CII 1 − cos kl( ) + CI( )L[ ]−1
2, (45)

and illustrated by rose dashed curves in Figures 3B,C.

In this model, the unit cell in Figure 2B can be equivalent

represented by a capacitor CI whose surfaces are

perpendicular to x3 axis, and form a inductance-

capacitance resonant circuit with the shunting inductance.

In addition, the electrodes on the upper surfaces of adjacent

unit cells are connected by an equivalent capacitor CII whose

surfaces are perpendicular to x1 due to the electrical potential

differences on these two electrodes. The values of CI and CII

can be determined by the cutoff frequency ω0 and ωπ denoted

as the dimensionless Ω0 and Ωπ in Figures 3B,C at the edges of

Brillouin zone k1l = 0 and k1l → π.

In Figures 3B,C, the shunted inductance circuit has no effect

on Lamb waves due to their displacement vectors are

perpendicular to the polarization orientation of piezoelectric

material. By contrast, there is a strong interaction between the

electric mode and SH0 wave for the same directions of

displacement vector and polarization orientation, and opening

up the hybridization bandgaps as shown by gray shadow areas.

According to Eq. 45, the lower inductance L can induce the

electric mode at higher frequency range, and can result in the

hybridization bandgaps at higher frequency range too, as shown

in Figures 3B,C. The width of the hybridization bandgap

increases to 1.3 times when the inductances decrease from

50 μH to 30 μH. Compared to Figure 3A, besides the

hybridization bandgaps caused by electric mode, there is an

extra narrow Bragg scattering bandgap (green shadow region)

to be generated in Figures 3B,C for the periodicity of piezoelectric

plate.

4.2 Polarized along the x3 axis

The design of unit cell in Figure 4 is the same as that in

Figure 2, except the polarization directions are all along x3 axis as

shown in Figure 4 with red arrows, and for Figure 4B the same

electrical boundary conditions are considered as described in

Section 4.1. The corresponding dispersion curves are calculated

by Eq. 29 and results are illustrated in Figure 5. For the case of

TABLE 1 Material parameters of PZT-5H [31].

Elastic constants (GPa)
C11 = C22 C12 C13 = C23 C33 C44 = C55 C66

127.21 80.21 84.67 117.44 22.99 23.47

Piezoelectric constants (C/m2) Relative dielectric constants Density (kg/m3)

e15 = e24 e31 = e32 e33 ϵ11/ϵ0 = ϵ22/ϵ0 ϵ33/ϵ0 ρ

17.03 −6.62 23.24 1704.4 1433.6 7500

FIGURE 2
The periodic unit cell made of x2 direction polarized PZT with
different electrical boundary conditions: (A) electrically open, (B)
shunting inductance.

FIGURE 3
Dispersion curves of periodic plates with unit cells of (A)
Figure 2A, (B) Figure 2B with L = 50 μH and (C) Figure 2B with L =
30 μH.
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electrically open in Figure 4A, the finite element results are

provided by the commercial software COMSOL Multiphysics

and plotted in Figure 5A by gray rhombus symbols to show the

good consistence with the theoretical model.

Compared to the dispersion curves in Figure 3, the big

difference is that the shunting inductance circuit of Figure 4B

has no influence on SH wave and the hybridization bandgaps

emerge only from the coupling of the electric mode with the

Lamb waves as gray shadow regions in Figures 5B,C. In

Figures 5B,C, there is a stronger interaction with S0-like

mode to form a broader hybridization bandgap than that

with A0-like mode. It indicates that the electromechanical

coupling effect on the guided waves can be effectively selected

by the polarization direction of piezoelectric material. For the

same shunting inductor with L = 50 μH, the electric mode

calculated by Eq. 45 can cover a wider frequency range with

lower Ωπ and higher Ω0 in Figure 5B than that in Figure 3B,

and leads to a nearly three times wider hybridization bandgap

of S0-like mode than that of SH0 mode in Figure 3B. Similarly,

the difference of the dispersion relations between Figure 5C

and Figure 3C can be observed when the shunting inductor is

L = 30 μH. Besides, there is another hybridization bandgap by

the interaction between S0-like mode and the folded negative-

slope A0-like mode denoted as the pink shadow regions in

Figures 5B,C. The Bragg scattering bandgaps emerge when A0-

like and S0-like waves are folded at the edge of the Brillouin

zone, as denoted the green shadow areas in Figures 5B,C, and

they are only related to the periodicity of piezoelectric plate

but little influence by the shunting inductance circuit.

4.3 Polarized along the x1 axis in part I and
x3 axis in part II

If two parts of unit cell are designed by the same PZT with

different polarization directions, which are along x1 axis in part I

and x3 axis in part II as illustrated in Figure 6, the dispersion

curves of guided waves under the electrical boundary conditions

of electrically open, shunting inductance with L = 50 μH and L =

FIGURE 4
The periodic unit cell made of x3 direction polarized PZT with
different electrical boundary conditions: (A) electrically open, (B)
shunting inductance.

FIGURE 5
Dispersion curves of periodic plates with unit cells of (A)
Figure 4A, (B) Figure 4B with L = 50 μH and (C) Figure 4B with L =
30 μH.

FIGURE 6
The periodic unit cell made of x1 direction and x3 direction
polarized PZT with different electrical boundary conditions: (A)
electrically open, (B) shunting inductance.

FIGURE 7
Dispersion curves of periodic plates with unit cells of (A)
Figure 6A, (B) Figure 6B with L = 50 μH and (C) Figure 6B with L =
30 μH.
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30 μH, separately, can be calculated by Eq. 29 and shown in

Figure 7. The differences of electromechanical coupling effects

caused by the polarization directions and the shunting

inductance circuits can be figured out in the dispersion curves

of guided waves in Figure 7.

Similar to the dispersion curves in Figure 5, the external

circuits have no influence on the propagation of SH waves in

Figure 7, because the unit cell has no PZT part with the

polarization direction along x2 axis, i.e. the direction of SH

wave motion, and the hybridization bandgaps shaded in gray

in Figures 7B,C are only generated by the coupling of electric

mode with A0-like and S0-like modes. However, there are some

differences to be observed between Figures 5, 7. First, the Bragg

bandgaps appear in Figure 7 when the guided waves fold at the

edges of Brillouin zones for the periodicity of plate, but Bragg

bandgaps of SH0 branch cannot be observed in Figure 5 for the

homogeneity of plate. In Figure 7, the bandgap of SH0 branch is

very narrow, and the bandgaps of A0-like branch in Figures 7B,C

are wider than that in Figures 5B,C while the bandgaps of S0-like

branch are thinner. Second, because the normal component of

the dielectric tensor of PZT-5H after coordinate transformation

increases when the polarization direction changes from x3 to x1
axis, and correspondingly the equivalent capacitance CI

increases, in consequence, the corresponding electric modes

can cover a narrower frequency range in Figures 7B,C than

that in Figures 5B,C. This is because the upper limits of electric

modes decrease for the higher CI based on Eq. 45, while the lower

limits almost remain the same, so that the hybridization

bandgaps open up at lower frequencies. Furthermore, the

hybridization bandgaps are also influenced by the polarization

directions, especially when the electric mode couples with S0-like

mode, the hybridization bandgaps in Figures 7B,C are narrower

to be about 20% of that in Figures 5B,C.

4.4 Polarized along the x2 axis in part I and
x3 axis in part II

The two parts of unit cell are designed in series with the same

length l1 = l2 = 0.5 l, and the electrodes are centered on both surfaces

of these two parts with the length of a1 = 0.8 l1, a2 = 0.8 l2,

respectively. The polarization directions of PZT are along x2 axis in

part I and x3 axis in part II, as illustrated in Figure 8 with red crosses

and arrows. The unit cell in Figure 8 is a combination of that in

Figures 2, 4 with a half length. There are three different electrical

boundary conditions to be considered as shown in Figure 8, the

electrically open condition in Figure 8A, inductance shunting circuit

loaded on the upper electrodes of part I in Figure 8B or part II in

Figure 8C with the opposite lower electrodes connected to the

ground. The dispersion curves of these three cases are calculated

and shown in Figure 9, and the finite element results are obtained

and drawn with gray rhombus marks to illustrate the good

consistence in Figure 9A.

The big difference between Figure 7A and Figure 9A is

the much wider Bragg bandgap (shaded in green) of SH0

wave in Figure 9A for the part I polarized along the direction

of SH0 wave, and the broader length of part II polarized along

axis in Figure 9A than the part II with the same polarization

direction in Figure 7A cause a lower Bragg bandgap of S0-like

mode and a higher Bragg bandgap of A0-like mode.

Compared to Figure 3B with the same polarized PZT part

shunted inductance circuit, the electric mode is located at a

higher frequency range as rose dashed line in Figure 9B, and

the electromechanical effect not only induces the

FIGURE 8
The periodic unit cell made of x2 direction and x3 direction
polarized PZT with different electrical boundary conditions: (A)
electrically open, (B) inductance shunting on part I and (C)
inductance shunting on part II.

FIGURE 9
Dispersion curves of periodic plates with unit cells of (A)
Figure 8A, (B) Figure 8B with L = 50 μH and (C) Figure 8C with L =
50 μH.
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hybridization bandgap (shaded in gray) of SH0 mode, but

also causes the hybridization bandgaps for both A0-like and

S0-like modes. The similar conclusion can be addressed from

the comparison of Figure 5B and Figure 9C for the same

polarized PZT part shunted inductance circuit, but the

frequency range of electric mode is narrower in

Figure 9C. It indicates that the hybridization bandgap

caused by electromechanical effect strongly depends on

the polarization direction of PZT, but the external circuit

can influence the frequency range of electric mode. For a

comparison of three Bragg bandgaps in Figure 9, the

shunting inductance circuit can strongly decrease the

frequency range of SH0 mode no matter which part is

shunted, but only slightly influences on both A0-like and

S0-like modes. However, if the shunting inductance circuit is

connected to the upper electrode of part I as shown in

Figure 9B, the interactions between different wave modes

are slight and hard to observe, while for the shunting

inductance circuit connected to the upper electrode of

part II as shown in Figure 9C, the S0-like mode is strongly

interacted with the folded negative-slope SH0 mode and A0-

like mode to result in the opening up locally resonant

bandgaps shaded in pink.

From Figures 3, 5, 7, 9, it is noteworthy that the obvious

Bragg bandgaps can be observed for the heterogeneous plate

with periodicity, and the heterogeneity can be induced by

locally shunting circuits for homogeneous plate or by

different polarization directions of two PZT segments. The

external inductance circuits can introduce the electric mode

to form the hybridization bandgaps after its interaction with

guided waves. In addition, the coupling effect of electric mode

only acts on the specific mode guided waves that have non-

zero motion component along the polarization direction of

PZT. It should be noticed in Figures 9B,C that the

hybridization bandgap depends on the polarization

direction of PZT even though the external circuit is

connected to other PZT segments with different

polarization directions.

5 Conslusion

Based on the extended Stroh formalism, a theoretical

model is proposed for solving the guided wave propagation

in periodic piezoelectric plate, and the dispersion relations of

multi-modes guided waves in the periodic piezoelectric plate

shunted with external circuits are theoretically investigated

in this paper. Based on the theoretical analysis, the

dispersion properties of the periodic piezoelectric plate

can be manipulated by altering the polarization direction

of piezoelectric material in a unit cell and the impedance

parameters of shunting circuit, and the main points can be

addressed as follows.

1. The periodic piezoelectric structure behaves as a

combination of phononic crystal plate and metamaterial

with shunting circuits. Consequently, both the Bragg

bandgaps and the hybridization bandgaps emerge in

different frequency ranges due to the electromechanical

coupling effects. Compared to the Bragg bandgaps, the

hybridization bandgaps locate at lower frequencies, hence,

the manipulation of wave propagation can be achieved at

subwavelength scale.

2. The shunting circuits connected to homogeneous unit cell

can induce obvious bandgaps of guided wave when its

motion direction is not perpendicular to the polarization

direction of piezoelectric material. For the unit cell

composed of piezoelectric materials with different

polarization directions, the Bragg bandgap will appear

no matter whether the shunting circuits exist or not.

3. The hybridization bandgaps originate from the coupling

between electric mode and guided wave modes whose

motion direction is the same as the polarization direction

of the piezoelectric material in a unit cell. Hence, the

manipulation of specific wave propagation can be achieved

via the requested arrangement of polarization directions in a

unit cell with shunting circuits.

4. The frequency range of the electric mode in the dispersion

curves is modulated with the various inductance values and

polarization orientations of the piezoelectric material in a

unit cell, leading to the hybridization bandgaps opening at

variable frequencies. Therefore, a tunable band structure of

the periodic piezoelectric plate can be realized with the help

of various electrical boundary conditions and different

polarization orientation permutations of the segments in

a unit cell.

In summary, the proposed theoretical model in this paper

can be successfully applied to the wave motion problem of

periodic piezoelectric plate with shunting circuits. Results

predict that the periodic plate has a good ability to

manipulate guided wave propagation and provide broad

applications in wave guiding and controlling, non-destructive

testing, and other engineering fields. Furthermore, the

theoretical model can be developed to investigate the

dispersion characters of guided waves in the periodic plate

made of various materials with more multi-physics properties,

such as piezomagnetic effect, and plate with more complex

structures, such as multiple-layers, can also be studied by the

modification of the theoretical approach.
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