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We study the dispersions of the guidedmodes in the continuous uniaxial crystal

slab waveguide and engineer their degeneracies through dielectric anisotropy.

By switching the uniaxial positivity and negativity, we can obtain distinctive

nodal types, point and line, for the lowest degeneracy in frequency. The mirror

symmetry protections, Mx and My , are pointed out, and the degeneracy

properties are intuitively analyzed through comparing the approximate

slopes of the guided modes. Our results reveal a link between the lowest

nodal types and the positivity/negativity of the uniaxial crystal, and provide a

new approach to regulate the topology of degeneracy in two-dimensional

photonic bands.
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Introduction

Recently, a research focus is concentrated on nodal degeneracy in band diagrams in

periodical structures [1–5], such as quantum materials, photonic crystals, and phononic

crystals, because new physics and novel applications are anticipated arising from peculiar

band degeneracies including point degeneracy [6–16], line/loop degeneracy [17–28],

nodal chain degeneracy [29–31], nodal surface degeneracy [32, 33] and so on.

Band degeneracy is generally enforced by symmetry in the physical system. It is well

known that photonic guided waves in confined structures can be classified into transverse

electric (TE) and transverse magnetic (TM) modes in terms of mirror symmetry [our

meanings of “TE” and “TM” adapted to classical waveguide theory, see [34]. Taking an

example of an isotropic dielectric slab waveguide, both modes evolve out from the light

cone in free space, and their dispersion curves are rapidly asymptotic to the light cone in

dielectrics as propagation constant increasing. Because of the asymptotic parallelism, the

TE and TM dispersions cross rarely to form the degeneracy beyond the free space light

cone, which is schematically depicted in Figure 1B. On the other hand, the slopes of the TE

and TMmodes in the dispersion diagram can be tailored in a polarization-distinguishable

way through introducing the uniaxial anisotropy to the dielectric slab. The tailoring
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mechanism is rooted on the refractive index difference which is

manifested likewise in the propagation of ordinary and extra-

ordinary light in a uniaxial bulk crystal [35], seeing the index

ellipsoid in Figure 1.

In the study, we start with an isotropic dielectric slab, where

TE and TMmodes are not degenerate. By changing the dielectric

constant into the uniaxial permittivity tensor and tuning the

component of the tensor along the propagation direction, we

show the slope of TM modes can either increase or decrease

significantly while maintaining the slope of TE modes, which

corresponds to the positively and negatively uniaxial anisotropy,

respectively. Thus, the crossing between TE and TM modes can

be engineered, as illustrated in Figure 1. Furthermore, the mirror

symmetry along the out-of-slab direction imposes an extra

enforcement on the degeneracy and leads to distinctive nodal

types, Dirac point (DP) and Dirac line (DL), in the positive and

negative uniaxial cases for the lowest degeneracy in frequency.

Guided mode in uniaxial crystal slabs

Here, we consider a two-dimensional (2D) infinite (along y-

and z-directions), uniaxial crystal slab (finite thickness d = 2 mm

in the x-direction) with non-magnetic permeability (μ/μ0 � 1; μ0
being the permeability in vacuum). The slab is located in free

space where the wave is assumed propagating along the z-

direction, and the permittivity tensor has the diagonal form

diag[n2o, n2o, n2e] · ε0 with no (ne) being the refractive index of

ordinary (extra-ordinary) light and ε0 being the permittivity in

vacuum. The dielectric principal axis in the uniaxial crystal is

spanned by (no, no, ne), shown in Figure 2A, where θ denotes the
in-plane rotation of the optical axis. When θ � 0, the anisotropic

permittivity tensor ε1 of the slab can be expressed in the (x, y, z)
coordinate system as:

ε�1/ε0 �
εx/ε0 0 0
0 εy/ε0 0
0 0 εz/ε0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � n2o 0 0
0 n2o 0
0 0 n2e

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦ (1)

where εi is the permittivity along the i (i � x /y / z) direction

with relative value εxr � εx/ε0 � n2o, εyr � εy/ε0 � n2o, and

εzr � εz/ε0 � n2e . The dielectric loss of the permittivity is

neglected in the study. The time harmonic waves that

propagate in the z-direction can be expressed as:

exp i kxx + kzz − ωt( )[ ] (2)

where ki represents the i component of wave vector in the i

direction, ky � 0 has been assumed for homogeneity in the

y-direction, and ω is angular frequency. Since the system shows

themirror symmetryMy: (x, y, z) → (x,−y, z), the guided wave
is cataloged into two polarization modes, TE with non-zero electric

field perpendicular to the mirror plane (any xz plane due to

uniformity in the y-direction) and TM with non-zero electric

field parallel to the mirror plane (any xz plane due to uniformity

in the y-direction) [Ref. 34]. By expressing the field components and

FIGURE 1
Schematics for the index ellipsoids (upper row) in a uniaxial bulk crystal where the optical axis ne is along the horizontal direction, and the guided
modes (lower row) in the uniaxial crystal slab with the finite thickness along the x-direction as illustrated by the insets. The propagation of the guided
modes is assumed along the optical axis, i.e., horizontal direction, labeled as z-axis in the insets. The dark red lines denote TE modes, the dark blue
lines denote TM modes, and the dash lines denote the light line. ne or εz increases from left to right, as indicated by the arrow, and shows (A)
negatively uniaxial, (B) isotropic, and (C) positively uniaxial cases.
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matching the boundary conditions on the two surfaces of the slab,

we can get the characteristic equations for TE mode:

2αkx cos kxd + α2 − k2x( ) sin kxd � 0 (3)
k2x + k2z � εyrk

2
0 (4)

and for TM mode:

α2 − k2x
ε2zr

( ) sin kxd + 2αkx
εzr

cos kxd � 0 (5)

k2x
εzr

+ k2z
εxr

� k20 (6)

Above, Eqs 4, 6 are the dispersion relation in regime I, α is the

imaginary part of perpendicular component of wave vector in

theregime II and III, and k0 � ω/c with the speed of light in

vacuum c � 1/
����
ε0μ0

√
, which satisfies:

k2z − α2 � k20 (7)

For concreteness, we choose εx � εy � 16ε0, and switch the

value of εz for negatively uniaxial case (εz � 4ε0) and positively

uniaxial case (εz � 100ε0). It is has known that 2D dielectric slabs

have been extensively used as basic waveguides in microwave

engineering and devices where a broad horizon of dielectric

materials, e.g., high-k printed circuit board (PCB) and

ceramics, may offer various permittivity including such values

[36, 37]. The calculated results are shown in Figures 2B,C.Within

a qualitative physical picture, we approximate the slope of TM

modes beyond the light line to be roughly ~ c/nTMeff, and the

effective index nTMeff �
������
εTMeff/ε0

√
≈

�����������
avg(εx, εz)/ε0

√
, where the

effective permittivity εTMeff for TM mode can be regarded to

some degree as special average of εx; εz because the electric

field is oriented along both x- and z-direction. In contrast, the

slope, being roughly ~ c/nTEeff, of TE modes is related to nTEeff �������
εTEeff/ε0

√
≈

����
εy/ε0

√
in terms of the y-orientation of electric field.

Therefore, given εx � εy and when switching only εz from the

negatively uniaxial case (εz < εy) to positively uniaxial case

(εz > εy), we see that the slopes of the TE modes remain

almost unchanged whereas the TM ones change expectedly in

the dispersion diagram, as comparing Figure 2B with Figure 2C.

It is noted that the first-order TM mode (TM1) crosses with

the second-order TE mode (TE2) for the negatively uniaxial case

(εz � 4ε0), as labeled by point A in Figure 2B, and that it crosses

with the first-order TE mode for positively uniaxial case

(εz � 100ε0), as labeled by point B in Figure 2C, where TM

curves are generally less steep than TE ones. For instance, the

slope of TM1 near the point B is estimated as
Δω
Δkz ~

2πp7.48GHz
0.5π/d ~ c/5 that corresponds to εTM1

eff /ε0 ~25, whereas

the slope of TE1 near the point B is estimated as
Δω
Δkz

~ 2πp9.34GHz
0.5π/d ~ c/4 that corresponds to εTE1eff/ε0 ~16.

Therefore, the decrease in the slope of TM modes with εz
leads to the switch of one of degenerating bands from TE2
(point A) to TE1 (point B). In addition, as increasing εz, more

FIGURE 2
(A) The schematic picture of the anisotropic dielectric slab waveguide, where (x, y, z) is the coordinate system for the slab; (no , no , ne) is the
dielectric principal axes for the anisotropic permittivity. The red arrow represents the propagation direction of electromagnetic wave. The panel in
the right shows the three layers structure in our system. The slab thickness d = 2 mm. (B) Dispersion diagram of TE and TM modes in the negatively
uniaxial case when εz � 4ε0. The degenerate points are marked with yellow dots. (C) Dispersion diagram of TE and TM modes in the positively
uniaxial case when εz � 100ε0. The degenerate points that wewill investigate in details aremarked with red dots. The velocity or effective index of the
first-order modes (TM1 and TE1) near the point B is approximated by the slope estimation Δω/Δkz , as depicted by the right-angled dash lines.
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TM modes appear in Figure 2C, and TM3 is crossing with TE2,

which gives rise to more degeneracies at higher frequencies (see

Section A in Supplementary Materials).

Type-II Dirac degeneracy in uniaxial
crystal slabs

In order to exhibit the complete dispersion structure around

the degenerate points, we need calculate the band diagram

ω(ky, kz). In the calculation, we first rotate the in-plane

dielectric principal axes around the x-direction with the angle

θ, as shown in Figure 2A. The non-diagonalized permittivity

tensor εθ after rotation can be written as

ε�θ �
εxx 0 0
0 εyy εyz
0 εzy εzz

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (8)

in which

εxx � εx (9)
εyy � εy cos2θ + εzsin

2 θ (10)
εzz � εz cos2θ + εy sin

2 θ (11)
εyz � εzy � εy − εz( ) sin θ · cos θ (12)

Then, we assume that the waves still propagate along the z-

direction and express the electric fields and magnetic fields in

different regions. Because the mirror symmetry My is broken

under the rotation, the guidedmodes are no longer pure TE or TM

mode, but are their combination which we call hybrid mode. The

characteristic equation for hybrid modes is solved by matching

boundary conditions, which gives us the dispersion ωθ(kz).
Finally, the dispersion ω(ky, kz) is obtained through a standard

map from polar coordinate to Cartesian coordinate. Although the

calculation is based on the rotated dielectric principal axis, the

results are the same as those of rotating the (x, y, z) coordinate
system while maintaining the dielectric principal axis, because

both are the equivalent description of rotation.

We first analyze the degenerate point A in negatively uniaxial

case with εz � 4ε0, where it is the lowest degeneracy in frequency, as

displayed in Figure 2B. We calculate the dispersion ωθ(kz) when
varying the angle θ, and the degeneracy is seen to become gapped

upon θ being nonzero, as shown in Figures 3A–C. Combining all

θ-cut plots, we can achieve the three-dimensional (3D) view of band

diagram ω(ky, kz) in momentum space, as depicted in Figure 3D.

The band structure aroundA exhibits the characteristic of two over-

tilted cones, and thus the degeneracy is just the type-II DP. The

gapping reason is that the two modes display the like parity in the

mirror symmetry Mx: (x,y, z) → (−x,y, z) (the symmetry

classifies all modes as even or odd parity with respect to the

mirror plane x = 0, see Section B in Supplementary Materials)

and simultaneouslyMy is broken upon θ ≠ 0. Such 2D type-II DP

has been observed in the artificially designed metasurfaces with

FIGURE 3
Type-II Dirac point in the dispersion diagram of the negatively uniaxial crystal slab when εz � 4ε0. (A) Shows the dispersion relation when θ is
chosen as 2°. (B) Zoom-in view of the band gap in (A). (C) Shows the dispersion relation when θ = 10°. (D) 3D view around the degeneracy that gives
rise to a type-II Dirac point in momentum space.
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periodic metallic patterns at microwave frequencies [38–40]. In

contrast, our system is of no discrete translational symmetry, but

continuous in space.

Next, let’s focus our attention on the degenerate point B in

positively uniaxial case with εz � 100ε0. Interestingly, in the cut

plot with different θ, the degeneracy persists, which forms a

section of line in momentum space, as plotted in Figure 4.

According to the slope of two crossing bands, such

degeneracy is the Type-II DL. The degeneracy is protected by

the mirror symmetry Mx, in which the two bands display the

opposite parity (see Section B in Supplementary Materials), and

would be gapped if the uniaxial crystal slab lies in an asymmetric

background, (see Section C in Supplementary Materials).

It is also noted from Figure 4C that the two bands,

responsible for the Dirac line, almost coincide with each other

when θ comes to 30 °. If we increase the rotation angle further,

the DL degeneracy will lift. The physical reason can be

understood qualitatively from an effective permittivity point of

view. Although being hybrid in nature upon θ ≠ 0, the two bands

are dominated, respectively, by the TE1 and TM1 modes and can

be considered as their descendants. As increasing the angle θ, the

slope of TE-like dispersion curve will decrease from ~ c/
����
εy/ε0

√
at

θ � 0 to ~ c/
����������������
εTE−likeeff (εy, εz, θ)/ε0

√
at θ ≠ 0 where the effective

permittivity εTE−likeeff is the θ-mediated average between εy and εz,

and we make the approximation εTE−likeeff (εy, εz, θ)/ε0 ≈ n2eff(θ) �
n2on

2
e /(n2osin 2 θ + n2ecos

2 θ) (the relation expressed for extra-

ordinary light in the bulk crystal [Ref. 35]). Consequently, the

slope of TE-like dispersion may become comparable to that of

TM-like dispersion upon some angle, and appear less than the

latter beyond the angle, and such slope difference does not lead to

the degeneracy any more. The threshold angle θc can be

estimated through requiring the slope equality

εTE−likeeff (εy, εz, θc) � εTM−like
eff (εx, εz), where we assume

εTM−like
eff (εx, εz) ≈ εTM1

eff ~ 25ε0 after noticing insignificant

θ-dependence of TM-like dispersions in Figure 4. Thus, the

threshold angles are solved as θc1 ~ ± 40o and θc2 ~ ± 140o,

which are quite close to the numerical values ± 35o and

± 145o from COMSOL simulation and correspond to the +kz
and −kz directions, respectively. Overall, this kind of nodal line is
essentially different from the loop degeneracy [Ref. 40] because it

cannot construct a closed loop in momentum space.

Discussions

When investigating the propagation of the guided modes along

the direction perpendicular to the optical axis (e.g., the propagation

along y-axis while the optical axis being z-axis, and the mirror

symmetry Mz: (x,y, z) → (x,y,−z) giving rise to the TE/TM

modes), we find that the relative magnitude between the slopes of

TM and TE modes will swap, because TE waves have the electric

field polarized along the optical axis εz or ne and TMwaves have the

electric field components along both x- and y-directions. Thus, the

DL degeneracy from the lowest two modes (even and odd parity)

FIGURE 4
Type-II Dirac line in the dispersion diagram of the positively uniaxial crystal slab when εz � 100ε0. shows the dispersion relationwhen θ is chosen
as 2°, 15° and 30°, where the red points label the linear cross of bands. 3D view around the (A-C) degeneracy B (red point), where all degenerated
points give rise to the Type-II Dirac line in momentum space, which is (D) marked by red line.
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will occur to the negatively uniaxial case, and the DP degeneracy

from the higher-order modes will appear in the positively uniaxial

case (see Section D in Supplementary Materials).

In addition, we present a microwave metamaterial design which

approximates at lower frequencies a positively uniaxial crystal with

dispersive permittivity component, and the band degeneracy shows

the similarity to and the difference from the case of the continuous

crystal slab (see Section E in Supplementary Materials).

Conclusion

In conclusion, by controlling positivity/negativity of the

refractive index ellipsoid, we can obtain the nodal point and

nodal line degeneracies for the guided modes on the uniaxial

crystal slab waveguide. Furthermore, the point and line

characteristics and their connections with the refractive index

ellipsoid can be swapped through switching the propagation

direction. Our results link the band degeneracy with positivity/

negativity of the uniaxial crystal, and provide a new approach to

regulate the topology of degeneracy in 2D photonic bands.
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