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A stock market is a complex system consisting of many interacting agents. We

consider recent progress with complex networks constructed from cross-

correlation of financial time series in the stock market. We review some

methods and discuss the challenges in generating such complex networks

that have a reasonable threshold.
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1 Introduction

We consider complex networks in the stock market, which are generated by

calculating cross-correlation coefficients of the logarithmic return between securities

or stock indices. We connect two securities or indices with cross-correlation coefficients in

descending order up to the number of links, n � N − 1, without loops in a minimum

spanning tree (MST) [1, 2]. In addition, we connect two securities up to n � 3(N − 2)
without allowing crossings between links in a planar maximally filtered graph (PMFG),

whereN is the total number of securities [3]. In a threshold network, we cut all links when

the cross-correlation coefficients are less than the threshold value [4, 5]. The varying

patterns of complex networks over time provide some important information on the stock

market.

In this note, we discuss recent methods and applications of complex networks in the

stock market and the pros and cons of threshold networks in the stock market.

2 Review

In a stock market, the indices or stock prices of individual companies become

correlated with each other over time. The idea of complex networks applies to both

stock markets and financial markets. We can construct a network based on world

trade because the weights of the links are defined by trade flows, such as imports or

exports among countries. In a stock market, one uses the cross-correlation coefficients

of the stock indices or the prices of individual securities to generate a complex

network. Consider a time series of a stock index on day t, Pi(t), in the stock market.

The logarithmic return is represented by ri(t) � [logPi(t) − logPi(t − 1)]. The cross-
correlation function is
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Cij � < ri t( )rj t( )> − < ri t( )> < rj t( )>
σ i σj

, (1)

where σ i and σj are the standard deviations of the logarithmic

returns for two indices. We obtain an N × N correlation matrix

C. From this correlation matrix, we can generate complex

networks in the stock market. Mantegna introduced a

minimum spanning tree (MST) using metric distance.

dij �
���������
2 1 − Cij( )√

. (2)

The MST is like a skeleton tree in the stock market, which is

connected by tightly correlated indices or stock prices, with the

number of links denoted as n � N − 1 [1]. Tumminello et al.

introduced a planar maximally filtered graph (PMFG) with the

number of links denoted as n � 3(N − 2) in the equity market,

which is a topological generalization of the MST [2]. Onnela et al.

reported networks of companies based on return correlations [6].

They added some links, allowing a loop structure from descending

correlation coefficient ranks. Boginski et al. reported amarket graph

based on the correlation of stock prices [4]. Lee et al. introduced

complex networks in a stock market by assigning a threshold value

to normalized cross-correlation coefficients [5]. They reported a

scale-free network from a restricted range of the threshold. Many

stock markets have been studied using threshold methods for

generating the stock network [7–17].

In the complex network of a stock market, the nodes are the

stock indices or securities belonging to the stock market. When

we consider cross-correlations among the indices of world

markets, a node is a country’s stock index, such as the

NYSE, the KOSPI, and the Nikkei. When we consider cross-

correlation in intra-stock markets, nodes are securities such as

Apple and Google in the U.S. stock market. We assign a link to

the threshold networks when the cross-correlation coefficient

between two companies is greater than a threshold value,

such as

Cij ≥ θ. (3)

When one generates the threshold network, there is no

concrete criterion for assigning threshold θ. Many researchers

heuristically choose a threshold value [4–16]. If the threshold

value is close to 1, the threshold network is sparsely connected.

In some cases, we can observe fragmented networks. When we

decrease the threshold value, we obtain one giant connected

network. In some ranges of a threshold value, threshold

networks show a scale-free degree distribution. Intra-stock

market time series of securities are highly correlated with each

other; therefore, threshold networks have a high average

degree and a high clustering coefficient.

Strongly connected links between two securities mean

that they should behave synchronously. Therefore, when we

build a portfolio, we can avoid choosing highly correlated or

heavily connected securities from a threshold network.

However, heuristic determination of the threshold value is

an open issue in threshold networks. Nobi et al. chose a

threshold value θ � <Cij > + nσ, where n is a given value and

σ is the standard deviation [10, 11]. If n � 0, the threshold is

θ � <Cij > . If we choose the same value for n, we can

consistently compare threshold networks for different

markets. In a stock index like the Korea Composite Stock

Price Index (KOSPI), there are N securities. When we

calculate the cross-correlation, we choose a length for the

time window T in a time series. In general, we need criterion

T>N to avoid noise and obtain the statistical quality of the

cross-correlation. We need an appropriate threshold value

for the given set (N, T) [10]. We considered the daily stock

prices for 185 Korean securities listed on the KOSPI 200 for

the period from 2 June 2006 to 30 June 2009. In this period,

the 2008 global financial crisis occurred. We considered two

time windows, such as before the crisis (2 June

2006–30 November 2007) and during the crisis

(3 December 2007–30 June 2009). In Figure 1, we represent

the threshold network with θ � <Cij > + 3σ in the Korean stock

market, where (a) illustrates before the 2008 global financial crisis

(<Cij > � 0.23, σ � 0.098) and (b) illustrates during the global

crisis (<Cij > � 0.35, σ � 0.11). We observed a big change in

threshold networks when the global financial crisis occurred. The

number of nodes belonging to the largest cluster was 4.8% before

the crisis and 20% during the crisis. Before the financial crisis,

threshold networks with high cross-correlation were fragmented

into many clusters. However, during the crisis, the threshold

network formed a large network. The largest cluster of the

threshold network during the crisis was 20% of the index.

Before the crisis, the financial sector was separated into two

clusters, and many sectors were observed in the threshold

network. During the crisis, only two sectors (the financial sector

and heavy industry and construction) belonged to the threshold

network. The financial sector formed one large

connected group, and the two sectors combined heavily with

many links.

When we choose a threshold value, we can compare the

distribution of the cross-correlation coefficients between the

original time series and a shuffled time series. The shuffled

time series destroys cross-correlation but maintains the

distribution function of the returns. When we estimate the

cross-correlation, a few high logarithmic returns heavily

contribute to the value of the cross-correlation coefficients.

This is an intrinsic problem in a time series if there are events

with extreme values. In a threshold network, we obtain a

unidirectional network. In the real world, the information

flow between two securities is asymmetric and directional.

Some researchers apply Granger causality, transfer entropy,

causation entropy, and network entropy to generate a

directional network in the stock market [18–22].

The strong points of a threshold network based on cross-

correlation are that it is easy to construct the network and
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obtain intuitive relationships among the companies via the

network. When we scan the changes in a threshold network

over time, we can observe dynamic changes in the network, as

shown in Figure 1. The properties of the threshold network

help us understand the characteristics of the stock market. A

weak point in the threshold network is that there is no concrete

criterion for assigning the threshold. Therefore, if we change

the threshold value, the connecting pattern changes heavily.

When we obtain the threshold network, it does not give any

causal relationships among companies because

threshold networks are based on cross-correlation among

time series.

The structural change of a complex network in the stock

market can be applied to measure the impact of a crisis and

the instability of the market [10, 15, 23–31]. A big shock on

the market should change the structure of the stock network.

The length of the minimum spanning tree experiences a

drastic reduction when facing systemic risk [24]. The

hierarchy of global trade networks increases during a

period of recession [25]. Characteristics of complex

networks, such as clustering coefficients, centrality,

network size, and occupation ratio, are

associated with systemic risk and instability in the stock

market [23, 27].

In summary, we introduced a threshold method to

generate a complex network via the cross-correlation of

logarithmic returns in the stock market. We want to get

some useful information from a complex network. We

estimate properties like average degree, clustering

coefficients, centrality, and community detection in the

generated threshold networks. We need to relate these

qualities to market stability, systemic risk in the market,

investing strategies, etc. To accomplish these goals, we need

to generate suitable complex networks for the stock market by

using reasonable criteria.

3 Conclusion

We discussed methods of creating a threshold network

using cross-correlation coefficients between securities or

indices in stock markets. In the threshold method, we

assigned a heuristic threshold value to generate the stock

network. We need a more concrete criterion for choosing

the threshold value for a threshold network. The dynamic

changes of a threshold network in the stock market can be

applied to understand the systemic risk and stability in the

market.

FIGURE 1
Threshold network with threshold θ � <Cij > + 3σ in the Korean stock market: (A) before the 2008 global financial crisis (<Cij > � 0.23, σ �
0.098) and (B) during the global crisis (<Cij > � 0.35, σ � 0.11). The labels indicate the companies, and the colors of the nodes indicate the sector of
the stock market as follows: financial sector (green triangles), heavy industry and construction (red squares), iron andmetal products (magenta plus),
and non-metallic products (blue stars).
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